
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 3, Number 4, Fall 1991

MESH INDEPENDENCE OF NEWTON-LIKE METHODS
FOR INFINITE DIMENSIONAL PROBLEMS

C.T. KELLEY AND E.W. SACHS

ABSTRACT. Globally convergent modifications of New-
ton’s method, such as the Armijo rule, can be applied to infi-
nite dimensional problems and their discretizations. We show
that if the construction of the discretizations is done properly,
then the convergence behavior of the iteration is the same
for the discrete problems as it is for the infinite-dimensional
problem. Basic to these results is the use of the concept of
discrete convergence as a tool to measure the performance
of algorithms and a new setting of Banach spaces with in-
complete metrics, for example, norms generated by contin-
uous inner products. The motivating problems are integral
equations with continuous kernels. This result extends to the
globally convergent case results of Allgower, Böhmer, Potra,
and Rheinboldt, and the authors. In addition, we strengthen
the previous results on mesh independence of quasi-Newton
methods. Numerical results are reported that illustrate the
results.

1. Introduction. Many methods for solution of nonlinear equations
in Rn depend on inner product information. Quasi-Newton methods,
such as Broyden’s method [6] or the BFGS method [7, 10, 11, 27] use
inner products to construct approximations to Jacobian and Hessian
matrices. Globally convergent modifications of Newton’s method, such
as line searches or trust region strategies, use inner product norms to
test for sufficient decrease and for computation of gradients and steepest
descent directions. When such methods are applied to discretizations
of equations in Banach spaces these inner products impose a Hilbert
space structure on the discretized problem that may not be appropriate
for the infinite dimensional problem. Other, more general, global
convergence methods may use merit functions that satisfy crucial
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estimates in norms other than that of the Banach space in which the
problem is posed. The questions that arise are how the performance of
the iteration on the discrete problems is related to those of similar
methods on the infinite dimensional problem and how the use of
the incompatible norms affects the convergence rate of the iterates,
especially as the discretization is refined.

In previous work ([16, 15, 18, 19, and 21]) such questions were
investigated for various Newton-like methods. In [1] and [2] the results
were on Newton’s method, where additional norms are not introduced
by the method, but the issue of how the convergence properties of the
infinite dimensional problem affect those of the discrete problem is still
of interest. All these results are concerned with local convergence rates.
The purpose of this paper is to show how a globalization strategy, the
Armijo rule for line searches [3] performs in this context and to show
how the estimates using possibly incompatible norms can be used to
advantage for the discrete problems. These results are also new in the
context of mesh-independence for local convergence of quasi-Newton
methods. In particular, we are able to generalize the statement of
the mesh-independence principle by incorporating more general merit
functions and consider the case in which the spaces on which the various
approximate problems are defined are not the same. The results are
obtained by an extension of the work in [19, 25, and 26]. Basic to this
analysis is the notion of discrete convergence [28] and its application
to merit functions for global convergence algorithms.

A special case of our results is the situation where the Banach space
is endowed with a continuous inner product. The merit function is the
inner product of the nonlinear residual with itself, and the resulting
method is the classical Armijo rule.

The work in this paper, like that in [19], is motivated by nonlinear
integral equations. The results apply, however, to pointwise methods
such as those discussed in [17, 18, 20, and 22]. Although our results
are stated in more generality, we begin with an example of a nonlinear
integral equation to motivate the results that follow. Let K denote the
nonlinear operator on C[0, 1] defined by

(1.1) K(u)(x) =
∫ 1

0

k(x, y, u(y)) dy
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and consider the equation

(1.2) F(u)(x) = u(x) −K(u)(x) = 0.

We assume that k and ∂k/∂u are continuous functions on [0, 1] ×
[0, 1] × R and Lipschitz continuous in the third argument. With these
assumptions, K is a completely continuous map on C[0, 1]. We assume
that a solution, u∗ ∈ C[0, 1], to (1.2) exists and that F ′(u∗) is a
nonsingular linear operator on C[0, 1]. Note that for u ∈ C[0, 1], F ′(u)
is a bounded operator on Lp[0, 1] for 1 ≤ p ≤ ∞. If u ∈ C[0, 1] the L2

adjoint of F ′(u), F ′(u)∗, is also a well-defined operator from C[0, 1] to
C[0, 1] and is given by

F ′(u)∗v(x) = v(x) −
∫ 1

0

∂k

∂u
(x, y, u(y))v(y) dy.

Hence, given u ∈ C[0, 1] sufficient near u∗, both the Newton step,
−F ′(u)−1F(u), and the L2 steepest descent direction for the functional,
||F(u)||22/2, −F ′(u)∗F(u), are defined. We will abstract this use of
a Hilbert space steepest descent direction for a problem posed in a
Banach space later in the paper.

We discretize the integral in (1.2) by a quadrature rule. We index
the rules by N = 1, 2, . . . , with increasing N denoting a more accurate
quadrature rule. At level N the quadrature nodes will be denoted
by {xN

i }mN
i=1 , where mN is the number of nodes in the rule, and the

quadrature weights will be denoted by {wN
i }mN

i=1 . We assume that, for
all u ∈ C[0, 1],

(1.3) lim
N→∞

mN∑
i=1

u(xN
i )wN

i =
∫ 1

0

u(x) dx and
mN∑
i=1

wN
i = 1.

For u ∈ C[0, 1] and N ≥ 1 define KN by

(1.4) KN (u)(x) =
mN∑
j=1

k(x, xN
j , u(xN

j ))wN
j .

