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DISTRIBUTIONAL SOLUTIONS OF THE WIENER-HOPF
INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS

R. ESTRADA AND R.P. KANWAL

ABSTRACT. We present the theory and technique for
obtaining the distributional solutions for the Wiener-Hopf
integral and integro-differential equations. This is achieved
by identifying a class of kernels for which these equations are
well defined and are of the Fredholm type. Consequently, the
associated operators and their images are of finite dimensions.
Furthermore, we define the operators in such a way that the
corresponding equations hold at the end points; otherwise, the
equations are usually ill-behaved. We illustrate our analysis
with the help of various examples.

1. Introduction. The purpose of this article is to study the
distributional solution of the integral equations of the type

(1.1) g(x) + λ

∫ ∞

0

k(x− y)g(y) dy = f(x), x ≥ 0,

the so-called Wiener-Hopf integral equation.

The integral equations of the Wiener-Hopf type have attracted the
attention of researchers for years. Since the work of Wiener and Hopf
[18] who introduced the complex variable method that bears their
names, many authors have studied the various interesting properties
of these equations. Among the many contributions, we would like to
call the reader’s attention to the work of Krein [10] who gave a quite
complete theory of the equation of the second kind in the space L1.
The article of Talenti [16] surveys the history of these equations.

The solution of Wiener-Hopf equations of the first kind in spaces that
contain some generalized functions has been studied by Santos and
Teixira [13, 14]. The generalization of Krein’s L1 theory to Sobolev
spaces, spaces that contain some generalized functions, has also been
considered [12,16]. Vladimirov [17] has gone beyond the distributional
framework by studying them in the spaces of ultradistributions.

Our aim is to give the solution of Wiener-Hopf integral and integro-
differential equations in the standard spaces of distributions. We
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identify a class of kernels, the class E, for which the distributional
equation not only is defined but is of the Fredholm type. That is, if
k ∈ E, then the associated operators have kernels of finite dimensions
and images of finite codimensions. As we pointed out, when we studied
the distributional solution of various classes of integral equation over
finite intervals [3,4] the most important step is to define the operators
in such a way that the equation holds at the endpoints; when that is not
possible, the equation is usually ill-behaved, having a kernel of infinite
dimension. In the present case, special care has to be exercised so that
the distributional equation holds at x = 0.

We start Section 2 by defining the mixed type spaces Dij(a, b) and
D′

ij(a, b) that were introduced in [3] to study the distributional solution
of equations of the Abel and Cauchy type. For the distributional
Wiener-Hopf equation, the appropriate space to consider is D43[0,∞].
The space of test function D43[0,∞] consists of those smooth functions,
smooth even at x = 0, which show rapid decay at x = ∞. In Section
3 we introduce the usual formal method for solving equations of the
Wiener-Hopf type.

Section 4 is devoted to the study of the distributional Wiener-Hopf
operators with the kernels of class E. We show that when the kernel
k belongs to E, then the convolution operator f �→ k ∗ f can be
regularized to give a continuous operator from D′

43[0,∞] to itself.
We also study the product decomposition of the Fourier transform
of kernels of E. In the last section we use the above analysis and
solve the Wiener-Hopf equations and illustrate the method with various
examples. For instance, it is shown that for certain integral equations,
the distributional solution always exists while the classical solution
might not exist.

2. Distributions and their holomorphic Fourier transforms.
We start by reviewing the spaces of generalized functions that we are
going to use, particularly the mixed type spaces D′

ij(a, b) introduced to
study the distributional solutions of singular integral equations in [3].
We refer to the standard textbooks [6 9,15] for reference to the usual
spaces.

The space D(a, b), −∞ ≤ a < b ≤ +∞, consists of those smooth
functions φ defined in (a, b) whose support, suppφ, is a compact subset
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of (a, b). A net {φσ} of D(a, b) converges to 0 if (i) there is σ0 and
a fixed compact subset K of (a, b) such that suppφσ ⊆K for σ ≥ σ0;
and (ii) φσ and all of its derivatives converge uniformly to 0. The dual
space D′(a, b) is the space of standard Schwartz distributions on (a, b).

The space E(a, b) consists of all smooth functions defined on (a, b).
Convergence in E(a, b) is uniform convergence of all derivatives on
compact subsets of (a, b). Observe that D(a, b)⊆E(a, b), the inclusion
being continuous and with dense image. Therefore, E ′(a, b) can be
identified with a subspace of D′(a, b): a distribution f ∈ D′(a, b)
belongs to E ′(a, b) if and only if supp f is compact.

The space S(a, b) consists of those smooth functions φ(x) defined
on (a, b) such that for each j : 0, 1, 2, . . . , φ(j)(x) vanishes faster than
any rational function at the end points. If b = ∞, this means that
limx→∞ xkφ(j)(x) = 0 for any k, j : 0, 1, 2, . . . . If b <∞, it means that
limx→∞(b − x)−kφ(j)(x) = 0, k, j : 0, 1, 2, . . . . Similar considerations
apply at the left endpoint. The space S(a, b) is a Frechet topological
vector space. If a 
= −∞, b 
= +∞, then a generating family of
seminorms is given by

(2.1) ||φ||j = sup{|φ(j)(x)| : a < x < b},
while, if a 
= −∞, b = +∞,

(2.2) ||φ||k,j = sup{|xkφ(j)(x)| : a < x},
and similarly in the other cases.

Note that D(a, b)⊆S(a, b)⊆E(a, b) and E ′(a, b)⊆S ′(a, b)⊆D′(a, b),
the inclusions being continuous and with dense image. If b = ∞, the
distributions of S ′(a, b) are called tempered at x = ∞, and if a = −∞,
tempered at x = −∞.

