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REMARKS ON THE EXISTENCE AND UNIQUENESS
OF SOLUTIONS OF VOLTERRA FUNCTIONAL EQUATIONS

IN Lp SPACES

MARIAN KWAPISZ

1. Existence and uniqueness problems for the Volterra integral
equations were discussed by many authors. Usually the solutions were
sought in the space of continuous functions.

In the literature on the subject there is not much more than the
classical result for integral equations in Lp or L2 spaces which one can
find in [5, 10]. Similar results for multidimensional integral equations
in L2 spaces appeared in [2]. Recently, the author of the present
paper has shown [8, 9] that Bielecki’s technique of weighted norms
[3] (which was successfully employed by many authors dealing with
integral equations in the space of continuous functions see [6] and a
review paper [4]) can be applied fairly well to integral equations in Lp

spaces.

The aim of the present note is to show how the comparison method
works in the case of Lp

loc spaces (for an abstract formulation of the
method consult the paper [7]) and to discuss different approaches to the
problem in the case of a linear comparison function Ω (see Assumption
A).

2. Let a, b ∈ Rn, a = (a1, . . . , an), b = (b1, . . . , bn); we write a ≤ b
if ai ≤ bi, i = 1, 2, . . . , n. Put

I = [a, b) = {t : t ∈ Rn, a ≤ t < b}.

The case when b = (+∞, . . . , +∞) is accepted. We call this set
an interval. Let B be a Banach space with a norm | · |. The
symbol Lp

loc(I, B) will denote the space of all locally Bochner integrable
functions x (Bochner integrable on every compact subset Ic of I) for
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which the integrals
∫

Ic

|x(s)|p ds, Ic ⊂ I (Ic-compact), p ≥ 1,

are finite. From now on we will write
∫ t1

a1

∫ t2

a2

· · ·
∫ tn

an

x(s1, s2, . . . , sn) dsn dsn−1 · · · ds1 as
∫ t

a

x(s) ds.

Let the operator F : Lp
loc(I, B) → Lp

loc(I, B) be given. We consider
the equation

(1) x(t) = (Fx)(t), t ∈ I.

We assume

Assumption A. Suppose that the function Ω : I × R+ → R+,
R+ = [0, +∞) has the following properties:

(i) Ω(t, ·) is nondecreasing and continuous for almost all t in I.

(ii) Ω(·, u) is measurable for all u ∈ R+, and, for every constant M ,
there is a locally integrable function γM : I → R+ such that

Ω(t, u) ≤ γM (t), t ∈ I, 0 ≤ u ≤ M.

(iii) For any nondecreasing and continuous function q : I → R+,
there is a nonnegative and continuous solution u0 of the inequality

(2) u(t) ≥ 2p−1 ·
∫ t

a

Ω(s, u(s)) ds + q(t), t ∈ I.

(iv) The function u(t) ≡ 0, t ∈ I, is the only solution of the equation

(3) u(t) =
∫ t

a

Ω(s, u(s)) ds, t ∈ I.

(v) For every x, y ∈ Lp
loc(I, B), the inequality
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(4) |(Fx)(t) − (Fy)(t)|p ≤ Ω
(

t,

∫ t

a

|x(s) − y(s)|p ds

)
, t ∈ I,

holds.

Observe that Lp
loc(I, B) is a complete locally convex space with the

family of seminorms

||x||t =
( ∫ t

a

|x(s)|p ds

)1/p

, t ∈ I.

3. Take any x0 ∈ Lp
loc(I, B), and define a sequence {F kx0},

k = 0, 1, . . . , of iterations of x0 by the operator F : F 0x0 = x0,
F k+1x0 = F (F kx0).

Let u0 be a solution of inequality (2) with q defined by the equation

(5) q(t) = 2p−1 ·
∫ t

a

|x0(s) − (Fx0)(s)|p ds, t ∈ I.

Define the sequence {uk}, k = 0, 1, . . . , by the formula

(6) uk+1(t) =
∫ t

a

Ω(s, uk(s)) ds, t ∈ I, k = 0, 1, . . . .

Observe that the sequence {uk} is nonincreasing and, by condition (iv)
of Assumption A and the Dini theorem, it converges to zero uniformly
on every compact subset of I.