By (1.3), KN converges strongly to K in the sense that

lim
N→∞

KN (u) = K(u),
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in the norm of C[0, 1] for all u ∈ C[0, 1]. We will approximate F by
F̂N = I − K̂N . If ûN is a solution of the approximate equation,

(1.5) F̂N (u)(x) = u(x) − K̂N (u)(x) = 0,

then the vector uN ∈ RmN with components uN,i = ûN (xN
i ) satisfies

the finite dimensional system of nonlinear equations

(1.6) uN,i =
mN∑
j=1

k(xN
i , xN

j , uN,j)wN
j = 0.

If we let ΠN : C([0, 1] → RmN be the map that takes u ∈ C[0, 1] into
the vector with components u(xN

i ) and let PN : RmN → C[0, 1] be some
interpolation operator, (1.6) may be written, noting that ΠNPN = I
on RmN , as

FNuN = ΠN F̂NPNuN = 0.

Note that if uN is the solution to (1.6), the solution, ûN , to (1.5) is

ûN (x) =
mN∑
j=1

k(x, xN
j , uN,i)wN

j .

Hence, either (1.6) or (1.5) may be regarded as an approximation to
(1.2).

The discussion above illustrates a theme of the paper. To have
the quadrature rule approximation converge to the integral, we must
require that the integrands be continuous. Hence, it is reasonable
to pose our problem in the Banach space of continuous functions.
However, in order to discuss global convergence and use the concepts
of descent direction, it is natural to take gradients in a Hilbert space
setting. The assumptions that we make in Section 2 are motivated by
consideration of these issues in the specific case of (1.2).

If one wants to solve either (1.2) or (1.6), by, e.g., Newton’s method,
the rate of local convergence is given by

(1.7) ||e+|| ≤
Mγ

2
||ec||2.

In (1.7) ec and e+ denote the errors for the old and new iterates, γ is
the Lipschitz constant for ∂k/∂u with respect to its third argument, M
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is a bound for ||F ′(u)−1|| in a sufficiently small neighborhood of u∗, and
the norm, || · ||, is arbitrary. The choice of norm only affects the radius
of the ball about the solution for which (1.7) holds. In particular, if a
max norm is used (L∞ for the infinite dimensional problem and �∞ for
the finite dimensional problems), the radius of the ball for which (1.7)
holds depends only on continuity properties of k and its derivatives,
and not on whether the infinite dimensional problem or any of the
finite dimensional problems are being considered.

The disadvantages of Newton’s method are that for each iterate a full
matrix must be computed, stored and factored. For fine meshes with
many quadrature points the cost can be prohibitive. For this reason,
methods which approximate the Jacobian are often preferred, even
though more iterates may be required. One such method is described
in [4] and [5]. The approach is to form an approximate Jacobian from
the solution of a discrete problem on a coarser mesh. The coarse mesh
problem can be solved with Newton’s method at a cost that is negligible
in comparison with a fine mesh evaluation of the nonlinear integral
term. Storage and factorization of matrices need only be done for the
coarse mesh problem. Convergence of this method, as was pointed out
in [16], can be accelerated by use of Broyden’s method and extended to
some problems having singular Fréchet derivative at the solution. The
use of Broyden’s method, which requires a continuous inner product
for its formulation, is one point where norms other than the L∞ norm
enter into the algorithms. This issue is also discussed in [19].

Following the notation in [19], we discuss algorithms in terms of
solution of a nonlinear equation, F (u) = 0, on a Banach space, Z, with
norm || · ||Z . F could be any of F or FN , for example. We assume
that a solution, u∗, exists and that F ′(u∗) is nonsingular. In order to
discuss the quasi-Newton methods and some of the globally convergent
algorithms, we will assume that Z has a continuous inner product,
which we denote by (·, ·). We do not assume that Z is complete in the
norm induced by the inner product. We let X denote the completion
of Z in the inner product norm, and let || · ||X denote this norm. For
example, in the max norm or RmN with �∞ norm, the inner product,
the L2 inner product or an �2 inner product with quadrature weights,
and X could be L2 or RmN with the �2 norm.

Quasi-Newton methods maintain not only an approximate solution,
u, but an approximate Fréchet derivative, B. For local convergence, the
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algorithms make the transition from a current pair of approximations,
(uc, Bc) to (u∗, F ′(u∗)), to a new pair, (u+, B+), through the following
steps, assuming F (uc) has been completed.

• Solve Bcs = −F (uc).

• u+ = uc + s.

• Complete F (u+) and terminate if sufficiently small.

• Update Bc to form B+.

The particular quasi-Newton method is determined by the update
formula in the last step. The method we will consider in this paper is
Broyden’s method [6] where

(1.8) B+ = Bc +
(y − Bcs) ⊗ s

||s||2X
.

In (1.8) ⊗ denotes the Hilbert space tensor product induced by (·, ·),
and y = F (u+)−F (uc). In finite dimension, if B0 and u0 are sufficiently
near F ′(u∗) and u∗ respectively, the Broyden iterates exist (i.e., Bn is
always nonsingular) and converge q-superlinearly to u∗ with respect to
|| · ||X , then

(1.9) lim
n→∞

||un+1 − u∗||X
||un − u∗||X

= 0.