If (a, b)⊆ (c, d), then any φ ∈ D(a, b) can be extended to a function
φ̃ ∈ D(c, d) in a canonical way by setting φ̃(x) = 0 if x ∈ (c, d)/(a, b).
By duality, any distribution f ∈ D′(c, d) admits a canonical restriction
f1 ∈ D′(a, b) given by

(2.3) 〈f1, φ〉 = 〈f, φ̃〉.
Notice that this restriction projection π : D′(c, d) → D′(a, b) is not
(1 − 1) nor onto. Actually, π(f) = 0 if supp f ⊆ (c, d)/(a, b). On the
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other hand, if c < a < b < d, then g ∈ D′(a, b) is the projection
of a generalized function f of D′(c, d) if and only if g ∈ S ′(a, b).
Therefore, if a 
= −∞, the distributions of S ′(a, b) are precisely the
set of distributions of (a, b) that can be extended beyond (a, b). As
it should be clear, there is no canonical way to extend a distribution
g ∈ S ′(a, b) to D′(R), but among the many possible extensions we can
always find extensions g̃ with supp g̃⊆ [a, b].

When (a, b) = R, we just write D, E and S.

The spaces D′(a, b), E ′(a, b) and S ′(a, b) are defined in the open
interval (a, b). The space E ′[a, b] that we now discuss is defined on the
closed interval [a, b]. We suppose a 
= −∞, b 
= ∞. The test functions
φ ∈ E [a, b] are those functions defined in [a, b] that are smooth up to the
end points x = a and x = b; E [a, b] is a Frechet space with semi-norms

(2.4) ||φ||j = sup{|φ(j)(x)| : a ≤ x ≤ b}.

The dual space E ′[a, b] can be identified with the distributions of
D′(R) with support contained in [a, b]. Observe also that S ′(a, b)
can be considered a closed subspace of E [a, b]. The dual induced
operator, π : E ′[a, b] → S ′(a, b) is the same restriction operator
considered above. The projection π is onto, but π(f) = 0 when
f =

∑m
j=0(αjδ

(j)(x− a) + βjδ
(j)(x− b)) for any constants αj , βj .

The mixed type spaces Dij(a, b) consist of the smooth functions that
satisfy the conditions of the space i at the endpoint x = a and of the
space j at x = b. Here, i, j : 1, 2, 3, 4 and the conditions are of the form

i Condition
1 D(a, b)
2 E(a, b)
3 S(a, b)
4 E [a, b]

In case i or j is 4 it is better to use a square bracket instead of a
parenthesis (for instance, D14(a, b]). Other spaces, corresponding to
i, j : 5, 6 were considered in [5], but they will not be needed presently.

Let us now consider the holomorphic Fourier transform of generalized
functions. We start with the Fourier transform operator F : S ′ → S ′,
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which is the generalized version of the operator F given by

(2.5) F{f(x); y} =
∫ ∞

−∞
eixyf(x) dx.

The Fourier transform is an isomorphism of S ′ to itself. In case f ∈ D′

is such that e−xτf(x) belongs to S, then we can consider the holomor-
phic Fourier transform F{f(x);σ + iτ} given by F{e−xτf(x);σ}.

The holomorphic Fourier transform F{f(x);ω} of a distribution
f ∈ D′ is usually defined on a strip, either open as S(a, b) = {ω ∈
C : a < Imω < b}, or closed or semiclosed, but it may reduce to a line
or even to the empty set. A better understanding of this situation is
obtained by considering the one-sided functions.

Definition. A distribution f ∈ D′ is called right-sided if supp f ⊆
[0,∞); it is denoted as f+. It is called left-sided if supp f ⊆ (−∞, 0]; it
is denoted as f−.

Observe that the set of right-sided distributions of D′ is precisely
D′

43[0,∞) and the set of right-sided distributions of S ′ is D′
43[0,∞).

If f+ is right-sided and e−xaf+(x) belongs to S ′, then F{f+(x);ω} is
defined for Imω ≥ a and actually F{f+(x);ω} is analytic in Imω > a.
Similarly, the holomorphic Fourier transform F{f(x);ω} of a left-sided
f− is analytic in a lower half plane Imω < b.

If f is a locally integrable function defined in R, then there is a unique
decomposition, f = f++f−, where f+ is a right-sided locally integrable
function and f− is a left-sided locally integrable function. The Fourier
transform F+(ω) = F{f+(x);ω} is defined in a half plane Imω > a,
while F−(ω) = F{f−(x);ω} is defined for a < Imω < b. In case a < b,
then F{f(x);ω} = F{F+(ω)}+F{F−(ω)} is defined for a < Imω < b.
But even if b < a, the pair (F+(ω), F−(ω)) can be considered the
generalized holomorphic Fourier transform of f . Observe that the
inversion formula for Fourier transforms takes the form

(2.6) f(x) =
1
2π

∫ ia′+∞

ia′−∞
f̂+(ω)eiωx dω +

1
2π

∫ ib′+∞

ib′−∞
f̂−(ω)eiωx dω,

where α′ > a, b′ < b.
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When b < a, we can take a′ = b′ = c to obtain

(2.7) f(x) =
1
2π

∫ ic′+∞

ic′−∞
f̂+(ω)eiωx dω.

The corresponding analysis for generalized functions is more com-
plicated. if f ∈ D′, then we can write f = f+ + f− where F+ and
F− are right and left sided, respectively. But this decomposition is
not unique. Actually, there are generalized functions that are both
right and left sided, namely, the Dirac delta function and its deriva-
tives. If F+(ω) = F{f+(x);ω}, Imω > a, F−(ω) = F{f(x);ω},
Imω < b, and if a < b, then the holomorphic Fourier transform of
f is F{f(x);ω} = F+(ω) + F−(ω), a < Imω < b. However, if b < a,
the pair F+(ω),F−(ω) is not uniquely determined by f .

Observe that if f is locally integrable, then F (ω) = F{f(x);ω}
vanishes as ω → ∞ within its strip of definition. Similarly, F+(ω) → 0
and F−(ω) → 0 as ω → ∞. When f ∈ D′, on the other hand,
F(ω), F+(ω), and F(ω) are bounded by some polynomial as ω → ∞. In
particular, F (ω) is a polynomial if and only if f is both right and left
sided, that is, f(x) =

∑m
j=0 ajδ(j)(x) for some constants a0, . . . , am.

