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ON THE THEORY OF
PARTIAL INTEGRAL OPERATORS

A.S. KALITVIN AND P.P. ZABREJKO

The fundamental work of F. Riesz and J. Schauder has shown that the
basic facts of the classical theory of integral equations (convergence of
iteration methods, Fredholm alternative, bilinear expansions of kernels,
etc.) are due to certain functional-analytic and geometric properties of
corresponding integral transforms, such as boundedness (continuity),
compactness, or weak compactness. With regard to this fact, many
authors tried to find conditions for the continuity or compactness of
linear integral operators in various function spaces. Now the theory of
such operators is rather advanced and complete; the basic results may
be found, for example, in the monographs [9, 20, 22, 25, 38].

Unfortunately, the operators studied in these monographs do not
cover many integral operators arising in mathematical physics. For
instance, some problems for elliptic or hyperbolic equations lead to in-
tegral equations with the property that the integration is carried out
only over some of the variables [8, 30, 32]; such equations will be
called partial integral equations in what follows. For a long time, such
equations have not been studied for essentially two reasons. First of all,
partial integral equations occur less often than classical integral equa-
tions (involving integration with respect to all variables); second, the
corresponding operators are not compact, and thus the classical Riesz-
Schauder theory does not apply. In recent years, however, it became
clear that partial integral equations should be investigated in more de-
tail. In fact, they arise in many fields of current interest, especially
in continuum mechanics. Here one could mention, for instance, axial-
symmetric contact problems [1 3, 23, 24, 28, 29], the theory of thin
elastic shells [32], and certain problems in aerodynamics [4].

It is clear that, for studying partial integral equations, one has
to analyze the operators generated by such equations. We mention
here the papers [5 7, 12 19, 27], where spectral properties of such
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operators have been studied by means of tensor products of function
spaces.

The present paper is concerned with general properties of operators
generated by partial integral equations: boundedness conditions, norm
estimates in various function spaces, adjoint operators, properties of
resolvents, and others. In particular, we obtain analogues of Banach’s
continuity theorem, of the Gribanov-Zabrejko theorem on weak con-
tinuity, and of some results of Kantorovich type. Finally, we discuss
several applications to integral equations and give a specific example
arising in continuum mechanics.

For simplicity, we shall restrict ourselves throughout to spaces of
functions of two variables. The operators we shall study in such spaces
are of the form

(1) K = C + L+M +N,

where

Cx(t, s) = c(t, s)x(t, s),(2)

Lx(t, s) =
∫

S

l(t, s, σ)x(t, σ) dν(σ),(3)

Mx(t, s) =
∫

T

m(t, s, τ)x(τ, S) dμ(τ )(4)

and

(5) Nx(t, s) =
∫

T

∫
S

n(t, s, τ, σ)x(τ, σ) dμ× ν(t, σ).

Here T and S are arbitrary nonempty sets equipped with σ-algebras
S(T ) and S(S), and separable measures μ and ν on S(T ) and S(S),
respectively; by μ × ν we mean the product measure on the σ-algebra
S(T ) × S(S). The coefficient c = c(t, s), as well as the kernels
l = l(t, s, σ), m = m(t, s, τ), and n = n(t, s, τ, σ) are measurable
functions, and the integrals (3) (5) are meant in the Lebesgue-Radon
sense. The whole operator (1) is a partial integral operator (PIO) in its
most general form.

1. Continuity. In the sequel we use the following notation. By
S = S(T × S) we denote the space of all (real or complex) functions
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on T × S which are measurable and almost everywhere finite, and by
X and Y ideal Banach spaces of functions in S. (Recall that a Banach
subspace Z ⊂ S is called ideal if the relations x(t, s) ∈ S, y(t, s) ∈ Z,
and |x(t, s)| ≤ |y(t, s)| a.e. on T × S imply that also x(t, s) ∈ Z and
||x||

Z
≤ ||y||

Z
.)

Theorem 1. Suppose that K is a PIO which acts from X into Y .
Then K is continuous.

Proof. Together with (1), consider the operator

(6) ]K[ = ]C[ + ]L[ + ]M [ + ]N [ ,

where

]C[x(t, s) = |c(t, s)|x(t, s),(7)

]L[x(t, s) =
∫

T

|l(t, s, σ)|x(t, σ) dν(σ),(8)

]M [x(t, s) =
∫

S

|m(t, s, τ)|x(τ, s) dμ(τ ),(9)

and

(10) ]N [x(t, s) =
∫

T×S

∫
|n(t, s, τ, σ)|x(t, σ) dμ× ν(τ, σ).

Let x ∈ X. By hypothesis, the function y(t, s) = Kx(t, s) belongs
to Y . This implies, in particular, that the functions l(t, s, σ)x(t, σ),
m(t, s, τ)x(t, s), and n(t, s, τ, σ)x(t, σ) are integrable, for a.a. (t, s) ∈
T × S, on S, T , and T × S, respectively. By well-known properties
of the Lebesgue-Radon integral, the same is true for the functions
|l(t, s, σ)||x(t, σ)|, |m(t, s, τ)||x(τ, s)|, and |n(t, s, τ, σ)||x(τ, σ)|; thus, we
may define ]K[x and get ]K[x ∈ S, by Fubini’s theorem. In other
words, the operator (6) acts from X into S.

We claim that the operator K is closed. Suppose that xn ∈ X
converges (in X) to x∗ ∈ X, and Kxn converges (in Y ) to y∗ ∈ Y ;
we have to show that Kx∗ = y∗. Choose a sequence nk of natural
numbers such that ∞∑

k=0

||xnk
− x∗|| <∞.
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Then, evidently, xnk
(t, s)→ x∗(t, s) a.e. on T × S, and the function

z(t, s) =
∞∑

k=0

|xnk
(t, s)− x∗(t, s)|

belongs to X. Consequently, the sequences l(t, s, σ)xnk
(t, σ),

m(t, s, τ)xnk
(τ, s), and n(t, s, τ, σ)xnk

(τ, σ) converge, for a.a. (t, s) ∈
T × S, to the functions l(t, s, σ)x∗(t, σ), m(t, s, τ)x∗(τ, s), and
n(t, s, τ, σ) x∗(τ, σ), respectively, and are majorized by the integrable
functions |l(t, s, σ)|z(t, σ), |m(t, s, τ)|z(τ, s), and |n(t, s, τ, σ)|z(τ, σ), re-
spectively. By Lebesgue’s dominated convergence theorem, we have
Lxnk

(t, s) → Lx∗(t, s), Mxnk
(t, s) → Mx∗(t, s), and Nxnk

(t, s) →
Nx∗(t, s), for a.a. (t, s) ∈ T ×S, and hence also Kxnk

(t, s)→ Kx∗(t, s)
a.e. on T × S. But, by hypothesis, the sequence Kxnk

converges in Y
to y∗, and thus Kx∗ = y∗ as claimed.

We have shown that the operator K is closed between X and Y . The
assertion follows now from Banach’s closed graph theorem.