In the case of an infinite dimensional space (1.9) also holds provided
that, in addition to the assumptions needed in finite dimension, B0 −
F ′(u∗) is compact [12]. The problem that arises for problems like (1.2)
is with the relation between the X norm convergence promised by the
theory and the fact that the strong convergence of the approximations
to our nonlinear function holds only in the topology of Z. This makes
it difficult to describe the convergence behavior of the iterates in a way
that is independent of the level of the discretization. This issue has
been resolved in [19, 21] under certain assumptions. We will discuss
some of those results in Section 2.

Similar issues related to inner products arise in global modifications
of Newton-like iterative methods. In this paper we consider line search
methods that seek sufficient decrease in a merit function, g, that is
defined on Z and that is an increasing function of ||u− u∗||. A typical
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merit function is g(u) = (F (u), F (u))/2, where (·, ·) is a continuous
inner product on Z. As this particular example is very natural and
we have already used the inner product structure in the description of
Broyden’s method, we consider that example first. We describe the
transition from (uc, Bc) to (u+, B+) as follows:

• Solve Bcp = −F (uc).

• If (F ′(uc)∗F (uc), p) > 0, use a different Bc (e.g., Bc = F ′(uc)).

• Find σ such that ||F (uc + σp)||X is sufficient less than ||F (uc)||X ;
set s = σp.

• u+ = uc + s.

• Compute F (u+) and terminate if sufficiently small.

• Update Bc to form B+.

In the above algorithm, the first role of the inner product is to decide
if p is a descent direction for ||F ||X in the second step. In that step
the Hilbert space adjoint of F ′(uc), which we denote by F ′(uc)∗ is used
as well and we assume throughout this paper that F ′(uc) is defined on
Z. This assumption is certainly valid if F ′ is the sum of the identity
with an integral operator with a continuous kernel. Note that the
second step may be omitted if p is the Newton step for the equation
F (u) = 0 or the Hilbert space steepest descent step −F ′(uc)∗F (uc)
for minimizing g(u) = ||F (u)||2X/2. Moreover, the inner product,
(F ′(uc)∗F (uc), p) > 0, may be approximated with only one additional
function evaluation as

(F (uc), F (uc + δp) − F (uc))/δ,

or as
(g(uc + δp) − g(uc))/δ,

for a sufficiently small δ.

The third step looks for an appropriate step length. There are various
methods for finding this step length. Our choice is the Armijo rule [3]
which aims to decrease a merit function, g, by a sufficient amount. The
choice of g in the algorithm described above is

(1.10) g(u) = ||F (u)||2X/2.
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The Armijo rule, as we formulate it in this paper, depends on
parameters, μ ∈ (0, 1), ρ > 0, and q ∈ (0, 1). Given a descent direction,
p, first find α so that

(1.11) α >
ρg(uc)
||p||2X

,

then find the smallest integer, j ≥ 0, such that

(1.12) g(uc) − g(uc + αqjp) > αμqjg(uc),

and then set

(1.13) u+ = uc + αqjp.

For definiteness we will use

α = max
{

1,
1.1ρg(uc)
||p||2X

}

in this paper.

As was the case with quasi-Newton methods, the theorems for global
convergence [9, 13, 24] assert convergence for the special case g(u) =
||F (u)||2X/2 in the norm of X. Under certain assumptions, the conclu-
sions are that either ||F (un)||X → 0 or (F ′(un)∗F (un), sn)/||sn||2X → 0.

In this paper we consider Armijo-type line search schemes based on
decreasing a merit function, g, by a sufficient amount. In [25, 26]
merit functions of the form φ(F (u)) where φ is convex, but not nec-
essarily smooth, were considered. In our situation, where analysis of
mesh-independent convergence properties is the goal, we restrict our at-
tention to smooth merit functions, g, that satisfy certain assumptions.
We give these assumptions in Section 2.

We begin Section 2 with a description of the setting in which we will
work and review the concept of discrete convergence. We then give
the assumptions on the nonlinearity and the merit functions that we
need, motivating them with the particular example of inner product
based merit functions and integral equations with continuous kernels
on Z = C[0, 1]. In Section 3 we state and prove our mesh independence
results, and in Section 4 we consider a numerical example.
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2. Notation and preliminaries. The notation in this paper is
motivated by the example in Section 1. In this section we introduce
notation and motivate the work in Section 3 by considering the special
setting of the classical Armijo rule as described in Section 1. With this
algorithm in mind, we summarize the properties of the merit function
given by (1.10) as motivation for the more general setting discussed in
Section 3.

Let Z be a Banach space. We are concerned with solution of a
nonlinear equation, F (u) = 0 on Z. Our solution will be approximated
by solution of approximate equations on different spaces. We use
assumptions that are different from those in [19], but the conclusions
of that paper will follow from the assumptions given here.

Let {ZN}∞N=1 be a sequence of Banach spaces. We approximate
F (u) = 0 by FN (u) = 0 on ZN . For consistency of notation, we
let Z∞ = Z and F∞ = F . We assume that continuous linear
maps, ΠN : Z → ZN and PN : ZN → Z, exist and are bounded
uniformly in N . These maps will define the convergence properties of
the approximation.

In order to formulate the fundamental assumptions on the approx-
imates we use the concept of discrete convergence, cf. Stummel [28].
We assume that

(2.1)
(a) ||ΠNu||ZN

→ ||u||Z , for all u ∈ Z.

(b) PNΠN → I, strongly in Z.

We say that a sequence, {uN}, with uN ∈ ZN converges in the
discrete sense if

||uN − ΠNu||ZN
→ 0.

We denote this by
uN

d−→ u.