Let us introduce some additional function spaces and their duals
which are suitable for this study [7, 15]. The space OM consists of those
smooth functions φ ∈ C∞(R) that satisfy the order relations of the
form φ(x) = 0(|x|kn) as x → ∞, where the kn may depend on n. The
space OC consists of those members of OM for which we can take kn to
be independent of n. Indeed, the space OC consists of the multipliers
of the members of S ′; i.e., if φ ∈ OM and f ∈ S ′, then φf ∈ S ′.
Conversely, any smooth function φ that satisfies φf ∈ S ′ for any f ∈ S ′

belongs to OM . The dual space O′
C consists of the convolutors of

S′ : (h ∗ f) ∈ S ′ for any f ∈ S ′ if and only if h ∈ O′
C . In view of

the rule F(f ∗ g) = F(f)F(g), we find that the Fourier transforms
interchange OM and OC so that F(OM ) = O′

C and F(O′
M ) = OC .

Usually the appropriate spaces to consider when studying the distri-
butional solutions of integral equations on finite intervals [a, b] is the
space E ′[a, b], [3-5]. Integral operators can often be considered as oper-
ators from E ′[a, b] to S ′(a, b), but only occasionally they can be regular-
ized as operators from E ′[a, b] to itself. The operators from E ′[a, b] to
S ′(a, b) are not well-behaved, usually the solution of the homogeneous



DISTRIBUTIONAL SOLUTIONS 495

equation contains an infinite number of arbitrary constants. On the
other hand, when the operators can be considered as operators from
E ′[a, b] to itself, they usually are Fredholm-type operators.

Let us, for instance, consider the projection operator π : E ′[a, b] →
S ′(a, b). It is onto, but its kernel is Kerπ = {∑m

j=0(ajδ
(j)(x − a) +

bjδ
(j)(x − b)) : aj , bj ∈ C}, which is of infinite dimension. The

canonical regularization of the operator π is the identity operator
Id : E ′[a, b] → E ′[a, b], an isomorphism.

In the case of equations of convolution type on the whole axis, the
space S ′ is the usual space to consider. For the Wiener-Hopf type
equations, it seems that the natural choice is the mixed type space
D′

43[0,∞) that displays the E ′[a, b] behavior at x = 0 and the S ′

behavior at x = ∞.

3. The mathematical technique. In this section we briefly review
the formal procedure to solve the Wiener-Hopf integral equations,

(3.1) g+(x) + λ

∫ ∞

0

k(x− g)g+(y) dy = f+(x), x > 0.

As we show in the next section, if the kernel k belongs to the class E,
then the equation (3.1) can be considered in the space D′

43[0,∞) and,
as we show in Section 5, in that case we can obtain the distributional
solutions of (3.1) by following basically the same formal procedure we
now explain.

Suppose in (3.1) that k(x) = 0(e−c|x|) as |x| → ∞, while f+(x) =
0(edx) as x → ∞, where d < c. Let us look for a solution g+(x) that
satisfies g+(x) = 0(edx) as x → ∞. The first step is to extend (3.1)
to an equation over the whole real axis. Thus, we define the left sided
function f−(x) as

(3.2) f−(x) = λ

∫ ∞

0

k(x− y)g+(y) dy, x < 0,

so that (3.1) becomes

(3.3) g+(x) + λ

∫ ∞

0

k(x− y)g+(y) dy = f+(x) + f−(x).
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Notice, however, that f−(x) is also unknown. Application of Fourier
transforms to (3.3) yields

(3.4) (1 + λK(ω))G+(ω) = F+(ω) + F−(ω),

where the Fourier transforms (K,G+, F+, F−) = (k̂, ĝ+, f̂+, f̂−) have
the following strips of definition: K(ω) in |Imω| < c,G+(ω) in Imω >
d, F+(ω) in Imω > d and F−(ω) in Imω < c. Thus, (3.4) is a well-
defined equation in the strip d < Imω < c.

The solution of (3.4) is achieved by using two kinds of decompositions
of analytic functions defined in the strip d < Imω < c. The first
is the additive decomposition A(ω) = A+(ω) + A−(ω) of an analytic
function A(ω) defined in the strip d < Imω < c in terms of an upper
function A+(ω), analytic in Imω > d and a lower function A−(ω),
analytic in Imω < c. The second is the multiplicative decomposition
Q(ω) = Q+(ω)Q−(ω) of a nonvanishing analytic function in the strip
d < Imω < c as a product of nonvanishing analytic functions in
Imω > d and Imω < c, respectively.

The additive decomposition can be obtained as follows. Let A(ω) be
analytic in the strip d < Imω < c and suppose A(x+ iy) = 0(|x|−r) as
|x| → ∞, uniformly on y for y ∈ [d′, c′] and [d′, c′] ⊂ (d, c). Let us first
suppose that r > 0. Then an application of Cauchy’s theorem yields

(3.5) A(ω) =
1

2πi

∮
CR

A(xi)
ξ − ω

dξ,

for d′ < Imω < c′, |Reω| < R if CR is the rectangle with vertices at
±R + d′i, ±R + c′i. The behavior of A(ω) at infinity allows us to let
R → ∞ in (3.5). Since the integral on the vertical sides approaches
zero, we obtain

(3.6) A(ω) = A+(ω) +A−(ω),

where

A+(ω) =
1

2πi

∫ ∞+d′i

−∞+d′i

A(ξ)
ξ − ω

dξ,(3.7a)

A−(ω) = − 1
2πi

∫ ∞+c′i

−∞+c′i

A(ξ)
ξ − ω

dξ.(3.7b)
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Observe that A+(ω) is analytic in Imω > d′, A−(ω) is analytic in
Imω < c′ and that they vanish as ω → ∞ within their half-planes of
definition. Actually, the splitting (3.6) is unique if we require A+(ω)
and A−(ω) to vanish at ∞.

When A(x + iy) = 0(|x|−r) as |x| → ∞ but r < 0, then we
can apply the preceding analysis to the function A(ω)/P (ω) where
P (ω) is a polynomial of degree m > r without zeros in the strip
d < Imω < c. Thus, A/P = B+ + B−, and, therefore, A = A+ + A−
where A± = PB±. Clearly, this decomposition depends on P . Indeed,
in this case there are decompositions with A+ and A− of polynomial
growth at infinity but A+ and A− are not uniquely determined by A
since A++P , A−−P is another such decomposition for any polynomial
P .