Theorem 1 is an extension of Banach’s well-known theorem on the
continuity of integral operators (see, e.g., [20, 25]) to PIO’s. This
theorem carries over as well to the case of ideal quasi-Banach spaces
(for instance, the space S itself). It is clear that the operator K maps
X into Y if all the operators C,L,M , and N given by (2), (3), (4), and
(5), respectively, do so. Interestingly, the converse is not true, at least
in case one of the sets T or S contains a countable number of atoms.
This problem is related to that of the uniqueness of the representation
of the operatorK in the form (1). We point out that this representation
is unique if the measures μ and ν are continuous (atom-free) on S(T )
and S(S), respectively; this follows from regularity theorems which we
shall give in the next section. Such regularity theorems allow us also
to conclude the action of all the operators (2) (5) from the action of
the single operator (1) between X and Y .

2. Regularity. As before, the notation x ≤ y for x, y ∈ S(T × S)
means that x(t, s) ≤ y(t, s) a.e. on T × S.

Recall that a linear operator K : X → Y is called regular if there
exists a positive operator K̃ : X → Y (i.e., x ≥ 0 implies that Kx ≥ 0)
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such that
|Kx| ≤ K̃|x|, x ∈ X.

The classical Kantorovich theorem [33] states that a linear operator
is regular if and only if it preserves order-boundedness. Moreover,
among all positive majorants K̃ of K there exists a minimal one (in
the sense of the induced ordering on the space of linear operators); this
minimal positive majorant is usually called the absolute value of K and
denoted by |K|.

Theorem 2. Suppose that the measures μ and ν are continuous, and
let K : X → Y be a PIO. Then K is regular if and only if the operator
]K[ given by (6) also maps X into Y . In this case,

(11) |K| = ]K[ .

Proof. The sufficiency of (11) follows from the obvious inequality

(12) |Kx| ≤ ]K[ |x|, x ∈ X,
which implies that ]K[ is a positive majorant of K, and, hence,
|K| ≤ ]K[. To prove the necessity of (11), let K : X → Y be regular.
For any nonnegative function x ∈ X, we then get (see again [33])

|K|x = sup{|Kz| : |z| ≤ x} ∈ Y.
Since X and Y are K-spaces of countable type [20], we find a countable
set M which is dense (in measure) in the set {z : |z| ≤ x} and such
that

|K|x = sup{|Kz| : z ∈M}.
By the continuity of the measures μ and ν, we can choose sequences of
sets Tn⊆T and Sn⊆S such that

T =
∞⋃

n=1

Tn, S =
∞⋃

n=1

Sn, μ(Tn)→ 0, ν(Sn)→ 0

and every point t ∈ T and s ∈ S belongs to infinitely many subsets Tn

and Sn, respectively. Let

Un = T ×Sn, Vn = Tn×S, Δn = Un ∪ Vn, ∇n = Un ∩ Vn,
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and

M∗ = {x(t, s)sign c(t, s)χ∇n
(t, s) + u(t, s)χ∇′

n
(t, s)

+ v(t, s)χu′
n
(t, s)χvn

(t, s) + w(t, s)χv′
n
(t, s)χun

(t, s)},

where u, v, w ∈ M , n runs over all natural numbers, χD is the
characteristic function of D⊆T × S, and D′ denotes the complement
(T × S) \D. Since M ⊆M∗⊆{z : |z| ≤ x}, we have

|K|x = sup{|Kz| : z ∈M∗},

since M∗ is countable, we also have

(13) |K|x(t, s) = sup{|Kz(t, s)| : z ∈M∗}

for a.a. (t, s) ∈ T × S. Fix (t, s) ∈ T × S with (13), and choose
sequences nk and mk such that t ∈ Tnk

and s ∈ Smk
for all k.

Moreover, let uk(t, s), vk(t, s), and wk(t, s) be functions in M such
that uk(τ, σ) → sign l(t, s, τ)x(τ, σ), vk(τ, σ) → signm(t, s, σ)x(τ, σ),
and wk(τ, σ)→ signn(t, s, τ, σ)x(τ, σ) (convergence in measure). Let

zk(τ, σ) = x(τ, σ)sign c(τ, σ)χ∇̃k
(τ, σ)

+ uk(τ, σ)χũ′
k
(τ, σ)χṽk

(τ, σ)

+ vk(τ, σ)χṽ′
k
(τ, σ)χũk

(τ, σ) + wk(τ, σ)χΔ̃′
k
(τ, σ),

where

Ũk = T ×Smk
, Ṽk = Tnk

×S, Δ̃k = Ũk∪ Ṽk, ∇̃k = Ũk∩ Ṽk.

By Lebesgue’s dominated convergence theorem, we conclude that

lim
k→∞

|Kzk(t, s)|

= |c(t, s)|x(t, s) +
∫

S

|l(t, s, σ)|x(t, σ) dν(σ)

+
∫

T

|m(t, s, τ)|x(τ, s) dμ(τ )

+
∫

T×S

∫
|n(t, s, τ, σ)|x(τ, σ) dμ(τ ) dν(σ) = ]K[x(t, s).
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On the other hand, from zk ∈M∗, k = 1, 2, 3, . . . , it follows that

]K[x(t, s) = lim
k→∞

|Kzk(t, s)| ≤ sup{|Kz| : z ∈M∗}.

This implies, together with (13), that ]K[x(t, s) ≤ |K|x(t, s) and,
hence, ]K[x ≤ |K|x. We have shown that the operator ]K[ maps
all nonnegative functions x ∈ X into Y . But every function in X may
be written as a difference of two nonnegative functions, and, thus, ]K[
acts from X into Y as claimed.

Equality (11) follows from the just established inequality ]K[ ≤ |K|
and from (12).

The hypothesis on the continuity of the measures μ and ν is essential
not just for the proof but also for the statement of Theorem 2. Nev-
ertheless, one may modify Theorem 2 in such a way that its statement
remains true also for discrete (purely atomic) measures and even for
arbitrary measures. Denote by Td and Sd the “discrete part,” and by Tc

and Sc the “continuous part,” respectively, of the sets T and S. We say
that the representation (1) of the operator K is normal if c(t, s) = 0 for
(t, s) ∈ Td × Sd, l(t, s, σ) = 0 for t ∈ Td, and m(t, s, τ) = 0 for s ∈ Sd.
It is not hard to see that one can always find a normal representation
for a PIO, just by using the “δ-functions” defined by

δ(t, τ ) =
{
μ(τ )−1 for t = τ ,
0 for t �= τ ,

and

δ(s, σ) =
{
ν(σ)−1 for s = σ,
0 for s �= σ.

In fact, replacing the functions c(t, s), l(t, s, σ), m(t, s, τ), and
n(t, s, τ, σ) in (1) by the functions

c̃(t, s) = c(t, s)χTc×Sc
(t, s),

l̃(t, s, σ) = c(t, s)δ(s, σ) + l(t, s, σ)χTc×Sd
(t, s),

m̃(t, s, τ) = c(t, s)δ(t, τ ) +m(t, s, τ)χTd×Sc
(t, s),

and
ñ(t, s, τ, σ) = c(t, s)δ(t, τ )δ(s, σ) + l(t, s, σ)δ(t, τ )

+m(t, s, τ)δ(s, σ) + n(t, s, τ, σ),
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respectively, one gets a normal representation for K. We formulate
now an analogue of Theorem 2 in this general case; the modification of
the proof is straightforward.