We say that a sequence of (possibly nonlinear) continuous operators,
{AN}, is discretely convergent to a continuous operator A on Z if

AN (uN ) d−→ A(u)

whenever uN
d→ u. We denote this by

AN
d−→ A.
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Finally, we say that a sequence of functionals, {gN}, with gN defined on
ZN , converges discretely to g if uN

d→ u implies that gN (uN ) → g(u).
We denote this as

gN
d−→ g.

The algorithms we consider use a sequence of approximations to F ,
{FN}, defined on ZN , and a sequence of approximations to a merit
function g, {gN}. For convenience, we identify g∞ with g. We assume
that for 1 ≤ N ≤ ∞ there are norms || · ||XN

defined on ZN and CG,
r > 0, such that there is || · ||XN

≤ CZ || · ||ZN
for all N and, for all

u ∈ ZN ,

(2.2) gN (u) ≤ CG||FN (u)||rXN
.

We let XN denote the completion of ZN with respect to the XN norm.
Consistently with the notation above, we let X = X∞. In the case
where XN is finite dimensional, XN and ZN differ only in the norms,
but in the infinite dimensional setting XN may properly contain ZN . It
is useful here to reconsider the problem (1.2) and the approximations
discussed in Section 1. In this case one could use Z = C[0, 1] with the
max norm; and PNΠN → I strongly in Z. To use the merit function,
||F ||22/2, one would use X = L2 and let the XN norms be discrete L2

norms. Note that PNΠN → I is not true in X, in fact, ΠN is not
defined on X = L2.

Our fundamental assumptions on the spaces XN are that

(2.3)
(a) || · ||XN

d−→ || · ||X ,

(b) there is CX > 0 such that, for all N and u ∈ ZN ,

||PNu||X ≤ CX ||u||XN
.

Assumption (2.3)(a) relates the norms, || · ||XN
, to the topology of

ZN in a way that is crucial to the mesh independence results of this
paper. In the model problem discussed in Section 1, ZN is RmN with
the �∞ norm and || · ||XN

= (·, ·)N is an approximation to the L2

inner product based on a quadrature rule. In that case, (2.3)(a) clearly
holds. However, (2.3)(a) would not hold if we used Z = X = L2[0, 1]
as point evaluation is not defined on L2. If one wanted to consider
the situation Z = X, the approximate integration rule that defines the
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inner product could not be based on point evaluations, but would have
to be a projection method, and ΠN would be taken as a projection.
Stummel [28] calls (2.1)(b) a consistency condition and the uniform
boundedness condition, (2.3)(b), a stabilizing condition.

For the approximating mappings, we assume

(2.4)
(a) gN

d−→ g,

(b) FN
d−→ F.

In case of (1.10) and gN (u) = ||FN (u)||2XN
/2 the relation (2.4)(a)

follows from (2.4)(b) and (2.3)(a).

We assume that a root, u∗ of F exists in Z and that F ′(u∗) is
nonsingular. Let

(2.5) TN (β) = {u ∈ ZN | ||FN (u)||ZN
≤ β}

For purposes of simplicity, we will assume that T (β) is connected for
all β sufficiently small. This means that u∗ is the only root of F . In
general, when F has several roots, our mesh independence results hold
if we restrict attention to a connected component of T (β) and assume
that all iterates remain in that component. We let

CN (β) = coTN (β).

We assume that the maps {FN} have uniform continuity and bound-
edness properties. In particular, we assume that there are βZ , MZ

S ,
MZ , and γZ

D such that, for all N and u, v ∈ CN (βZ),

(2.6)

(a) ||u||ZN
≤ MZ

S ,

(b) ||F ′
N (u) − F ′

N (v)||L(ZN ) ≤ γZ
F ||u − v||ZN

, and

(c) sup
N

(||F ′
N (u)||L(ZN ), ||(F ′

N (u))−1||L(ZN )) ≤ MZ .

The Kantorovich theorem and assumptions (2.1), (2.3), (2.4) and (2.6)
allow us to conclude that for N sufficiently large, FN has a root,
uN ∈ ZN , and that PNuN → u∗ in Z. In addition, there is γF

Z < MZ

such that
||FN (u) − FN (v)||ZN

≤ γZ
F ||u − v||ZN

,
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for all u, v ∈ CN (βZ).

Note that if uN d→ u then PNuN → u in the norm of Z by (2.1)(b).
Hence, (2.6)(b) implies that

lim
N→∞

PNFN (ΠNu) = F (u).

In [19] all the spaces {ZN} were taken to be identical and the inner
products, (·, ·)N , changed with N . The results in this paper are more
general.

Our assumptions on the sequence of maps {FN} are essentially the
uniform continuity and differentiability requirements for convergence
of Newton’s method in a mesh independent way in the topology of Z.
These assumptions are different than those in [19] in that the functions
{FN} are required to have uniform Lipschitz continuity properties and
existence of the sequence of roots, {uN}, need not be assumed. In order
to consider inner product based algorithms, we must make assumptions
similar to those in (2.6) using the XN norms. These are, in fact, the
critical assumptions for the theory in this paper as it applies to the
classical Armijo rule.

We assume that there are β > 0, γF > 0, γD > 0, MS > 0, and
M > 0 such that the maps {FN} and the sets

(2.7) SN (β) = {u ∈ ZN | ||FN (u)||XN
≤ β},

(2.8) DN (β) = coSN (β),

satisfy, for all N ≥ 1 and u, v ∈ DN (β),

(2.9)

(a) ||u||XN
≤ MS ,

(b) ||F ′
N (u) − F ′

N (v)||L(XN ) ≤ γD||u − v||XN
, and

(c) sup
N

(||F ′
N (u)||L(XN ), ||(F ′

N (u))−1||L(XN )) ≤ M.