Notice that upon taking inverse Fourier transforms, the split (3.6) is
equivalent to the decomposition

(3.8) a(x) = a+(x) + a−(x)

of a generalized function a(x) in terms of right and left sided functions.
The nonuniquness comes from the fact that there are functions which
are both right and left sided, namely, those concentrated at x = 0; their
Fourier transforms are the polynomials.

The product decomposition Q = Q+Q− follows from an additive
decomposition of lnQ. Suppose, for instance, that Q(ω) is analytic
and nonvanishing in the strip d < Imω < c and that Q(x + iy) =
1 + 0(|x|−r) as |x| → ∞, where r > 0. Let L(ω) = logQ(ω) be the
branch of the logarithm of Q(ω) that vanishes as Reω → ∞. Then
limx→−∞ L(x + iy) = 2nπi for certain n ∈ Z. The integer n is the
index of the point z = 0 with respect to any of the curve of the form
Q(x + iy), −∞ < x < ∞, for y ∈ (d, c). If the index vanishes, then
L(ω) can be decomposed as L = L+ + L−, where L+ and L− vanish
at infinity. The desired product splitting follows by setting Q+ = eL+ ,
Q− = eL− , so that Q = Q+Q− and Q+(ω) → 1, Q−(ω) → 1 as ω → ∞
in their respective half-planes of definition.

In the general case we consider points α, β with Imα > c, Imβ < d
and observe that the function (ω−α/ω−β)−n has index n. Therefore,
if the index of Q is n, then the function Q0(ω) = (ω − α/ω − β)nQ(ω)
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has index 0 and writing Q0 = Q+Q−, we obtain

(3.9) Q(ω) =
(
ω − α

ω − β

)n

Q+(ω)Q−(ω).

Let us now return to (3.4) and take Q = 1 + λK. Let us factor Q as
in (3.9). There are three cases depending on the value of n. If n = 0,
then (3.4) becomes

Q+Q−G+ = F+ + F−, or Q+G+ =
F+

Q−
+
F−
Q−

.

Writing F+/Q− = A+ + A− and observing that F−/Q− is a lower
function, we get

(3.10) Q+G+ = A+, and, hence, G+ = A+/Q+.

The solution g+ follows by taking inverse Fourier transforms.

If n > 0, then writing F+/Q− = A+ + A− as before, we obtain

(3.11)
(
ω − α

ω − β

)−n

Q+G+ = A+ +A− + F−/Q−,

and, thus,

(3.12) Q+G+ =
(
ω − α

ω − β

)n

A+ +
c0 + c1ω + · · · + cn−1ω

n−1

(ω − β)n
,

where c0, . . . , cn−1 are arbitrary constants. Thus,

(3.13) G+ =
(
ω − α

ω − β

)n
A+

Q+
+
c0 + c1ω + · · · + cn−1ω

n−1

Q+(ω − β)n
.

When n < 0, then (3.11) yields

(3.14)
(
ω − α

ω − β

)|n|
Q+G+ = A+,

and the solution is

(3.15) G+ =
(
ω − α

ω − β

)n
A+

Q+
,



DISTRIBUTIONAL SOLUTIONS 499

provided A+ satisfies the |n| conditions

(3.16) A+(α) = A′
+(α) = · · · = A

(−n−1)
+ (α) = 0.

4. The distributional Wiener-Hopf operators. In this section
we shall establish that the Wiener-Hopf integro-differential equation

(4.1)
m∑

j=0

bjg
(j)
+ (x) +

∫ ∞

0

k(x− y)g+(y) dy = f+(x), x ≥ 0,

can be considered in the space D′
43[0,∞) whenever k(x) belongs to a

suitable class of kernels, the class E defined below.

The main problem when studying integral equations in spaces of
distributions is to define the operators in such a way that the equation
holds in a closed interval. That is the reason why we have written
x ≥ 0, not x > 0, in (4.1). If the equation is considered in the open
interval (0,∞), then the solution will contain an infinite number of
arbitrary constants, since the solutions of (4.1) for f+(x) = δ(j)(x),
j : 0, 1, 2, . . . , become solutions of the homogeneous equation. When
the integral equation can be interpreted in the closed interval, on the
other hand, the operator is of the Fredholm type: both the dimension
of the kernel and the codimension of the image are finite.

As it is to be expected, the distributional equation (4.1) can only be
considered for certain kernels k(x). First, the convolution k ∗ g+ has
to be defined and second, there should be a canonical way to restrict
k ∗ g+ to [0,∞). If the kernel k belongs to O′

c, then the convolution
k ∗ g is well defined if g ∈ S ′ and actually k ∗ g ∈ S ′, but there it
might not be possible to restrict the distribution k ∗ g+ to [0,∞). Take
k(x) = x(x + a), a > 0, for instance. Then (k ∗ g)(x) = g(x + a).
However, there is no continuous operator T : D′

43[0,∞) → D′
43[0,∞)

such that (Tg)(x) = g(x+ a) for x > 0.

A class of kernels that permits us to define the operators in the space
D′

43[0,∞) is the following.

Definition. A kernel k(x) belongs to the class E if it is smooth
for x 
= 0, of rapid decay as x → ±∞ and if all the derivatives
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k(j)(x), j : 0, 1, 2, . . . , have jump discontinuites at x = 0. That is,
E = D34(−∞, 0] ∩D43[0,∞). The class Ẽ consists of the distributions
of the type

∑m
j=0 bjδ

(j)(x) + k(x), where k ∈ E.

Given any kernel k ∈ E, it is possible to define a continuous operator
Tk : D′

43[0,∞) → D′
43[0,∞) such that Tk(g+) = g+ ∗ k in (0,∞). In

order to see this, it is convenient to study the class F(E) of Fourier
transforms of kernels of E.

Theorem 4.1. Let K(x) be a smooth function defined in R with
lim|x|→∞K(x) = 0. Then the following conditions are equivalent.

(a) K = k̂ for some k ∈ E.

(b) K(1/x) can be extended as a smooth function at x = 0.