Now we are in a position to formulate the main result of the paper:

Theorem 1. If Assumption A holds, then there is a unique solution
of equation (1), say x∗, and x∗ is the limit in Lp

loc(I, B) of the sequence
{F kx0}, k = 0, 1, . . . . Moreover,

(7)
∫ t

a

|x∗(s) − (F kx0)(s)|p ds ≤ uk(t), t ∈ I, k = 0, 1, . . . ,

with uk defined by equation (6).
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Proof. We show first that, for xk = F kx0,

(8)
∫ t

a

|xk(s) − x0(s)|p ds ≤ u0(t), t ∈ I, k = 0, 1, . . . .

We do this by induction. It is clear that (8) holds for k = 0. Assuming
that (8) holds for a given k, we get

|xk+1(s)− x0(s)|p ≤ 2p−1 · (|(Fxk)(s)− (Fx0)(s)|p + |(Fx0)− x0(s)|p)
because

(α + β)p ≤ 2p−1 · (αp + βp) for every α, β ≥ 0 and p ≥ 1.

Using (4) and (8) yields

|xk+1(s) − x0(s)|p ≤ 2p−1 · Ω
(

s,

∫ s

a

|xk(ξ) − x0(ξ)|p dξ

)

+ 2p−1 · |(Fx0)(s) − x0(s)|p
≤ 2p−1 · Ω(s, u0(s)) + 2p−1 · |(Fx0)(s) − x0(s)|p.

The integration of this inequality over the interval [a, t] gives
∫ t

a

|xk+1(s) − x0(s)|p ds ≤ 2p−1 ·
∫ t

a

Ω(s, u0(s)) ds + q(t) ≤ u0(t),

which, together with the induction assumption, means that (8) holds
for all k = 0, 1, . . . .

Now we prove that

(9)
∫ t

a

|xk+m(s) − xk(s)|p ds ≤ uk(t), t ∈ I, k, m = 0, 1, . . . ,

doing this by induction again (with respect to k). By (8) we see that
(9) holds for k = 0. Assuming that (9) holds for a specified k and any
m = 0, 1, . . . , we get

|xk+1+m(s) − xk+1(s)|p = |(Fxk+m)(s) − (Fxk)(s)|p

≤ Ω
(

s,

∫ s

a

|xk+m(ξ) − xk(ξ)|p dξ

)

≤ Ω(s, uk(s)).



VOLTERRA FUNCTIONAL EQUATIONS 387

The integration of this inequality over the interval [a, t] = It results in

∫ t

a

|xk+1+m(s) − xk+1(s)|p ds ≤
∫ t

a

Ω(s, uk(s)) ds = uk+1(t).

This, together with the induction assumption, shows that (9) is proved.
However, (9) means that the sequence {xk} is a Cauchy sequence
in Lp

loc(I, B), so it converges to some element x∗ ∈ Lp
loc(I, B). The

inequality (7) is implies by (9) when m → +∞. Now,

∫ t

a

|x∗(s) − (Fx∗)(s)|p ds

≤
∫ t

a

[|x∗(s) − xk+1(s)| + |xk+1(s) − (Fx∗)(s)|]p ds

≤ 2p−1 ·
∫ t

a

|x∗(s) − xk+1(s)|p ds

+ 2p−1 ·
∫ t

a

|(Fxk)(s) − (Fx∗)(s)|p ds

≤ 2p−1 · uk+1(t) + 2p−1 ·
∫ t

a

Ω(s, uk(s)) ds = 2p · uk+1(t),

t ∈ I.

Taking the limit as k → ∞ gives that x∗ is a solution of equation (1).

To prove the uniqueness of x∗, let us assume that there is another
solution x∗∗ of (1). Let u∗

0 be a continuous solution of the inequality

(10) u(t) ≥
∫ t

a

Ω(s, u(s)) ds +
∫ t

a

|x∗∗(s) − x∗(s)|p ds, t ∈ I.

We have
x∗(t) = (Fx∗)(t), x∗∗(t) = (Fx∗∗)(t),

and, by (4),

(11) |x∗∗(s) − x∗(s)|p ≤ Ω
(

s,

∫ s

a

|x∗∗(ξ) − x∗(ξ)|p dξ

)
,



388 M. KWAPISZ

(12)

∫ t

a

|x∗∗(s) − x∗(s)|p ds ≤
∫ t

a

Ω
(

s,

∫ s

a

|x∗∗(ξ) − x∗(ξ)|p dξ

)
ds

≤
∫ t

a

Ω(s, u∗
0(s)) ds, t ∈ I,

because, by the definition of u∗
0,

∫ t

a

|x∗∗(s) − x∗(s)|p ds ≤ u∗
0(t), t ∈ I.

Put

u∗
k+1(t) =

∫ t

a

Ω(s, u∗
k(s)) ds, t ∈ I, k = 0, 1, . . . .