In (2.8) the closure is taken in the topology of ZN . As in (2.6), (2.9)(c)
implies that there is γF ≤ M such that, for u, v ∈ DN (β),

||FN (u) − FN (v)||XN
≤ γF ||u − v||XN

.
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Implicit in the assumptions listed above is the statement that F ′
N (u)

and its inverse can be extended in a continuous way to XN for all
u ∈ ZN and that F ′(u)Z ⊂ Z for all u ∈ Z. As above, if F has
more than one root, the results in this paper still hold if we restrict
attention to a sequence of connected components of SN (β), that contain
roots uN d→ u∗, and assume that iterates at all levels remain in these
components.

To motivate our assumptions on the merit function, note that if the
XN norms are discrete L2 norms and gN is given by

gN (u) = ||FN (u)||2XN
/2

then our assumptions imply

(a) There is a γg such that, for all N and u, v, w ∈ ZN ,

|(g′N (u) − g′N (v))w| ≤ ||w||XN
γg||u − v||XN

.

(b) There is η > 0, independent of N such that

gN (u) ≥ η||u − uN ||2XN
, for all u ∈ DN (β).

(c) gN (uN ) = 0.

In fact, we may use η = 1/M and γg = MγF +βγD. We generalize this
to incorporate other smooth merit functions, such as g(u) = ||F (u)||pLp

for example. We assume
(2.10)

(a) There are δ and γg such that, for all N and u, v, w ∈ ZN ,

|(g′N (u) − g′N (v))w| ≤ ||w||XN
γg||u − v||δXN

.

(b) There are ν, η > 0, independent of N such that
gN (u) ≥ η||u − uN ||νXN

, for all u ∈ DN (β).

(c) gN (uN ) = 0.

Note that our assumptions exclude nonsmooth merit functions. The
choice g(u) = ||F (u)||Z , for example, in the case Z = C[0, 1], is
excluded. Mesh independence results of the type presented in this
paper and global convergence results that give explicit rate information
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need smoothness on the merit function. Choices of g such as g(u) =
||F (u)||rLr , for r > 1, are included. In the case of (1.2) and the
approximations in Section 1, such a choice for g would make X = Lr

and the XN norms discrete Lr norms. As we pointed out before, use of
the quadrature rule requires Z = C[0, 1] with the max norm, and the
merit function requires a space X 	= Z. Also, PNΠN → I fails in the
X norm.

The Armijo rule drives the merit function to its minimum value
via an approximate line search on the ray from the current iterate
along a descent direction, i.e., a direction p such that g′(u)p < 0. In
this paper we will restrict our descent directions to those of the form
p = −B−1F (u), even though our analysis applies to descent directions
that do not come from Newton like methods. The reason for this
restriction is that we want to relate the method for construction of
the operator B to the mesh-independence properties of the iteration.
If, in the case Z = C[0, 1], we set g(u) = g(u : r) = ||F (u)||rLr/r
for some 2 ≤ r < ∞, then g is smooth and one direction satisfying
g′(u)p < 0 is clearly the Newton direction, with B = F ′(u). Note
that, with this choice of p, B and B−1 are bounded in both the Z and
X norms. Hence, if the initial iterate is in Z, all subsequent iterates
will be in Z as well. Another descent direction, the steepest descent
direction for g(u) = g(u : 2) = ||F (u)||2L2/2, uses B = (F ′∗)−1. This
operator is not automatically guaranteed to be bounded in Z, but is if,
say, F ′ − I is an integral operator with a continuous kernel. Either of
these choices of descent direction satisfy, for some τ > 0,

(2.11) g′(u)p ≤ −τg(u).

For example, in the case of the Newton step and g(u) = g(u : 2), τ = 2
and for the steepest descent direction, assuming either that it is defined
in Z or that we are working in X, τ = 2M−2. Note that these estimates
do not depend on N in any way and that we have suppressed mention
of N in this paragraph.

We can now state our generalized Armijo rule. The rule will be the
same for every N and hence we suppress the subscripts on Z, X, and G.
Let g be a merit function that satisfies (2.2) and (2.10). As in Section
1 we have parameters, μ ∈ (0, 1), ρ > 0, and q ∈ (0, 1). Given a descent
direction, p ∈ Z, that satisfies (2.11), find α such that

(2.12) α > ρg(u)1/δ||p||−(1+1/δ)
X ,
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then find the smallest integer, j ≥ 0, such that

(2.13) g(uc) − g(uc + αqjp) > αμqjg(uc),

and then set

(2.14) u+ = uc + αqjp.

The condition in (2.12) is a generalization of that in (1.11) for δ 	= 1.
For definiteness we use

(2.15) α = max{1, 1.1ρg(u)1/δ||p||−(1+1/δ)
X }.

Note the dependence of the method on the Hölder continuity properties
of g as described by (2.10)(a).

We will compare the convergence properties of iterative methods by
the number of iterates required to drive the X norm of F to a small
value. For N > 1 and uN

� → uN , we define

(2.16) �N (ε) = min{� | gN (uN
� ) < ε},

where gN is a merit function satisfying (2.10).