(c) There are constants c1, c2, c3, . . . such that

(4.2)
djK(x)
dxj

∼ dj

dxj

(c1
x

+ · · · + cq
xq

)
+ 0

(
1

xq+j+1

)
, as |x| → ∞,

(d) The function K
(
−i ξ+1

ξ−1

)
is smooth in the unit circle |ξ| = 1.

Proof. The equivalence of (b), (c), and (d) is clear. To see that (a)
⇒ (c), suppose that K = k̂ where k ∈ E. Then K(x) is clearly smooth
for x ∈ R, while the Erdélyi asymptotic formula [1,2] yields

K(x) =
∫ ∞

−∞
eixtk(t) dt ∼ c1

x
+
c2
x2

+
c3
x3

+ . . . , strongly as |x| → ∞,

where cn+1 = e(πi(n+1)/2)[k(n)], [k(n)] = k(n)(Q+0)−k(n)(Q−0) being
the jump of k(x) at x = 0. The asymptotic development is called strong
if it can be differentiated to all orders.

Conversely, suppose K satisfies (c). Then we can find a function
k0 ∈ E with [k(n)

0 ] = e(−πi(n+1)/2)cn+1, n : 0, 1, 2, . . . . Let K0 = k̂0.
Then K −K0 is smooth for x 
= 0 and of rapid decay at infinity, that
is, K −K0 ∈ S. Hence, K −K0 = k̂1, for some k1 ∈ S and it follows
that K = k̂ where k = k0 + k1 ∈ E.
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The class F(Ẽ) admits a similar characterization. A smooth function
K(x) belongs to F(Ẽ) if and only if there are constants c1, c2, c3, . . .
and d0, d1, . . . , dn such that

(4.3) K(x) ∼
n∑

j=0

djx
j +

∞∑
j=1

cj/x
j , strongly as |x| → ∞.

Observe that if k ∈ Ẽ, then so are k′(x) and xk(x). The same
property holds for the class F(Ẽ).

As it is clear, any k ∈ E can be decomposed uniquely as k = k+ +k−,
where k+ and k− are right and left sided functions of E, respectively.
Therefore, if K ∈ F(E), there is a unique decomposition K = K++K−
where K+ and K− are upper and lower functions of F(E). Another
useful decomposition is the following which we state as lemma:

Lemma. If k ∈ E, then there exist k0 ∈ S and k1 ∈ E, k1 right
sided, such that k = k0 + k1. If K ∈ F(E), then there exists k0 ∈ S
and K1 ∈ F(E)+ such that K = K0 +K1.

These decompositions are not unique, of course.

Theorem 4.2. Let k ∈ E. Then there is a canonical continuous
operator

(4.4) Tk : D′
43[0,∞) → D′

43[0,∞),

such that

(4.5) Tk(g+)(x) = (k ∗ g+)(x) for x > 0.

Proof. Let k ∈ E and decompose it as k = k0 + k1, where k0 ∈ S
and where k1 ∈ E is right sided. If g+ ∈ D′

43[0,∞), then (k ∗ g+)(x) =
(k0 ∗ g+)(x) for x < 0. Since k0 ∗ g+ is smooth in R, it follows that
k ∗g+ is smooth for x < 0 and all the limits limx→0−(k ∗g+)(j)(x) exist
for j : 0, 1, 2, . . . . Furthermore, xjk(i)(x − y) → 0 as x → −∞ in the
space D′

43[0,∞) and, thus, k ∗ g+ is of rapid decay as x→ ∞.
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Therefore, we can write

(4.6) k ∗ g+ = S(g+) + Tk(g+),

where S(g+) is the left sided function of E given by

(4.7) S(g+)(x) =
{

0, x ≥ 0,
(k ∗ g+)(x), x < 0,

and where Tk(g+) = k ∗ g+ − S(g+) is supported in [0,∞), that is,
Tk(g+) ∈ D′

43[0,∞).

It is clear that (4.5) holds, so it only remains to show that Tk is a
continuous operator or, equivalently, that S is a continuous operator
from D′

43[0,∞) to S ′. But the set of functions hx ∈ D′
43[0,∞) given

by hx(y) = k(x− y) form a bounded set of D′
43[0,∞) for −∞ < x ≤ 0.

This implies that, if gn → g in D′
43[0,∞), then S(gn) → S(g) uniformly

in R.

It is of interest to state the Fourier transform of this result.

Theorem 4.3. Let K ∈ F(E). Then, if G ∈ S ′
+, the function KG

can be decomposed uniquely as

(4.8) KG = A+ +A−,

where A+ ∈ S+ and where A− ∈ F(E)−. The operators given by the
association G �→ A+ and G �→ A− are continuous from S ′

+ to S ′.

The distributional integro-differential equation (4.1) can be solved by
using the procedures explained in the previous sections. This is done
in Section 5. Presently, we pave the way by studying some fur-
ther properties of the classes E, Ẽ and of their Fourier transforms
F(E) and F(Ẽ).

Lemma. Let K ∈ F(E) and let F (ξ) be a smooth function defined
in K(R � {∞}) with F (0) = 0. Then the composition FOK ∈ F(E).

Proof. Follows at once from Theorem 4.1.
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Let K ∈ F(E) and suppose that 1 +K(x) never vanishes. Let n be
the index of the point z = 0 with respect to the closed curve described
by 1+K(x). If L(x) = log(1+K(x)) is the branch of the logarithm that
vanishes as x → +∞, then L(−∞) = −2nπi. In case n = 0, then the
lemma shows that L ∈ F(E). In the general case we observe that the
index of (x−β/x−α)n(1+K(x)) is zero provided Imα > 0, Imβ < 0,
and, thus, it follows that log(x−β/x−α)n(1+K(x)) belongs to F(E).

If K+ ∈ F(E)+ and F satisfy the conditions of the lemma, then
FOK+ ∈ F(E), but FOK+ does not have to belong to F(E)+. We
have, however, the following.

Lemma. Let K+ ∈ F(E)+ and let F (ξ) be an analytic function
defined in a simply connected region Ω that contains K+(R�{∞}) and
with F (0) = 0. Then FOK+ ∈ F(E)+.