One can see easily that the sequence {u∗
k} behaves as the sequence

{uk} it is nonincreasing and converges to zero. Moreover, by the
definition of u∗

0, (11) and (12), it follows that

∫ t

a

|x∗∗(s) − x∗(s)|p ds ≤ u∗
k(t), t ∈ I, k = 0, 1, . . . ;

this implies that x∗∗ = x∗. Thus, the proof of the theorem is complete.

4. Let us now consider the very important special case when the
function Ω is linear with respect to the second variable, i.e., the case
when

(13) Ω(t, u) = M(t)u, t ∈ I,

with some locally integrable function M : I → R+. The conditions
(i) (iv) of Assumption A are evidently satisfied. For u0 we can take
the function

(14) u0(t) = q(t) exp
(

2p−1 ·
∫ t

a

M(s) ds

)
, t ∈ I.

This is implied by the following (see [1]):
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Lemma B. If a function D : R+ → R has nondecreasing derivative
D′ and the function M : I → R+ is locally integrable, then

(15)
∫ t

a

M(s)D′
( ∫ s

a

M(ξ) dξ

)
ds ≤ D

( ∫ t

a

M(s) ds

)
−D(0).

Indeed, applying this inequality for D(z) = exp(z), we get

2p−1

∫ t

a

M(s)q(s) exp
(

2p−1 ·
∫ s

a

M(ξ) dξ

)
ds + q(t)

≤ q(t)
[ ∫ t

a

2p−1M(s) exp
(

2p−1 ·
∫ s

a

M(ξ) dξ

)
ds + 1

]

≤ q(t) exp
(

2p−1 ·
∫ t

a

M(s) ds

)
.

Now the sequence {uk} can be evaluated by formula (6), and clearly
the assertion of the theorem holds if the condition (v) of Assumption
A is satisfied.

Observe that the function Ω defined by the formula (13) appears, for
instance, when the operator F has the form

(16) (Fx)(t) = g(t) +
∫ t

a

f(t, s, x(s)) ds, t ∈ I,

and the function f : I × It ×B → B satisfies the Lipschitz condition of
the form

(17)
|f(t, s, x)−f(t, s, y)| ≤ L(t, s)|x − y|, t ∈ I, s ∈ It, x, y ∈ B,

with L being a measurable and nonnegative function such that

∫ t

a

( ∫ s

a

Lq(s, ξ) dξ

)p/q

ds < +∞, t ∈ I, p > 1;
1
p

+
1
q

= 1.
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Now, using the Hölder inequality, we have

|(Fx)(t) − (Fy)(t)|p ≤
( ∫ t

a

|f(t, s, x(s)) − f(t, s, y(s))| ds

)p

≤
( ∫ t

a

L(t, s)|x(s) − y(s)| ds

)p

≤
( ∫ t

a

Lq(t, s) ds

)p/q

·
∫ t

a

|x(s) − y(s)|p ds

= M(t) ·
∫ t

a

|x(s) − y(s)|p ds,

for

(18) M(t) =

⎧⎪⎨
⎪⎩

( ∫ t

a
Lq(t, s) ds

)p/q

, t ∈ I, p > 1,

ess-sups∈It
L(t, s), t ∈ I, p = 1.

It is assumed that the function M is locally integrable over I. The
inequality

(19) |(Fx)(t) − (Fy)(t)|p ≤ M(t)
∫ t

a

|x(s) − y(s)|p ds, t ∈ I,

Lemma B, applied for functions Di(z) = zi/i!, and the induction
assumption imply

(20)

|(F kx)(t)−(F ky(t)|p ≤ M(t)
(k − 1)!

( ∫ t

a

M(s) ds

)k−1

·
∫ t

a

|x(s)−y(s)|p ds,

t ∈ I, for any x, y ∈ Lp
loc(I, B) and k = 1, 2, . . . .

5. The inequality (20) is very important in a classical discussion of
the existence and uniqueness problems for equation (1). The following
conclusions can be drawn from (20) immediately:
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(a) The sequence {F kx0}, k = 0, 1, . . . , of iterations of x0 ∈
Lp

loc(I, B) by F converges absolutely for all t ∈ I for which M(t) is
finite. Indeed, put, in (20), x = x0 and y = Fx0 to get

|(F k+1x0)(t) − (F kx0)(t)|p

≤ M(t)
(k − 1)!

( ∫ t

a

M(s) ds

)k−1

·
∫ t

a

|(Fx0)(s) − x0(s)|p ds.