In [19] we considered the local convergence behavior of Broyden’s
method as the level, N , varied. In that paper we used gN = || · ||XN

where || · ||XN
was an inner product norm. If we denote the Broyden

update at level N as

BN
n+1 = BN

n +
(y − BN

n ) ⊗N s

||s||2XN

where ⊗N is the XN tensor product, we were able to show that, under
certain assumptions on the initial derivative approximations, that for
any ε > δ > 0, there was an N0 so that if N > N0, then

(2.17) �∞(ε + δ) ≤ �N (ε) ≤ �∞(ε).

The key point in [19] was that the rules for computation of the iterates
at each level produced a convergent sequence of iterates, {uN

n }, as
N → ∞. In this paper we strengthen this result to show that (2.17)
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holds for general merit functions, gN , that satisfy (2.10) and holds for
globally convergent algorithms.

A second issue raised in [19] is the use of Nyström interpolation to
convert a good X-norm estimate of the solution into a good Z-norm
estimate. The assumptions necessary for this are, first of all, that for
all N ,

(2.18) FN = I + KN , where KN : XN → ZN ,

and that the maps, KN be uniformly continuous in the sense that there
is a δK ∈ C[0,∞) with δK(0) = 0 such that

(2.19) ||KN (u) − KN (v)||ZN
≤ δK(||u − v||XN

),

independently of N . These assumptions are certainly valid if FN = FN

and KN = KN are the operators considered in Section 1. If (2.18) and
(2.19) hold and if ũN is near uN in the XN norm, K(ũN ) will be near uN

in the ZN norm. This observation holds equally well for the sequences
generated by the globally convergent methods considered here.

3. Global convergence results. In this section we prove two
results on the generalized Armijo rule given by (2.15), (2.13), and
(2.14). The first gives rates on convergence of gN to zero that do
not depend on N . The second, the mesh independence result, says
that for almost all values of the parameter, μ, in the Armijo rule, mesh
independence holds.

The first results will depend only on the constants in the assumptions
in (2.9), (2.10), (2.11), and indirectly on the fact that the descent
directions remain in Z. This latter assumption is implied, in the case
of the Newton direction, by (2.6). As is typical in analysis of such
methods (see, for example, [24] or [13]) we require a lemma which
gives a lower bound on the steplengths.

Lemma 3.1. Assume that (2.6), (2.9), and (2.10) hold. Assume that
there is τ such that for all u ∈ D(β), p is chosen so that (2.11) holds.
Let μ < τ and σ = αqj be the steplength taken by the Armijo rule from
u = uc in the direction p. Then there is c̃ such that

(3.1) σ ≥ c̃g(u)1/δ||p||−(1+1/δ)
X .
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Proof. If j = 0, then by (2.15) we may choose c̃ = 1. If j ≥ 1, then
we must have

g

(
u +

σp

q

)
>

(
1 − σμ

q

)
g(u)

and hence, with (2.10)(a) and (2.11),

(3.2)

μσg(u) > −q(g(u +
σp

q
) − g(u)) = −q

∫ 1

0

g′(u +
tσp

q
)
σp

q
dt

= −σg′(u)p + σ

∫ 1

0

(g′(u) − g′(u +
tσp

q
))p dt

≥ στg(u) − γg(σ||p||X)1+δ/(qδ(1 + δ)).

Hence

σδ ≥ (τ − μ)qδ(1 + δ)g(u)
γg||p||1+δ

X

which implies the result with

c̃ =
(

(τ − μ)qδ(1 + δ)
γg

)1/δ

.

From the lower bound, (3.1), a uniform rate of global convergence
can be obtained if the descent directions are related to the errors. We
state this condition in terms of the operators, {Bn}.

Theorem 3.2. Let the assumptions of Lemma 3.1 hold. Assume
that ν ≥ 2 in (2.10)(b), and δ ≤ 1. Let {un} be the sequence of iterates
produced with the Armijo rule, with u0 ∈ D(β), and pn = −B−1

n F (un).
Assume that (2.11) holds for p = pn and u = un for all n. Moreover,
assume that there is MB such that, for all u ∈ Z and n ≥ 0,

(3.3) ||B−1
n u||X ≤ MB ||u||X .

Then g(un) → 0 and satisfies

(3.4) g(un+1) ≤ (1 − ζg(un)ξ−1)g(un),

where ξ = (1 + δ−1)(1 − ν−1).
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Proof. By the Armijo rule, (2.13), and Lemma 3.1 we have

g(un) − g(un+1) ≥ σμg(un) ≥ c̃μ(g(un)/||pn||X)1+1/δ.

By (3.3)
||pn||X ≤ MB||F (un)||X ,

and by (2.9), letting en = un − u∗,

||F (un)||X ≤ M ||en||X .

Hence, by (2.10)(b),

||pn||X ≤ MBM ||en||X ≤ MBMη−1/νg(un)1/ν .

If we let

ζ = c̃μ

(
η1/ν

MBM

)1+1/δ

,

then

c̃μ

(
g(un)
||pn||X

)1+1/δ

≥ ζg(un)ξ.

This completes the proof.

Theorem 3.2 allows one to obtain q-linear convergence of the sequence
{q(un)} with q-factor 1 − ζ in the case ξ = 1, which follows from, say,
ν = 2 and δ = 1. If ξ > 1 we obtain a weaker result.

Corollary 3.3. Let the hypotheses of Theorem 3.2 hold. Then there
is ζ̃ such that

(3.5) g(un) ≤ ζ̃n1/(ξ−1).