Proof. The function K+ can be extended to the upper half-plane
Imω ≥ 0 in such a way that K+(ω) is analytic for Imω > 0 and
continuous for Imω ≥ 0. Therefore, the function K+(−i ξ+1

ξ−1 ) is
continuous in the unit disc |ξ| ≤ 1 and analytic for |ξ| < 1. Since Ω is
simply connected andK+(R�{∞}) ⊆ Ω it follows thatK+(−i ξ+1

ξ−1 ) ∈ Ω
if |ξ| < 1. Accordingly, FOK+(−i ξ+1

ξ−1 ) is continuous for |ξ| ≤ 1, analytic
for |ξ| < 1 and smooth for |ξ| = 1. Hence, FOK+ ∈ F(E)+.

We would like to indicate some important applications of this lemma.
First, by taking F (z) = ez = 1, it follows that if K+ ∈ F(E)+, then so
are eK+−1 and e−K+−1. Similar results hold in F(E)− : K− ∈ F(E)−
implies that eK− − 1, e−K− − 1 ∈ F(E)−.

Next, let λ ∈ CK+(R � {∞}) and let n be the index of λ with
respect to the curve described by K+(x). Observe that n ≥ 0,
since n is the number of zeros of the equation K+(ω) = λ in the
upper half plane. If n = 0, then it follows from the lemma that
(1/k+(x) − λ) ∈ F(Ẽ)+, actually, (1/(K+(x) − λ)) + 1/λ ∈ F(E)+.
If n > 0 and ω1, . . . , ωn are the roots of the equation K+(ω) = λ
for Imω > 0, then 1/(K+(x) − λ) does not belong to F(Ẽ)+ but
[(x− ω1) · · · (x− ωn)]/(K+(x) − λ) ∈ F(Ẽ)+.

Another useful property is the following.
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Lemma. If K1,K2 ∈ F(E)+, then so is K1K2. Similarly, if
k1, k2 ∈ F(Ẽ), then K1,K2 ∈ F(Ẽ).

The product splitting of the functions of F(Ẽ) can be obtained by
piecing together our results.

Theorem 4.4. Let K ∈ F(Ẽ) be a function with a finite number of
real zeros γ1, . . . , γr with finite multiplicities m1, . . . ,mr and let m be
the order of K(x) at ∞, i.e., m = limx→∞(logK(x))/(log x). Let C =
limx→∞(K(x)/xn). If Imα > 0, Imβ < 0, then there exist functions
Q+ and Q− with Q−1

+ , Q−1
+ − 1 ∈ F(E)+, Q−1

− , Q−1
− − 1 ∈ F(E)− and

nonvanishing for Imω ≥ 0 and Imω ≥ 0, respectively, such that

(4.9) K(x) = C(x−γ1)m1 · · · (x−γr)mr(x−α)−n(x−β)jQ+(x)Q−(x),

where −n is the index of the curve described by K(x)(x−γ1)−m1 · · · (x−
γr)−mr(x− β)m1+···+mr−m and where j = m+ n−m1 − · · · −mr.

Proof. LetK0(x) = K(x)(x−γ1)m1 · · · (x−γr)−mr(x−β)m1+···+mr−m.
Then K0 − C ∈ F(E) and K0(x) never vanishes in R � {∞}. If −n is
the index of K0(x), then log[x−α

x−β

m K0(x)
C ] belongs to F(E) and, thus,

can be decomposed as

(4.10) log
[(

x− α

x− β

)n
K0(x)
C

]
= L+(x) + L−(x)

where L+ ∈ F(E)+, L− ∈ F(E)−. The result follows by taking
Q+ = eL+ and Q− = eL− .

5. Illustrations. We shall now apply the previous analysis to obtain
the solution of the integro-differential equation

(5.1)
m∑

j=0

bjg
(j)
+ (x) +

∫ ∞

0

k0(x− y)g+(y) dy = f+(x), x ≥ 0,

in the space D′
43[0,∞), where k0 ∈ E.

Let k(x) =
∑m

j=0 bjδ
(j)(x) + k0(x). Then (5.1) can be written as

(5.2) Tk(g+) = f+,
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where according to Theorem 4.2, Tk is a continuous operator from
D′

43[0,∞) to itself. Observe that the possibility that all bj vanish, and,
thus, k = k0 ∈ E is not excluded.

Let us rewrite (5.2) as

(5.3) k ∗ g+ = f+ + f−,

where f− = k∗g+−Tk(g+) is an auxiliary unknown function. According
to the results of the previous section, f− is a left sided function of E.

After application of the Fourier transform, (5.3) becomes

(5.4) KG+ = F+ + F−.

Let us now suppose thatK(x) has a finite number of zeros in R�{∞},
each of finite multiplicity. Then we can appeal to Theorem 4.4 to write

(5.5) K(x) = C(x−γ1)m1 · · · (x−γr)mr(x−a)−n(x−β)jQ+(x)Q−(x),

where γ1, . . . , γr are the real zeros ofK,m1, . . . ,mr their multiplicities,
Imα > 0, Imβ < 0 and where Q+(ω), Q−(ω) are analytic and
nonvanishing in Imω ≥ 0 and Imω ≤ 0, respectively, and where Q+−1,
Q−1

+ − 1 ∈ F(E)+, Q− − 1, Q−1
− − 1 ∈ F(E)−. As we are going to see

shortly, the number n is the index of (5.2).

For our purpose, it is convenient to rewrite (5.5) as

(5.6) K(x) = (x− α)−nQ̃+ (x)Q−(x),

where Q̃+ = C(x − γ1)m1 · · · (x − γr)mr(x − β)jQ+(x). Observe that
Q̃+(ω) is analytic in Imω > 0 and does not vanish there.

If we now substitute (5.6) in (5.4) and divide by Q−(x), we obtain

(5.7) (x− α)−nQ̃+(x)G+(x) =
F+(X)
Q−(x)

+
F−(x)
Q−(x)

.