Theorem 3. Let K : X → Y be a PIO with normal representation
(1). Then K is regular if and only if the operator ]K[ given by (6) also
maps X into Y . In this case, equality (11) holds.

3. Duality theory. We recall some definitions from the general
theory of ideal spaces and operators acting between them [34, 37]. Let
Ω be a set equipped with a σ-algebra S of subsets and a measure μ,
and let Z be an ideal space over Ω. The associate space Z ′ consists,
by definition, of all measurable functions f on Ω which vanish outside
suppZ (see [37]) and satisfy

|(f, g)| <∞, g ∈ Z,

where

(f, g) =
∫

Ω

f(ω)g(ω) dμ(ω).

With the usual algebraic operations and the norm

(14) ||f ||Z′ = sup{|(f, g)| : ||g||Z ≤ 1},

the associate space is also an ideal space, and suppZ ′ = suppZ. The
associate space Z ′ is a closed (possibly strict) subspace of the usual
dual space Z∗.

Let A be a linear operator between two ideal spaces X and Y . The
associate operator A′ of A is defined by the relation

(15) (Ax, y) = (x,A′y), x ∈ X, y ∈ Y ′.

Not every operator A admits an associate A′. Obviously, the operator
A′ is just the restriction of the usual adjoint operator A∗ to Y ′;
consequently, the operator A′ exists if and only if A∗Y ′⊆X ′.
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Let us return to the PIO (1). We define the transposed operator K#

of K by

(16)

(K#y)(t, s) = c(t, s)y(t, s) +
∫

S

l∗(t, s, σ)y(t, σ) dν(σ)

+
∫

T

m∗(t, τ, s)y(τ, s) dμ(τ )

+
∫

S

∫
T

n∗(t, τ, s, σ)y(τ, σ) dμ× ν(τ, σ),

where
l∗(t, s, σ) = l(t, σ, s),
m∗(t, τ, s) = m(τ, t, s),

n∗(t, τ, s, σ) = n(τ, t, σ, s).

In general, the transposed operator of an arbitrary operator of type (1)
may be different from the associate operator, as simple examples show.
Nevertheless, a classical result for integral operators (see [37]) carries
over to PIO’s:

Theorem 4. Let K be a PIO which acts between two ideal spaces X
and Y . Then both the associate operator K ′ and the transposed operator
K# exist and are equal, i.e.,

(17) K ′y = K#y

for any y ∈ Y ′ with K#y ∈ S.

Proof. As was shown in the proof of Theorem 1, the operator ]K[
defined by (6) acts from X into S and is continuous. Consequently, the
image N of the unit ball ||x||X ≤ 1 of X under ]K[ is a bounded subset
of S, and, hence, so is the set

(18) Ñ =
⋃
{{v : − ]K[x ≤ v ≤ ]K[x} : ||x||X ≤ 1}.

(closure in S). Denote by Ỹ the ideal space whose unit ball coincides
with the set (18); such a space may be easily constructed. By construc-
tion, the operator ]K[ acts from X into Ỹ and is continuous.
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Let x ∈ X and y ∈ Ỹ ′. By Fubini’s theorem, we then have∫
S

∫
T

c(t, s)x(t, s)y(t, s) dμ× ν(t, s)

+
∫

S

∫
T

(∫
S

l(t, s, σ)x(t, σ) dν(σ)
)
y(t, s) dμ× ν(t, s)

+
∫

S

∫
T

(∫
T

m(t, τ, s)x(τ, s) dμ(τ )
)
y(t, s) dμ× ν(t, s)

+
∫

S

∫
T

(∫
S

∫
T

n(t, τ, s, σ)x(τ, σ) dμ× ν(τ, σ)
)
y(t, s) dμ× ν(t, s)

=
∫

S

∫
T

c(t, s)x(t, s)y(t, s) dμ× ν(t, s)

+
∫

S

∫
T

x(t, σ)
(∫

S

l(t, s, σ)y(t, s) dν(s)
)
dμ× ν(t, σ)

+
∫

S

∫
T

x(τ, s)
(∫

T

m(t, τ, s)y(t, s) dμ(t)
)
dμ× ν(τ, s)

+
∫

S

∫
T

x(τ, σ)
(∫

S

∫
T

n(t, τ, s, σ)y(t, s) dμ× ν(t, s)
)
dμ× ν(τ, σ).

This shows that

(19) (Kx, y) = (x,K#y), x ∈ X, y ∈ Y ′,
and thus the operator K# coincides with the associate operator K ′ of
K if we consider K as an operator from X into Ỹ .

Fix a nonnegative function v0 ∈ Y ′ such that supp v0 = supp Ỹ . For
any y ∈ Y ′, we write yn = min{|y|, nv0}sign y, and get

(20) (Kx, yn) = (x,K#yn), n = 0, 1, 2, . . . .

Since the limit, as n → ∞, of the left-hand side of (20) exists for any
x ∈ X, the sequence K#yn is X-weakly Cauchy in X ′. But the space
X ′ is X-weakly complete (see [34, 37]), and, hence, K#yn → K ′y for
some y ∈ Y ′. Since this function y obviously satisfies

(Kx, y) = (x,K ′y), x ∈ X, y ∈ Y ′,
we have shown that the associate operator K ′ of K also exists, if we
consider K as an operator from X into Y .
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Now let y ∈ Y ′ and K#y ∈ S. Then
]
K#

[ |y| ∈ S and, by Lebesgue’s
theorem, the sequence K#yn converges (in S) to K#y. But, by what
has been proved before, the sequence K#yn converges as well X-weakly
to K ′y. Since these two types of convergence are compatible (see, e.g.,
[34]), we conclude that K ′y = K#y, and so we are done.

A particular case of Theorem 4, which is much easier to prove, is

Theorem 5. Let K be a PIO which acts between two ideal spaces
X and Y and is regular. Then both the associated operator K ′ and the
transposed operator K# exist and are equal.

4. Algebras of PIO’s. Given two ideal spaces X and Y , denote by
L(X,Y ) the space of all continuous linear operators and by Lr(X,Y )
the space of all regular linear operators between X and Y ; similarly,
N(X,Y ) (respectively, Nr(X,Y )) is the space of all (regular) operators
of the form (1). Theorems 1 and 2 state that N(X,Y )⊆L(X,Y ) and
Nr(X,Y )⊆Lr(X,Y ). If L(X,Y ) and Lr(X,Y ) are equipped with the
usual operator norm, the subspaces N(X,Y ) and Nr(X,Y ) are not
closed. However, if we consider Lr(X,Y ) with the norm

(21) ||K||r = || |K| ||,
|K| given as in Section 2, then Lr(X,Y ) becomes a Banach space in
the norm (21), and Nr(X,Y ) is closed in Lr(X,Y ). In order to state
more precise results, some auxiliary definitions are in order. Recall that
Y/X denotes the space of all multiplicators between X and Y , i.e., of
all functions c(t, s) such that c(t, s)x(t, s) ∈ Y for all x(t, s) ∈ X. This
is an ideal space with norm