Proof. Let φ(r) = ζrξ and define {rn} by r0 = g(u0) and

rn+1 = rn − φ(rn), n ≥ 0.
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Clearly, g(un) ≤ rn for all n ≥ 0. Note that if

Φ(r) =
∫ r

r0

dt

φ(t)
=

r1−ξ − r1−ξ
0

ζ(1 − ξ)

then, since {rn} is a decreasing sequence and φ is an increasing function,
we have for all i ≥ 0,

Φ(ri+1) − Φ(ri) =
∫ ri+1

ri

φ(t)−1 dt ≤
∫ ri+1

ri

φ(ri)−1 dt

= (ri+1 − ri)φ(ri)−1 = −1.

Summing from i = 0 to i = n implies Φ(rn) ≤ −n and

r1−ξ
0 − r1−ξ

n ≤ −nζ(ξ − 1).

Therefore,
rn ≤ (r1−ε

0 + ζ(ξ − 1)n)1/(1−ξ).

This completes the proof with ζ̂ = (ζ(ξ − 1))1/(1−ξ).

The conclusions of this section are, so far, that the rate of convergence
can be estimated in terms of the operator bounds and continuity
properties shared by all the problems, FN (uN ) = 0, and all the merit
functions, gN . The important assumptions here were (2.6), (2.9),
(2.10), and (2.11). The mesh independence result we want, namely
(2.17), requires continuity properties of the individual iterates. This
continuity will follow from the relationship between the problems at
the various levels, (2.4), assumptions on the maps Bn and BN

n , and
requirements that the iterates produced by the Armijo rule for N = ∞,
which converge in X, remain in Z if the initial iterate is in Z.

Our assumptions on the sequence {un} and the maps {Bn} are that

(3.6)

(a) The assumptions of Theorem 3.2 hold;
(b) un ∈ Z for all n;

(c) There is M̂ such that ||(Bn)−1||L(Z) ≤ M̂ for all n.

Assumption (3.6)(a) implies, in particular, that the sequence {un}
exists. Clearly, the Newton and steepest descent sequences satisfy such
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an assumption in the case g(u) = ||F (u)||2L2 for the case of integral
equations of the form (1.1) if k is sufficiently smooth and uniformly
bounded. Assumption (3.6)(b) holds for iterates generated by Newton’s
method or steepest descent since Z is left invariant by F ′(u) and F ′(u)∗

because both are sums of the identity and integral operators with
continuous kernels. Assumption (3.6)(b) holds for Broyden iterates
as well if B0 leaves Z invariant since Bn differs from Bn−1 by a rank
one integral operator with a continuous kernel. Assumption (3.6)(c)
will hold for the case of integral equations of the form (1.1) with k
sufficiently smooth and uniformly bounded and iterates given by either
steepest descent or Newton if (3.6)(a) (b) hold as, in that case, I−F is
a continuous map from L2 to C and F ′ a continuous map from L2 to the
space of bounded operators on C. In addition, quasi-Newton sequences
such as Broyden’s method can also be made to satisfy this assumption
if the method is restarted by Newton’s method or steepest descent if
(2.11) fails or the quasi-Newton operator becomes ill-conditioned.

The assumption on the properties of the sequences {BN
n } is one of

continuous dependence on previous data. This assumption is clearly
satisfied in the case of the steepest descent method, Newton’s method,
or discretizations of quasi-Newton methods for integral equations if the
quadrature rule and associated inner product satisfy our hypotheses.

For any k > 0, if uN
i

d→ ui and

(BN
i )−1 d→ B−1

i for all 0 ≤ i < k, then(3.7)

(BN
k )−1 d→ B−1

k .

Theorem 3.4. Assume that (2.4), (3.6), and (3.7) hold. Then,
except for at most countably many values of the parameter, μ, in
the Armijo rule, μ > 0, taken sufficiently small, if uN

0
d→ u0 and

(BN
0 )−1 d→ B−1

0 , then uN
n

d→ un for all n > 0.

Proof. By (3.7), it clearly suffices to prove the result for n = 1.
Our proof is in two stages. First, we show that the descent directions
converge. Then we show that there is a countable exceptional set, E1,
such that for μ /∈ E1 the choice of the integer, jN

1 (μ), selected by the
Armijo rule for iterate 1 at level N , is the same as j∞1 (μ) for all but
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finitely many N . Once this second stage is complete, the result follows
by taking as the countable set ∪�E�.

Note that FN (uN
0 ) d→ F (u0) by (2.4)(b) and the assumption that

uN
0

d→ u. Hence, as (BN
0 )−1 d→ B−1

0 , by assumption,

pN = −(BN
0 )−1FN (uN

0 ) d→ p = −B−1
0 F (u0).

This implies that if the αN is defined by (2.15), αN → α∞ and hence

αNpN d→ α∞p.

For any j ≥ 0, (2.4)(a) and (b) imply that

(3.8) gN (uN
0 + qjαNpN ) → g(u + qjα∞p).

Hence, if

(3.9) gN (uN
0 + qjαNpN ) < (1 − μα∞qj)g(uN

0 )

holds for N = ∞, (3.9) must hold for all but finitely many N .
Conversely, if (3.9) holds for all but finitely many N < ∞, (3.9) can fail
to hold for N = ∞ for at most a single exceptional value of μ, μ1

j . We
complete the proof by setting E1 = ∪j{μ1

j}, where the union is taken
only over those values of j for which an exceptional value of μ exists.

As was the case in [19] and [21], convergence of the sequence {uN
n }

as N → ∞ implies that Theorem 3.4 implies that (2.17) holds. We
state this as a corollary.