From this inequality it follows that the series

x0(t) +
∞∑

i=0

[(F k+1x0)(t) − (F kx0)(t)]

converges absolutely if M(t) is finite. Let

(21) x∗(t) = lim
k→∞

(F kx0)(t), t ∈ I.

From the Lebesgue theorem it follows that {F kx0} converges to x∗ in
Lp

loc(I, B). This and the inequality

|(F k+1x0)(t) − (Fx∗)(t)|p ≤ M(t)
∫ t

a

|(F kx0)(s) − x∗(s)|p ds

(which follows from (19)) imply that x∗ is a solution of equation (1).

(b) x∗ defined by (21) is the unique solution of equation (1). Indeed,
put, in (20), x = x∗ and y = x∗∗, x∗∗ is supposed to be another solution
of (1); then

|x∗(t)− x∗∗(t)|p ≤ M(t)
(k − 1)!

( ∫ t

a

M(s) ds

)k−1

·
∫ t

a

|x∗(s)− x∗∗(s)|p ds,

for k = 1, 2, . . . . This inequality implies that x∗(t) = x∗∗(t) for all t
for which M(t) is finite.

(c) The error for F kx0 approximation to x∗ has the form

(22)

|(F kx0)(t)−x∗(t)|p ≤ M(t)
(k − 1)!

( ∫ t

a

M(s) ds

)k−1

·
∫ t

a

|x(s)−x∗(s)|p ds,
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t ∈ I, for k = 1, 2, . . . . Indeed, we get this by putting x = x0 and
y = x∗ in (20).

The integration of (22) over the interval [a, t] leads us to the inequality

(23)∫ t

a

|(F kx0)(s)−x∗(s)|p ds ≤ 1
k!

( ∫ t

a

M(s) ds

)k

·
∫ t

a

|x0(s)−x∗(s)|p ds.

6. However, there is another conclusion of (20) which permits for
different treatment of equation (1). Integrating (20) gives

(24)∫ t

a

|(F kx)(s)−(F ky)(s)|p ds ≤ 1
k!

( ∫ t

a

M(s) ds

)k

·
∫ t

a

|x(s) − y(s)|p ds,

t ∈ I, k = 0, 1, . . . .

Take any b′ < b and assume that k′ is sufficiently large to get

αp :=
1
k′!

( ∫ b′

a

M(s)ds

)k′

< 1.

For such b′ and k′ (k′ depends on b′) we can conclude that the operator
F k′

considered in Lp(Ib′ , B) is a contraction with the coefficient α so
that it has a unique fixed point x∗ ∈ Lp(Ib′ , B).

It is easy to observe that x∗ is also a unique fixed point of the operator
F considered in Lp(Ib′ , B) (i.e., a solution of equation (1) defined on
Ib′).

Putting x = x0, y = x∗, t ∈ Ib′ in (24), we get

(25)∫ t

a

|(F kx0)(s) − x∗(s)|p ds ≤ 1
k!

( ∫ t

a

M(s) ds

)k∫ t

a

|x0(s) − x∗(s)|p ds,

k = 0, 1, . . . .

This means that the sequence {F kx0} converges in Lp(Ib′ , B) to x∗.
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To obtain the unique solution of equation (1) in the whole space
Lp

loc(I, B) it is enough to employ the continuation process. It is clear
that, for the global solution x∗, the inequality (25) holds for all t ∈ I
and k = 0, 1, . . . . Observe that the term

∫ t

a

|x0(s) − x∗(s)|p ds

appearing on their right hand side of inequalities (22), (23) and (25)
can be easily eliminated by employing the Gronwall inequality. Indeed,

|x∗(s) − x0(s)|p ≤ 2p−1 · |(Fx∗(s) − (Fx0)(s)|p
+ 2p−1 · |(Fx0)(s) − x0(s)|p

≤ 2p−1 · M(s)
∫ s

a

|x∗(ξ) − x0(ξ)|p dξ

+ 2p−1 · |(Fx0)(s) − x0(s)|p.

Integrating this inequality over the interval [a, t] obtains

∫ t

a

|x∗(s) − x0(s)|p ds ≤
∫ t

a

(
2p−1M(s)

∫ s

a

|x∗(ξ) − x0(ξ)|p dξ

)
ds

+ 2p−1

∫ t

a

|(Fx0)(s) − x0(s)|p ds,

which implies the inequality

∫ t

a

|x∗(s) − x0(s)|p ds

≤ 2p−1

∫ t

a

|(Fx0(s) − (x0)(s)|p ds · exp
(

2p−1

∫ t

a

M(s) ds

)
.