(22) ||c(t, s)||Y/X = sup{||c(t, s)x(t, s)||Y : ||x(t, s)||X ≤ 1}.
Further, by R1(X,Y ), Rm(X,Y ), and Rn(X,Y ) we denote the sets of
all measurable functions l(t, s, σ) on T ×S×S, m(t, τ, s) on T ×T ×S,
and n(t, τ, s, σ) on T × T × S × S, respectively, such that l(t, s, σ) = 0
for t ∈ Td and m(t, τ, s) = 0 for s ∈ Sd. All these three sets are ideal
Banach spaces equipped with the norms

(23) ||l(t, s, σ)||Rl(X,Y ) = sup
||x(t,s)||X≤1

∥∥∥∥
∫

S

|l(t, s, σ)x(t, σ)| dμ(σ)
∥∥∥∥

Y

,
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(24) ||m(t, τ, s)||Rm(X,Y ) = sup
||x(t,s)||X≤1

∥∥∥∥
∫

T

m(t, τ, s)x(τ, s)| dν(τ )
∥∥∥∥

Y

,

and

(25) ||n(t, τ, s, σ)||Rn(X,Y )

= sup
||x(t,s)||X≤1

∥∥∥∥
∫

S

∫
T

|n(t, τ, s, σ)x(τ, σ)| dμ× ν(τ, σ)
∥∥∥∥,

respectively. Consider now the direct sum

(26) R(X,Y ) = Rc(X,Y )�R1(X,Y ) �Rm(X,Y ) �Rn(X,Y ),

whereRc(X,Y ) is the subspace of Y/X consisting of all functions c(t, s)
such that c(t, s) = 0 for t ∈ Td or s ∈ Sd. The space (26) will be
equipped with the norm
(27)
||(c, l,m, n)||R(X,Y ) = ||c(t, s)||Rc(X,Y ) + ||l(t, s, σ)||Rl(X,Y )

+ ||m(t, τ, s)||Rm(X,Y ) + ||n(t, τ, s, σ)||Rn(X,Y ).

Theorem 6. Let X and Y be two ideal spaces. Then Nr(X,Y ) is a
closed subspace of Lr(X,Y ) which is isomorphic to the space R(X,Y ).
More precisely, the two-sided estimate

(28) ||K||Lr(X,Y ) ≤ ||(c, l,m, n)||R(X,Y ) ≤ 4||K||Lr(X,Y )

holds, where

Kx(t, s) = c(t, s)x(t, s) +
∫

S

l(t, s, σ)x(t, σ) dμ(σ)

+
∫

T

m(t, τ, s)x(τ, s) dν(t)

+
∫

S

∫
T

n(t, τ, s, σ)x(τ, σ) dμ× ν(τ, σ) ∈ Lr(X,Y ).

Proof. The statement is an immediate consequence of the complete-
ness of the space R(X,Y ) and of Theorems 2 and 3.
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In view of applications, the following theorem on the superposition
of PIO’s is useful, which follows by a standard reasoning from Fubini’s
theorem.

Theorem 7. Let X,Y and Z be three ideal spaces, and let

(29)

Kjx(t, s) = cj(t, s)x(t, s) +
∫

S

lj(t, s, σ)x(t, σ) dμ(σ)

+
∫

T

mj(t, τ, s)x(τ, s) dν(t)

+
∫

S

∫
T

nj(t, τ, s, σ)x(τ, σ) dμ× ν(τ, σ),

j = 1, 2, be two PIO’s such that K1 ∈ Lr(X,Y ) and K2 ∈ L(X,Y ).
Then the linear operator K = K2K1 is also a PIO with coefficient

(30) c(t, s) = c2(t, s)c1(t, s)

and kernels

l(t, s, σ) = c2(t, s)l1(t, s, σ) + l2(t, s, σ)c1(t, σ)

+
∫

S

l2(t, s, ξ)l1(t, ξ, σ) dμ(ξ),(31)

m(t, τ, s) = c2(t, s)m1(t, τ, s) +m2(t, τ, s)c1(τ, s)

+
∫

T

m2(t, μ, s)m1(μ, τ, s) dν(η),(32)

and

(33)

n(t, τ, s, σ) = c2(t, s)n1(t, τ, s, σ) + n2(t, τ, s, σ)c1(τ, σ)
+ l2(t, s, σ)m1(t, τ, s) +m2(t, τ, s)l1(t, s, σ)

+
∫

S

l2(t, s, ξ)n1(t, τ, ξ, σ) dμ(ξ)

+
∫

T

m2(t, η, s)n1(η, τ, s, σ) dν(η)

+
∫

S

n2(t, τ, s, ξ)l1(t, ξ, σ) dμ(ξ)

+
∫

T

n2(t, η, s, σ)m1(η, s, σ) dν(η)

+
∫

S

∫
T

n2(t, η, s, ξ)n1(η, τ, ξ, σ) dμ× ν(ξ, η).
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Theorem 7 allows us to give some category-type inclusions between
the classes introduced so far, which we state as

Theorem 8. Let X,Y , and Z be three ideal spaces. Then the
following inclusions hold:

Rc(X,Y ) · Rc(Y, Z)⊆Rc(X,Z),(34)
Rc(X,Y ) · R1(Y, Z), R1(X,Y ) · Rc(Y, Z)⊆R1(X,Z),(35)
Rc(X,Y ) · Rm(Y, Z), Rm(X,Y ) · Rc(Y, Z)⊆Rm(X,Z),(36)
R1(X,Y ) · Rm(Y, Z), Rm(X,Y ) · R1(Y, Z)⊆Rn(X,Z),(37)
R(X,Y ) · Rn(Y, Z), Rn(X,Y ) · R(Y, Z)⊆Rn(X,Z).(38)

In particular, Rc, R1, Rm, and Rn are subalgebras of the algebra R,
and Rn and R1 �Rm �Rn are ideals in R.

The basic Theorem 6 is not only of theoretical interest. It implies,
in fact, that showing that a PIO (1) belongs to Lr(X,Y ) reduces to
proving the four relations

(39)
c(t, s) ∈ Rc(X,Y ), l(t, s, σ) ∈ R1(X,Y ),

m(t, τ, s) ∈ Rm(X,Y ), n(t, τ, s, σ) ∈ Rn(X,Y ).

The verification of the first relation in (39) reduces to a simple appli-
cation of results on multiplicator spaces, while that of the last relation
may be carried out by means of the theory of Zaanen spaces of kernel
functions for linear integral operators (see, e.g., [34, 37, 38]). Both
procedures have been studied extensively for general spaces, as well as
for special (e.g., Lebesgue and Orlicz) spaces. The problem of verifying
the second and third relation in (39), however, is harder and has not
been given much attention yet.

In general, it seems to be difficult to give a fairly explicit description
of the kernel classes R1, Rm, and Rn. Such a description, apparently,
depends heavily on specific properties of the spaces X and Y , and the
problems are due to the lack of symmetry in the variables s and t.
Some of the most important special cases, in which more information
may be obtained, will be considered in subsequent sections.