Corollary 3.5. Let the assumptions of Theorem 3.4 hold. Then,
except for at most countably many values of the parameter, μ, in the
Armijo rule, (2.17) holds for any ε > δ > 0 and N sufficiently large.

Globally convergent variants of quasi-Newton methods generally re-
quire that a decision be made on acceptance or rejection of a proposed
step. This choice could be made differently even for nearby problems
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and it is this potential discontinuity that accounts for the countable set
of exceptional values of μ for which the mesh-independence condition,
(2.17) fails. The main result, Theorem 3.4, is quite natural in light of
this discrete part of the algorithm.

Finally, we note that the merit function that determines the termi-
nation criterion in the definition of �N , (2.16), need not be the same
as that in the global convergence criterion. For example, termination
could be based on an L∞ or Ck norm, while the merit function in the
Armijo rule could be an Lp norm of F . The proof that (2.17) holds
would remain the same, but the possibility that �N (ε) = �∞(ε) = ∞
would have to be allowed.

4. Numerical examples. In this section we report on observations
based on the Chandrasekhar equation [8]. We observe the results
predicted by the theory in this paper with F = F : C[0, 1] → C[0, 1]
where

(4.1) F(H)(x) = H(x) − 1
1 − L(H)(x)

= 0,

where

L(H)(x) =
c

2

∫ 1

0

xH(y)
x + y

dy,

and c ∈ [0, 1] is a parameter. We seek a solution, H ∈ C[0, 1]. For
c 	= 0, 1 there are two solutions to (4.1) [23, 14], and at each of
these, the Fréchet derivative is nonsingular at the solution. One of
the solutions, characterized by analyticity in c, is of physical interest.
The computations reported here found that physical solution and the
results were compared with the tables in [8] to verify that fact. We let
the quadrature rule for N = 0 be a composite 4 point Gauss rule with
two subintervals and for N ≥ 1 a composite 20 point Gauss rule. Our
notation is that m0 = 8 and mN = 20N for N ≥ 1.

With this approximation, and taking ΠN as linear interpolation,
the assumptions of all the results in Section 3 clearly hold. The
computations were done in FORTRAN on an Alliant FX/40 running
Alliant Concentrix 4.1.0. The Alliant was purchased with a DURIP
grant from the AFOSR.

For the computations reported here, we used c = .5. The parameters
in the Armijo Rule were μ = ρ = 10−4 and q = .5. We use the merit
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function g(u) = ||F(u)||22/2. Therefore, δ = 1 and ν = 2 in (2.10). Both
Newton’s method and Broyden’s method computations were done. The
initial iterate was

H0(x) = 65 sin(20x).

For Broyden’s method, the descent condition, (2.11), was tested with
τ = 10−2 and the approximation

(g(H + εp) − g(H))/ε ≈ (∇gN (H), p)N ,

TABLE 4.1. Newton’s method.

N = 0 N = 1 N = 4 N = 32

n jN
n ‖FN (uN

n )‖ jN
n ‖FN (uN

n )‖ jN
n ‖FN (uN

n )‖ jN
n ‖FN (uN

n )‖
1 0 .4038 3 .4452D + 2 3 .4452D + 2 3 .4452D + 2

2 0 .6360D − 2 0 .4312 0 .4312 0 .4312

3 0 .1098D − 5 0 .4626D − 2 0 .4626D − 2 0 .4626D − 2

4 0 .2829D − 13 0 .5205D − 6 0 .5205D − 6 0 .5205D − 6

5 0 .6348D − 14 0 .6327D − 14 0 .6300D − 14

TABLE 4.2. Broyden’s method.

N = 0 N = 1 N = 4 N = 32

n jN
n ‖FN (uN

n )‖ jN
n ‖FN (uN

n )‖ jN
n ‖FN (uN

n )‖ jN
n ‖FN (uN

n )‖
1 0 .1347D + 1 0 .7200 0 .7200 0 .7200

2 0 .1334D + 1 0 .6069 0 .6069 0 .6069

3 0 .1332D + 1 0 .6005 0 .6005 0 .6005

4 0 .1274D + 1 0 .5571 0 .5571 0 .5571

5 0 .1453 0 .9016D − 1 0 .9021D − 1 0 .9021D − 1

6 0∗ .8643D − 3 1 .7285D − 1 1 .7284D − 1 1 .7284D − 1

7 0 .6306D − 5 0∗ .2864D − 3 0∗ .2863D − 3 0∗ .2863D − 3

8 0 .1138D − 8 0 .6458D − 6 0 .6454D − 6 0 .6454D − 6

9 0 .1340D − 9 0 .1339D − 9 0 .1339D − 9

with ε = 10−6. When (2.11) failed, the Fréchet derivative was com-
puted and Broyden’s method was restarted. The initial approximation
to the Fréchet derivative was

B0v(x) = v(x) + 75
∫ 1

0

v(y) dy.
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These approximations were selected to exercise the globally convergent
modification of Newton’s and Broyden’s method. In the tables above
we tabulate, for N = 0, 1, 4, 32, the iterate number n, the number of
stepsize reductions needed, jN

n , and the value of ||FN ||HN
. One can

clearly see the mesh independence, not only in the convergence rates
but also in the decision to reject the Broyden direction and restart with
a Newton step. This happens at iterate 7 for all N , and we indicate
this with an asterisk next to jN

n . The iteration was terminated when
||FN ||HN

< 10−7.
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