Observe now that F− ∈ F(E)− while 1/Q− − 1 ∈ F(E)− and, thus,
F−/Q− ∈ F(E)−. The term F+/Q−, in turn, can be decomposed as
F+/Q− = A+ + A− where A+ ∈ S ′

+ and A− ∈ F(E)−. Actually,
A+ = F(Tv−(f+)), where v− = F−1(1/Q−).
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Case I: n = 0. In this case (5.7) implies

(5.8) Q̃+(x)G+(x) = A+(x)

and, thus, G+ = A+/Q̃+A, or

(5.9) g+ = v+ ∗ Tv−(f+),

where
(5.10)

v+(t) = F−1

{
1

Q̃(x)
; t

}

= F−1

{
1

C(x− γ1+i0)m1 · · · (x− γr + i0)mr(x− β)jQ+(x)
; t

}
.

Case II: n > 0. When n > 0, it follows from (5.7) that there exists
a polynomial P (x), of degree ≤ n− 1, such that

(5.11) Q̃+(x)G+(x) = A+(x)(x− α)n + P (x),

and, therefore,

(5.12) g+ =
(
i
d

dx
− α

)n

(v+ ∗ Tv = (f+)) +
n−1∑
j=0

cjv
(j)
+ (x),

where c0, . . . , cn−1 are arbitrary constants.

Case III: n < 0. Now (5.7) yields

(5.13) (ω − α)|n|Q̃+(ω)G+(ω) = A+(ω),

for Imω ≥ 0. The equation (5.13) admits a solution if and only if

(5.14) A+(α) = · · · = A
(|n|−1)
+ (α) = 0,

and if (5.14) is satisfied, the solution is

G+(ω) =
(ω − α)nA+(ω)

Q̃+(ω)
.
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Therefore, if n < 0, equation (5.2) has a solution if and only if f+
satisfies the |n| conditions

(5.15) 〈f+(t), ψj(t)〉 = 0, 0 ≤ j ≤ |n| − 1,

where

(5.16) ψj(t) =
∫ t

0

v−(s− t)sjeisα dt,

and if that is the case, the solution is given by

(5.17) g+ =
i−n(−x)−n−1H(−x)e−iαx

(−n− 1)!
∗ v+ ∗ Tv−(f+).

It is worth pointing out that the convolution (5.17) is well defined for
any f+ ∈ D′

43[0,∞), but the result belongs to D′
43[0,∞) if and only if

f+ satisfies (5.15).

Summarizing, we have

Theorem 5.1. Let k ∈ Ẽ and let (5.5) be the factorization of its
Fourier transform K = k̂. Then n is the index of the operator Tk. If
n = 0, then Tk is an isomorphism of D′

43[0,∞) to itself, with inverse

(5.18) T−1
k (g+) = v+ ∗ Tv−(g+),

where v+ = F−1{1/Q̃+}, v− = F−1{1/Q−}. If n > 0, the equation
Tk(g+) = f+ has solution for any f+ ∈ D′

43[0,∞), the solution being

(5.19) g+ =
(
i
d

dx
− α

)n

(v+ ∗ Tv−(f+)) +
m−1∑
j=0

cjv
(j)
+ (x),

where c0, . . . , cm−1 are arbitrary constants. Finally, if n < 0, the
equation has solution if and only if f+ satisfies 〈f+, ψj〉 = 0 for
0 ≤ j ≤ −n − 1, where the ψj are given in (5.16), and if that is
the case, the solution is

(5.20) g+ =
i−n(−x)−n−1H(−x)e−iαx

(−n− 1)!
∗ v+ ∗ Tv−(f+).
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Let us now consider some examples.

Example 1. Let us consider the differential equation

(5.21)
(
d

dx
− λI

)n

g+ = f+,

in the space D′
43[0,∞). Taking Fourier transforms, we obtain

(5.22) (−iω − λ)nG+(ω) = F+(ω).

There are three cases, depending on the localization of iλ, the zero of
iω+λ.

Case 1. Reλ < 0. In this case Im (iλ) < 0 and, thus, (5.22) has the
unique solution G+ = (−iω−λ)−nF+, and upon taking inverse Fourier
transforms,

(5.23) g+ =
xn−1H(x)eλx

(n− 1)!
∗ f+(x).

Case 2. Reλ = 0. Actually, this is a subcase of Case 1. Here we
obtain G+(x) = (−i(x+i0)−λ)−nF+ and, thus, (5.23) is also obtained.

Case 3. Reλ > 0. In this case (5.22) has solution if and only if
F+(iλ) = · · · = F

(n−1)
+ (iλ) = 0, that is, if and only if 〈f+(t), tje−λt〉 =

0, 0 ≤ j ≤ n− 1, and in that case, the solution is

(5.24) g+ =
−xn−1H(−x)eλx

(n− 1)!
∗ f+(x).

It follows that if k+
λ,n(x) = (xn−1H(x)eλx/(n − 1)!), Reλ ≤ 0, then

the equation k+
λ,n∗g+ = f+, f+ ∈ D′

43[0,∞), admits the unique solution

g+ = k+
λ,−n ∗ f+ =

(
d

dx
− λ

)n

f+.
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On the other hand, if Reλ ≥ 0 and k−λ,n(x) = (−xn−1H(−x)eλx/(n−
1)!), then the equation

(5.25) Tk−
λ,n

(g+) = f+

has the solution

(5.26) g+ =
(
d

dx
− λ

)n

f+(x) +
n−1∑
j=0

cjδ
(j)(x),

where c0, . . . , cn−1 are arbitrary constants.

Example 2. Let us now consider the differential equation

(5.27)
m∑

j=0

bjg
(j)
+ (x) = f+(x),

in the space D′
43[0,∞). Let bm = 1 and write

∑m
j=0 bjz

j = (z −
λ1)m1 · · · (z−λs)ms where λ1, . . . , λs are the different roots and where
Reλq > 0 for 1 ≤ q ≤ r, Reλq ≤ 0 for r + 1 ≤ q ≤ s. Then the
differential operator has index −(m1 + · · ·+mr), and the equation has
solution if and only if

(5.28) 〈f+(t), tje−λjt〉 = 0, 0 ≤ j ≤ mq − 1, 1 ≤ q ≤ r,

the solution being

(5.29) g+ = k−λ1,m1
∗ · · · ∗ k−λr,mr

∗ k+
λr+1,mr+1

∗ · · · ∗ k+
λs,ms

∗ f+.