5. PIO’s in spaces with mixed norm. Let U and V be perfect
ideal spaces over S and T , respectively [34]. By [U → V ] and [U ← V ]
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we denote the corresponding spaces with mixed norm, i.e., the set of
all functions for which the norms

(40) ||x(t, s)||[U→V ] = || ||x(t, s)||U ||V
and

(41) ||x(t, s)||[U←V ] = || ||x(t, s)||V ||U ,

respectively, are finite. Both [U → V ] and [U ← V ] are ideal spaces;
they are also examples of tensor products of U and V , since for any
u(s) ∈ U and v(t) ∈ V one has w(t, s) = v(t)u(s) ∈ [U → V ], [U ← V ]
and

(42) ||w(t, s)||[U→V ] = ||w(t, s)||[U←V ] = ||u(s)||U ||v(t)||V .

Let us return to the PIO’s

(43) Lx(t, s) =
∫

S

l(t, s, σ)x(t, σ) dμ(σ)

and

(44) Mx(t, s) =
∫

T

m(t, τ, s)x(τ, s) dν(τ ).

In what follows, we shall describe three approaches to action con-
ditions for these operators in spaces with mixed norm. Consider the
families L(t), t ∈ T , and M(s), s ∈ S, of linear integral operators
defined by

L(t)u(s) =
∫

S

l(t, s, σ)u(σ) dμ(σ), t ∈ T,(45)

M(s)v(t) =
∫

T

m(t, τ, s)v(τ ) dν(τ ), s ∈ S.(46)

Theorem 9. Let U1 and U2 be two ideal spaces over S, and V1 and V2

two ideal spaces over T . Suppose that the linear integral operator (45)
maps U1 into U2, for each t ∈ T , and that ||L(t)||L(U1,U2) ∈ V2/V1.
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Then the PIO (43) acts between the spaces X = [U1 → V1] and
Y = [U2 → V2] and satisfies

(47) ||L||L(X,Y ) ≤ || ||L(t)||L(U1,U2)||V2/V1 .

Similarly, if the linear integral operator (46) maps V1 into V2, for each
s ∈ S, and ||M(s)||L(V1,V2) ∈ U2/U1, the PIO (44) acts between the
spaces X = [U1 ← V1] and Y = [U2 ← V2] and satisfies

(48) ||M ||L(X,Y ) ≤ || ||M(s)||L(V1,V2)||U2/U1 .

Proof. We prove only the first statement. Let x(t, s) ∈ X. For each
t ∈ T we then have

||Lx(t, s)||U2 ≤ ||L(t)||L(U1,U2)||x(t, s)||U1 ;

hence, by the definition of the multiplicator space V2/V1,

||Lx(t, s)||Y ≤ || ||L(t)||L(U1,U2) · ||x(t, s)||U1 ||V2

≤ || ||L(t)||L(U1,U2)||V2/V1 · ||x||X .

This shows that the operator (43) acts between X and Y and satisfies
(47).

Interestingly, in the case V2/V1 = L∞, the conditions of Theorem 9
are also necessary for the operator (43) to act between X = [U1 → V1]
and Y = [U2 → V2]. In fact, considering the operator (43) on the
“separated” functions x(t, s) = u(s)v(t), u ∈ U , v ∈ V , we conclude
that, by the obvious relation Lx(t, s) = v(t)L(t)u(s),

(49) sup
||u||U1 ,||v||V1≤1

||v(t)|| ||L(t)u(s)||[U2→V2] ≤ ||L||L(X,Y ).

In case V2/V1 = L∞ this means exactly that

(50) || ||L(t)||L(U1,U2)||V2/V1 ≤ ||L||L(X,Y ).

Analogous statements hold, of course, for the operator (44) in case
U2/U1 = L∞.
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Generally speaking, the estimates (49) and (50) are not equivalent.
Nevertheless, (49) implies that

(51) sup
||u||U1≤1

|| ||L(t)u(s)||U2 ||V2/V1 <∞,

which thus is necessary for the operator (43) to act between X = [U1 →
V1] and Y = [U2 → V2]. The analogous condition for the operator (44)
reads

(52) sup
||v||V1≤1

|| ||M(s)v(t)||V2 ||U2/U1 <∞.

Observe that we did not suppose in Theorem 9 that the operators (43)
and (44) be regular. Applying this theorem to the kernels |l(t, s, σ)| and
|m(t, τ, s)|, rather than to l(t, s, σ) and m(t, τ, s), we get a refinement
of Theorem 9. To this end, we denote by Z(W1,W2) (with W1 and
W2 being two ideal spaces over some set Ω) the space of all Zaanen
kernels z(ξ, η), defining regular linear integral operators from W1 into
W2, with the norm

||z(ξ, η)||Z(W1,W2) = sup
||w||W1≤1

∥∥∥∥
∫

Ω

|z(ξ, η)w(η)| dη
∥∥∥∥

W2

.

Theorem 10. Let U1 and U2 be two ideal spaces over S, and V1

and V2 two ideal spaces over T . Suppose that l(t, s, σ) ∈ Z(U1, U2) for
a.a. t ∈ T , and ||l(t, s, σ)||Z(U1,U2) ∈ V2/V1. Then the PIO (43) acts
between the spaces X = [U1 → V1] and Y = [U2 → V2], is regular, and
satisfies

(53) ||l(t, s, σ)||R1(X,Y ) ≤ || ||l(t, s, σ)||Z(U1,U2)||V2/V1 .

Similarly, if m(t, τ, s) ∈ Z(V1, V2) for a.a. s ∈ S, and
||m(t, τ, s)||Z(V1,V2) ∈ U2/U1, then the PIO (44) acts between the spaces
X = [U1 ← V1] and Y = [U2 ← V2], is regular, and satisfies

(54) ||m(t, τ, s)||Rm(X,Y ) ≤ || ||m(t, τ, s)||Z(V1,V2)||U2/U1 .
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Consider now the two integral operators

L̃u(s) =
∫

S

||l(t, s, σ)||V2/V1u(σ) dμ(σ),(55)

M̃v(t) =
∫

T

||m(t, τ, s)||U2/U1v(τ ) dν(τ ),(56)

generated by the kernels l̃(s, σ) = ||l(t, s, σ)||V2/V1 and m̃(t, τ ) =
||m(t, τ, s)||U2/U1 , respectively.

Theorem 11. Let U1 and U2 be two ideal spaces over S, and V1 and
V2 two ideal spaces over T . Suppose that the linear integral operator
(55) maps U1 into U2. Then the PIO (43) acts between the spaces
X = [U1 ← V1] and Y = [U2 ← V2], is regular, and satisfies

(57) ||l(t, s, σ)||Rl(X,Y ) ∈ || ||l(t, s, σ)||V2/V1 ||Z(U1,U2).

Similarly, if the linear integral operator (56) maps V1 into V2, then the
PIO (44) acts between the spaces X = [U1 → V1] and Y = [U2 → V2]
is regular, and satisfies

(58) ||m(t, τ, s)||Rm(X,Y ) ≤ || ||m(t, τ, s)||U2/U1 ||Z(V1,V2).

Proof. We prove again only the first statement. Obviously, for
x(t, s) ∈ X, we have

∥∥∥∥
∫

S

l(t, s, σ)x(t, σ) dμ(σ)
∥∥∥∥

V2

≤
∫

S

||l(t, s, σ)||V2/V1 ||x(t, σ)||V1 dμ(σ)

= L̃u(s), u(s) = ||x(t, s)||V1 ,

hence∥∥∥∥
∫

S

l(t, s, σ)x(t, σ) dμ(σ)
∥∥∥∥

Y

≤ ||L̃u(s)||U2 ≤ ||L̃||L(U1,U2)||u(s)||U1

= ||L||L(U1,U2)||x(t, s)||X .