Finally observe that, in Lp(Ib′ , B), one can introduce the metric

dp,k′ =
k′−1∑
i=0

βi · ||F ix − F i
y||p, β =

1
k′√

α
.
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It is easy to check that F is a contraction in Lp(Ib′ , B) with respect
to this metric. Indeed, we have

dp,k′(Fx, Fy) =
k′−1∑
i=0

βi · ||F i+1x − F i+1y||p

=
k′−2∑
i=0

βi · ||F i+1x − F i+1y||p + αβk′−1||x − y||p

=
k′−1∑
i=1

βi−1 · ||F ix − F iy||p + β−1||x − y||p

= β−1
k−1∑
i=0

βi · ||F ix − F iy||p = β−1dp,k′(x, y).

7. Now we will present conditions under which the existence and
uniqueness result for equation (1) can be established simply by an
application of the Banach contraction principle when the appropriate
norm is employed. This will be an extension of Bielecki’s technique for
the Lp

loc(I, B) spaces.

We have

Theorem 2. If the function M : I → R+ is locally integrable and
the conditions

(26) |(Fx)(t) − (Fy)(t)|p ≤ M(t)
∫ t

a

|x(s) − y(s)|p ds, t ∈ I,

for every x, y ∈ Lp
loc(I, B), and

(27)
∫ t

a

|(Fo)(s)|p ds ≤ C · exp
( ∫ t

a

M(s) ds

)
, t ∈ I,

where C is some constant, are fulfilled, then there is, in Lp
loc(I, B), a

solution x∗ of equation (1) and a constant Q such that

(28)
∫ t

a

|x∗(s)|p ds ≤ Q · exp
( ∫ t

a

M(s) ds

)
, t ∈ I.
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The solution x∗ is unique in the class of functions x ∈ Lp
loc(I, B)

satisfying the condition

(29) sup
t∈I

{∫ t

a

|x(s)|p ds · exp
(
−

∫ t

a

M(s) ds

)}
< +∞.

Proof. Let Lp
M (I, B) denote a subspace of all x ∈ Lp

loc(I, B) for
which (29) holds. Introduce in Lp

M (I, B) a family of norms defined by
the formula
(30)

||x||λ =
(

sup
t∈I

{∫ t

a

|x(s)|p ds · exp
(
− λ

∫ t

a

M(s) ds

)})1/p

, λ > 1.

It is easy to check that F : Lp
M (I, B) → Lp

M (I, B). Indeed, for
x ∈ Lp

M (I, B), we have

∫ t

a

|(Fx)(s)|p ds

≤
∫ t

a

[|(Fx)(s) − (Fo)(s)| + |(Fo)(s)|]p ds

≤
∫ t

a

2p−1(|(Fx)(s)− (Fo)(s)|p + |(Fo)(s)|p) ds

≤ 2p−1

∫ t

a

(
M(s)

∫ s

a

|x(ξ)|p dξ

)
ds + 2p−1

∫ t

a

|(Fo)(s)|p ds

≤ 2p−1

∫ t

a

M(s)P · exp
( ∫ s

a

M(ξ) dξ

)
ds+2p−1 · C exp

( ∫ t

a

M(s) ds

)

≤ 2p−1(P + C) exp
( ∫ t

a

M(s) ds

)
,

where C and P are some constants (P depends on x). Now we show
easily that F is a contraction in Lp

M (I, B).

In fact, for every x, y ∈ Lp
M (I, B),

|(Fx)(s) − (Fy)(s)|p ≤ M(s)
∫ s

a

|x(ξ) − y(ξ)|p dξ.
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After integration of this inequality over the interval [a, t], we get

∫ t

a

|(Fx)(s) − (Fy)(s)|p ds ≤
∫ t

a

(
M(s)

∫ s

a

|x(ξ) − y(ξ)|p dξ

)
ds

≤
∫ t

a

(
M(s) exp

(
λ

∫ s

a

M(ξ) dξ

)
· exp

(
− λ

∫ s

a

M(ξ) dξ

)

·
∫ s

a

|x(ξ) − y(ξ)|p dξ

)
ds

≤ ||x − y||pλ · 1
λ

exp
(

λ

∫ t

a

M(ξ) dξ

)
.

Hence, we find that

||Fx − Fy||pλ ≤ 1
λ
||x − y||pλ

and

||Fx − Fy||λ ≤ p

√
1
λ
· ||x − y||λ

which means that F is a contraction because λ > 1. Thus, the proof
of the theorem is complete.
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