Example 3. Let us consider the equation

(5.30) g+(t) + λ

∫ ∞

0

e−|t−s|g+(s) ds = f+(t), t ≥ 0,

where g+, f+ ∈ D′
43[0,∞). Setting f−(t) = (λe−|t| + g+(t))H(−t) and

taking Fourier transforms, we obtain

(5.31)
(

1 +
2λ

x2 + 1

)
G+(x) = F+(x) + F−(x).
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Let μ2 = −(2λ+ 1), where Imμ ≥ 0 (if Imμ = 0, we take Reμ ≥ 0).
We have three cases.

Case 1. Imμ > 0. Observe that the left side of (5.31) is (x2 −
μ2)/(x2 + 1)G+(x). The function (x2 − u2)/(x2 + 1) admits the
factorization (x2 −μ2)/(x2 +1) = (x+μ)/(x+ i)(x−μ)/(x− i), where
(x+ μ)/(x+ i)− 1 ∈ F(E)+, (x− μ)/(x− i)− 1 ∈ F(E)−. Therefore,

(
x+ μ

x+ i

)
G+(x) =

(
x− i

x− μ

)
(F+(x) + F−(x))

=
[(

x− i

x− μ

)
F+(x) − μ− i

x− μ
F+(μ)

]

+
[(

μ− i

x− μ

)
F+(μ) +

x− i

x− μ
F−(x)

]

and, thus,

(
x+ μ

x+ i

)
G+(x) =

(
x− i

x− μ

)
F+(x) − μ− i

x− μ
F+(μ)

or

G+(x) =
(
x2 + 1
x2 − μ2

)
F+(x) − (μ− i)(x+ i)

x2 − μ2
F+(μ).

But F+(μ) = 〈f+(s), eisμ〉, and, thus, upon taking inverse Fourier
transforms, we obtain
(5.32)

g+(t) =
{
δ(t) +

(1 + μ2)i
2μ

[H(−t)e−iμt +H(t)eiμt]
}
∗ f+(t)

+ 〈f+(s), eisμ〉
[−(μ2 + 1)i

2μ
H(−t)e−iμt +

(μ− 1)2i
2μ

H(t)eiμt

]

= f+(t) +
(1 + μ2)i

2μ
[H(−t)e−iμt +H(t)eiμt] ∗ f+(t)

+ 〈f+(s), eiμs〉
{
− (μ2 + 1)i

2μ
H(−t)eiμt +

(μ− i)2i
2μ

H(t)eiμt

}
.
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Case 2. Imμ = 0, μ 
= 0. Rewrite the equation as

1
(x− i)

[
(x2 − μ2)
x+ i

G+(x)
]

= F+(x) + F−(x), to obtain

z2 − μ2

z + i
G+(z) = (z − i)F+(z) + C, Im z > 0,

where C is an arbitrary constant. Thus,

G+(z) =
z2 + 1
z2 − μ2

F+(z) +
C(z + i)
z2 − μ2

, Im z > 0.

Therefore,
(5.33)

g+(t) =
(
δ(t) − 1 + μ2

μ
H(t) sinμt

)
∗f+(t)−Ci

(
cosμt+

sinμt
μ

H(t)
)
.

Case 3. μ = 0. If μ = 0, then G+(z) = (1 + 1/z2)F+(z) + C(1/z +
i/z2), Im z > 0, and thus,

(5.34) g+(t) = (δ(t) − tH(t)) ∗ f+(t) − Ci(1 + t)H(t).

Observe that (5.34) follows from (5.33) if we let μ→ 0.

Example 4. Let us consider the equation of the first kind

(5.35)
∫ ∞

0

e−|t−s|g+(s) ds = f+(t), t ≥ 0

in the space D′
43[0,∞).

Instead of solving (5.35), let us start by showing how easy it is to find
many “false” distributional solutions. Indeed, if t > 0, then

∫ ∞

0

e−|t−s|δ(j)(s) ds = (−1)je−t,

and it follows that functions like δ′(s) + δ(s), δ′′(s) − δ(s) and, more
generally, amδ

(m)(s)+am−1δ
m−1(s)+ · · ·+a1δ

′(s)+a0δ(s), where the
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constants a0, . . . , am satisfy a0−a1 + · · ·+(−1)mam = 0, are solutions
of the homogeneous equation

∫ ∞

0

e−|t−s|g+(s) ds = 0, t > 0.

Not only is having an infinite number of arbitrary constants an
undesirable situation but also it is a clear contradiction to our results
according to which (5.35) is an equation of the Fredholm type in the
space D′

43[0,∞).

Actually, when our method is applied to the generalized version of
(5.35),

(5.36) T (g+) = f+,

where T = Te−|t| , then we obtain

(5.37)
(

2
z2 + 1

)
G+ = F+ + F−,

after setting f− = e−|s| ∗g+−T (g+) and taking the Fourier transforms.
Writing 2/(z2 + 1) = (1/(z − i)) · (2/(z + i)), it follows that

(5.38)
2G+

z + i
= (z − i)F+ + C,

where C is an arbitrary constant. Hence,

(5.39) G+ =
(z2 + 1)

2
F+ +

C

2
(z + i),

and, by inversion,

(5.40) g+(s) =
1
2
(f+(s) − f ′′+(s)) + c(δ(s) + δ′(s)),

where c = Ci/2 is another arbitrary constant.

Equation (5.40) shows that the only true solutions of the homo-
geneous equation are the multiples of δ(s) + δ′(s). Functions like
δ′′(s) − δ(s) show the importance of considering the closed interval



DISTRIBUTIONAL SOLUTIONS 513

[0,∞), not just the open interval (0,∞). Single points cannot be dis-
regarded when dealing with distributions.

Observe that the distributional solution of (5.35) always exists, wher-
ever the classical solution might not. For instance, the equation

(5.41)
∫ ∞

0

e−|t−s|g+(s) ds = 1, t ≥ 0

does not have classical solutions; while the distributional solution is
g+(s) = H(s)/2 − δ′(s)/2 + C(δ(s) + δ′(s)), where C is an arbitrary
constant.
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