This shows that the operator (43) acts between X and Y and satisfies
(57).
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We conclude this section with two more action conditions for PIO’s in
spaces with mixed norm; these conditions build on multiplicator spaces
of functions of two variables.

Theorem 12. Let U1 and U2 be two ideal spaces over S, and V1

and V2 two ideal spaces over T . Suppose that the function ||l(t, ·, σ)||U2

belongs to the multiplicator space [L1 → V2]/[U1 ← V1]. Then the PIO
(43) acts between the spaces X = [U1 ← V1] and Y = [U2 → V2], is
regular, and satisfies

(59) ||l(t, s, σ)||Rl(X,Y ) ≤ || ||l(t, s, σ)||U2 ||[L1→V2]/[U1←V1].

Similarly, if the function ||m(·, τ, s)||V2 belongs to the multiplicator
space [U2 → L∞]/[U1 ← V1], then the PIO (44) acts between the spaces
X = [U1 → V1] and Y = [U2 ← V2], is regular, and satisfies

(60) ||m(t, τ, s)||Rm(X,Y ) ≤ || ||m(t, τ, s)||V2 ||[U2←L∞]/[U1→V1].

Proof. Obviously,

∥∥∥∥
∫

S

l(t, s, σ)x(t, σ) dμ(σ)
∥∥∥∥

U2

≤
∫

S

||l(t, s, σ)||U2 |x(t, σ)| dμ(σ);

hence,

∥∥∥∥
∫

S

l(t,s, σ)x(t, σ) dμ(σ)
∥∥∥∥

Y

≤ || ||l(t, s, σ)||U2 |x(t, σ)| ||[L1→V2]

≤ || ||l(t, s, σ)||U2 ||[L1→V2]/[U1←V1]||x(t, s)||[U1←V1].

This proves the first statement. The second statement is proved
analogously.

Theorem 13. Let U1 and U2 be two ideal spaces over S, and V1

and V2 two ideal spaces over T . Suppose that the function ||l(t, s, σ)||U1

belongs to the multiplicator space [V1 ← L1]/[U ′2 → V ′2 ] (see (14)). Then
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the PIO (43) acts between the spaces X = [U1 → V1] and Y = [U2 ← V2]
is regular and satisfies

(61) ||l(t, s, σ)||R1(X,Y ) ≤ || ||l(t, s, σ)||U ′
1
||[V1←L1]/[U ′

2→V ′
2 ].

Similarly, if the function ||m(t, τ, s)||V1 belongs to the multiplicator
space [U1 ← L1]/[U ′2 → V ′2 ], then the PIO (44) acts between the spaces
X = [U1 ← V1] and Y = [U2 → V2] is regular, and satisfies

(62) ||m(t, τ, s)||Rm(X,Y ) ≤ || ||m(t, τ, s)||V ′
1
||[U1←L1]/[U ′

2−V ′
2 ].

Proof. The proof is completely analogous to that of Theorem 12; one
has just to pass to the corresponding associate operators, see (15).

All sufficient conditions of Theorem 9 13 are different for the PIO
(43) and the PIO (44) and refer to different kernel spaces with mixed
norm. In this way, the above theorems contain eight statements which
guarantee the acting (and, except for Theorem 9, also the regularity) of
PIO’s between four possible combinations of spaces with mixed norm.

6. Special cases. To verify the conditions of Theorems 9 13, one
has to show that certain functions of two variables, constructed by
means of the kernels l(t, s, σ) and m(t, τ, s), belong to certain ideal
spaces, constructed by means of the spaces U1, U2, V1, and V2. Since
these ideal spaces are rather complicated, however, the natural problem
arises to replace them by simpler and more tractable ones. One
possibility to do so is to introduce ideal spaces of functions defined
either on T × S × S, or on T × T × S, or on some permutation of
these Cartesian products. Denote by τ = (τ1, τ2, τ3) an arbitrary
permutation of the arguments (t, s, σ) ∈ T × S × S, or (t, τ, s) ∈
T ×T ×S. By [W1,W2,W3; τ ] we denote the ideal space of all functions
for which the norm

||w(t, s, σ)||[W1,W2,W3;τ ] = || || ||w(t, s, σ)||Wτ1 ||Wτ2 ||Wτ3 ,

||w(t, τ, s)||[W1,W2,W3;τ ] = || || ||w(t, τ, s)||Wτ1 ||Wτ2 ||Wτ3

is defined and finite. Using classical results on linear integral operators,
from Theorems 10 13, we get



PARTIAL INTEGRAL OPERATORS 371

Theorem 14. Let U1 and U2 be two ideal spaces over S, and V1 and
V2 two ideal spaces over T . Suppose that l(t, s, σ) ∈ [V2/V1, U2, U

′
1; τ ]

for some τ = (τ1, τ2, τ3). Denote by X the space [U1 → V1]
(respectively, [U1 ← V1]) if σ precedes t (respectively t precedes σ),
and by Y the space [U2 → V2] (respectively, [U2 ← V2]) if s precedes t
(respectively, t precedes s). Then the PIO (43) acts between X and Y ,
is regular, and satisfies

(63) ||l(t, s, σ)||R1(X,Y ) ≤ ||l(t, s, σ)||[V2/V1,U2,U ′
1;τ ].

Similarly, if m(t, τ, s) ∈ [U2/U1, V2, V
′
1 ; τ ] for some τ = (τ1, τ2, τ3), and

we denote by X the space [U1 → V1] (respectively, [U1 ← V1]) if s
precedes τ (respectively, τ precedes s), and by Y the space [U2 → V2]
(respectively, [U2 ← V2]) if s precedes t (respectively, t precedes s), then
the PIO (44) acts between X and Y , is regular, and satisfies

(64) ||m(t, τ, s)||Rm(X,Y ) ≤ ||l(t, τ, s)||[U2/U1,V2,V ′
1 ;τ ].

To illustrate Theorem 14, consider the special case of the Lebesgue
spaces U1 = Lp1 , U2 = Lp2 , V1 = Lq1 , and V2 = Lq2 . The
classical Minkowski inequality (see, e.g., [10, 38]) implies that [Lp →
Lq]⊆ [Lp ← Lq] for p ≥ q, and [Lp ← Lq]⊆ [Lp → Lq] for p ≤ q. Thus,
from Theorem 14, we get

Theorem 15. Let p1, p2, q1, q2 ∈ [0,∞]. Suppose that l(t, s, σ) ∈
[Lq1q2/(q2−q1), Lp2 , Lp1/(p1−1); τ ], q1 ≤ q2. Then the PIO (43) acts
between the spaces X and Y is regular and satisfies

(65)
||l(t, s, σ)||Rl

(X,Y )
≤ ||l(t, s, σ)||[Lq1q2/(q2−q1),Lp2 ,Lp1/(p1−1)

; τ ],

provided one of the conditions of Table 1 below holds. Similarly, if
m(t, τ, s) ∈ [Lq2 , Lq1/(q1−1), Lp1p2/(p1−p2); τ ], p1 ≥ p2, then the PIO
(44) acts between the spaces X and Y , is regular, and satisfies

(66)
||m(t, τ, s)||Rm(X,Y )

≤ ||m(t, τ, s)||[Lq2 ,Lq1/(q1−1),Lp1p2/(p1−p2)
; τ ]

provided one of the conditions of Table 2 below holds.
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TABLE 1.

X = [Lp1 − Lq1 ] X = [Lp1 → Lq2 ] X = [Lp1 ← Lq1 ] X = [Lp1 ← Lq1 ]

Y = [Lp2 → Lq2 ] Y = [Lp2 ← Lq2 ] Y = [Lp2 → Lq2 ] Y = [Lp2 ← Lq2 ]

(t, s, σ) p1 ≥ q1, p2 ≤ q2 p1 ≥ q1 p2 ≤ q2

(t, σ, s) p1 ≥ q1, p2 ≤ q2 p1 ≥ q1 p2 ≤ q2

(s, t, σ) p1 ≥ q1 p1 ≥ q1, p2 ≥ q2 p2 ≥ q2

(s, σ, t) p2 ≥ q2 p1 ≤ q1 p1 ≤ q1, p2 ≥ q2

(σ, t, s) p2 ≤ q2 p1 ≤ q1, p2 ≤ q2 p1 ≤ q1

(σ, s, t) p2 ≥ q2 p1 ≤ q1 p1 ≤ q1, p2 ≥ q2

TABLE 2.

(t, τ, s) p1 ≥ q1, p2 ≤ q2 p1 ≥ q1 p2 ≤ q2

(t, s, τ) p2 ≤ q2 p1 ≤ q1, p2 ≤ q2 p1 ≤ q1

(τ, t, s) p1 ≥ q1, p2 ≤ q2 p1 ≥ q1 p2 ≤ q2

(τ, s, t) p1 ≥ q1 p1 ≥ q1, p2 ≥ q2 p2 ≥ q2

(s, t, τ) p2 ≥ q2 p1 ≤ q1 p1 ≤ q1, p2 ≥ q2

(s, τ, t) p2 ≥ q2 p1 ≤ q1 p1 ≤ q1, p2 ≥ q2

The most interesting and important case in the preceding theorem is
when the operators (43) and (44) are considered in the single Lebesgue
space Lp = Lp(S × T ). Since [Lp → Lp] = [Lp ← Lp] = Lp, Theorem
15 reads in this case as follows:

Theorem 16. Let 1 ≤ p ≤ ∞. Suppose that l(t, s, σ) ∈
[L∞, Lp, Lp/(p−1); τ ′] for some τ ′, and m(t, τ, s) ∈ [Lp, Lp/(p−1), L∞; τ ′′]
for some τ ′′. Then the PIO’s (43) and (44) are regular in the space Lp

and

||l(t, s, σ)||Rl(Lp,Lp) ≤ ||l(t, s, σ)||[L∞,Lp,Lp/(p−1);τ ′],(67)

||m(t, τ, s)||Rm(Lp,Lp) ≤ ||m(t, τ, s)||[Lp,Lp/(p−1),L∞;τ ′′].(68)

Apart from the acting and regularity conditions for the PIO’s (43)
and (44), many other statements may be formulated. For instance,
one may obtain further statements by means of interpolation theory
(applied to either classical or partial integral operators), of Kantorovich
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type theorems, or of other methods. We point out that Theorem 9
and its partial converse considered above imply the following useful
criterion: the PIO (43) (respectively, (44)) acts in Lp if and only if all
operators of the family (45) (respectively, (46)) act in Lp for each t ∈ T
(respectively, s ∈ S) and have uniformly bounded norms.

The statements of Theorems 15 and 16, referring to the Lebesgue
type spaces [Lp → Lq] and [Lp ← Lq], carry over as well to the Orlicz
type spaces [LM → LN ] and [LM ← LN ].

7. PIO’s of Volterra type. Consider the linear integral equation

(69)
x(t, s) =

∫
S

l(t, s, σ)x(t, σ) dμ(σ) +
∫

T

m(t, τ, s)x(τ, s) dν(τ )

+
∫

S

∫
T

n(t, τ, s, σ)x(τ, σ) dμ× ν(τ, σ) + f(t, s)

which may be written concisely as operator equation

(70) (I − L−M −N)x = f,

where L,M , and N are given by (3), (4), and (5). We are interested
in the question as to what extent the basic results for classical integral
equations carry over to equation (69). We shall discuss some results
which are related to specific properties of the operator K = I − L −
M −N . Obviously,

(71) K = (I−L)(I−M)− (N +LM) = (I−M)(I−L)− (N +ML);

hence, in case the operators I − L and I −M are invertible, equation
(70) is equivalent to both equations

(72)
(I − (I −M)−1(I − L)−1(N + LM))x = f,

(I − (I − L)−1(I −M)−1(N +ML))x = f.

Observe that the operators N + LM and N + ML are (compositions
of) integral operators, and, hence, one may apply classical results on
integral equations to the operator equations (72). The invertibility of
the operators I−L and I−M is related to the solvability of the equation

(73) u(t, s) =
∫

S

l(t, s, σ)u(t, σ) dμ(σ) + f(t, s)
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(which is a classical integral equation containing a parameter t), and
the equation

(74) v(t, s) =
∫

T

m(t, τ, s)v(τ, s) dν(τ ) + f(t, s)

(which is a classical integral equation containing a parameter s). The
study of equations (73) and (74), in turn, reduces to analyzing the
operators (45) and (46).

As a matter of fact, under natural hypotheses on the kernels l(t, s, σ)
and m(t, τ, s), the linear integral equations

(75) u(s) =
∫

S

l(t, s, σ)u(σ) dμ(σ) + g(s), t ∈ T,

and

(76) v(t) =
∫

T

m(t, τ, s)v(τ ) dν(τ ) + h(t), s ∈ S,

admit unique solutions in U and V for arbitrary functions g(s) and
h(t), respectively. Moreover, these solutions are given by

(77) u(s) = g(s) +
∫

S

φ(t, s, σ)g(σ) dμ(σ), t ∈ T,

and

(78) v(t) = h(t) +
∫

T

ψ(t, τ, s)h(τ ) dν(τ ), s ∈ S

involving the resolvent kernels φ(t, s, σ) and ψ(t, τ, s). In case U and
V are ideal spaces, and the spectral radii of the operators ]L(t)[ and
]M(s)[ (see (45), (46), (8) and (9)) satisfy

(79) ρ(]L(t)[) < 1, t ∈ T, ρ(]M(s)[) < 1, s ∈ S,

the resolvent kernels may be represented as a series of iterated kernels

(80) φ(t, s, σ) =
∞∑

k=1

l(k)(t, s, σ), s, σ ∈ S, t ∈ T,
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and

(81) ψ(t, τ, s) =
∞∑

k=1

m(k)(t, τ, s), t, τ ∈ T, s ∈ S,

which converge in the Zaanen kernel spaces Z(U,U) and Z(V, V ),
respectively (see Section 5). If, in addition, we have

(82) φ(t, s, σ) ∈ R1(U,U), ψ(t, τ, s) ∈ Rm(V, V ),

it is natural to expect that

(83) x(t, s) = f(t, s) +
∫

S

φ(t, s, σ)f(t, σ) dμ(σ)

and

(84) x(t, s) = f(t, s) +
∫

T

ψ(t, τ, s)f(τ, s) dν(τ )

are solutions of (73) and (74), respectively. In particular, this is true if

(85) ρ(L) < 1, ρ(M) < 1;

in our case, the spectral radii in (79) may be calculated by the formulas

(86)
ρ(]L(t)[) = lim

k→∞
k

√
||l(k)(t, s, σ)||Rl(X,X),

ρ(]M(s)[) = lim
k→∞

k

√
||m(k)(t, τ, s)||Rm(X,X).

We summarize with

Theorem 17. Suppose that the linear operator D = L + M + N
acts in some ideal space X and is regular. Assume that the estimates
(79) hold, that the corresponding resolvent kernels satisfy (82) (with
X ⊆ [U → S] ∩ [S ← V ]), and that one of the operators N + LM or
N+ML is compact. Then the linear integral equation (69) satisfies the
Fredholm alternative in the space X; in particular, (69) admits a unique
solution x(t, s) ∈ X for any f(t, s) ∈ X if and only if (69) admits only
the trivial solution for f(t, s) ≡ 0.
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Consider now the special case when the sets T and S are intervals
and (69) is a partial integral equation of Volterra type

(87)
x(t, s) =

∫ s

0

l(t, s, σ)x(t, σ) dμ(σ) +
∫ t

0

m(t, τ, s)x(τ, s) dν(τ )

+
∫ s

C

∫ t

C

n(t, τ, s, σ)x(τ, σ) dμ× ν(τ, σ) + f(t, s).

In this case, (79) holds true (see, e.g., [38]) if the operators (45) and
(46) are compact in the spaces U and V , respectively, and U and V are
regular (i.e., all elements in U and V have absolutely continuous norm,
see [34]). Moreover, if the resolvent kernels φ(t, s, σ) and ψ(t, τ, s)
satisfy (82), the investigation of equation (87) reduces to that of
equations (72) (which are then classical Volterra integral equations,
of course). Finally, if at least one of the operators N +LM or N +ML
is compact, then, again by the regularity of the space X (see [ 38]), the
spectral radius of the corresponding operator is zero. We summarize
again with

Theorem 18. Let X,U , and V be regular ideal spaces, and let the
operators L(t), t ∈ T , and M(s), s ∈ S, be compact in U and V ,
respectively. Suppose that the resolvent kernels φ(t, s, σ) and ψ(t, τ, s)
satisfy (82). Assume, moreover, that at least one of the operators
N+LM or N+ML is compact in X. Then the linear Volterra equation
(87) has a unique solution x(t, s) ∈ X for any f(t, s) ∈ X.

A simple example illustrating Theorems 17 and 18 is that of the
Lebesgue spaces U = Lp(S), V = Lp(T ), and X = Lp(T × S). In this
case, condition (82) reduces to

(88) φ(t, s, σ) ∈ L(X,X), ψ(t, τ, s) ∈ L(X,X),

which, by the results of Section 5, is also necessary. In this way,
verifying the hypotheses of Theorems 17 and 18 means, here, simply
studying families of linear integral operators in Lebesgue spaces.
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8. PIO’s and tensor products. In this section, we shall be
concerned with integral equations of the form

(89)
x(t, s) =

∫
S

l(s, σ)x(t, σ) dμ(σ) +
∫

T

m(t, τ )x(τ, s) dν(τ )

+
∫

S

∫
T

n(t, τ, s, σ)x(τ, σ) dμ× ν(τ, σ) + f(t, s),

where the operators

(90) Lx(t, s) =
∫

S

l(s, σ)x(t, σ) dμ(σ)

and

(91) Mx(t, s) =
∫

T

m(t, τ )x(τ, s) dν(τ )

commute. The operators (90) and (91) are parameter-dependent fam-
ilies of the corresponding integral operators

(92) L̃u(s) =
∫

S

l(s, σ)u(σ) dμ(σ)

and

(93) M̃v(t) =
∫

T

m(t, τ )v(τ ) dν(τ ).

We shall suppose that the operators L̃ and M̃ act in the spaces Lp(S)
and Lp(T ), respectively, and the operator

(94) Nx(t, s) =
∫

S

∫
T

n(t, τ, s, σ)x(τ, σ) dμ× ν(τ, σ)

acts in the space Lp(T × S) and is compact. It is well known (see,
e.g., [26]) that Lp(T ×S) is a tensor product of Lp(S) and Lp(T ) with
respect to the Levin cross-norm. Consequently, for studying analytical
properties of equation (89) (solvability, Fredholm type, index, etc.), one
may make use of the theory of tensor products. Results in this spirit are
most easily formulated in terms of the spectra of the operators L,M,N ,
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and D = L + M + N . We recall some basic notation (for definitions,
see e.g. [21]): σ(D) is the spectrum of D; σew(D) (respectively, σes(D)
and σeb(D)) is the essential spectrum of D in Weyl’s sense (respectively
in Fredholm’s and Browder’s sense); σπ(D) is the limit spectrum of D;
σπ(D) is the closure of σπ(D∗); σ+(D) and σ−(D) are the domains
of normal solvability of D in case of a finite-dimensional null space
and finite-codimensional range, respectively; n+(D) and n−(D) are
the corresponding finite dimension and codimension; indD is the index
of D; κ(D,λ) is the algebraic multiplicity of the eigenvalue λ of D.

The following two theorems are consequences of general results on
the spectra of operators on tensor products.

Theorem 19. Suppose that the operator L̃ acts in Lp(S), the
operator M̃ acts in Lp(T ), and the operator N acts in Lp(T × S) and
is compact, 1 ≤ p ≤ ∞. Then

(95) σew(D) = (σew(L̃) + σ(M̃)) ∪ (σ(L̃) + σew(M̃))

and for λ /∈ σew(D), one has
(96)
ind (λI −D)

=
∑

(α,β)∈E′
ind (βI − M̃)

∞∑
j=1

(n−(αI − L̃)j − n−(αI − L̃)j−1)

+
∑

(α,β)∈E′′
ind (αI − L̃)

∞∑
j=1

(n−(βI − M̃)− n−(βI − M̃)j−1),

where

E′ = {(α, β) : α+ β = λ, α ∈ σ(L̃)\σeb(L̃), β ∈ σ(M̃)\σew(M̃)}

and

E′′ = {(α, β) : α+ β = λ, α ∈ σ(L̃)\σew(L̃), β ∈ σ(M̃)\σeb(M̃)}.

Moreover, one has

(97) σes(D) = σew(D) ∪ {λ ∈ σew(D) : ind (λI −D) �= 0},
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σ+(D) = (σ+(L̃) + σπ(M̃)) ∪ (σπ(L̃) + σ+(M̃)),(98)

σ−(D) = (σ−(L̃) + σπ(M̃)) ∪ (σπ(L̃) + σ−(M̃)).(99)

Finally, if, also, L̃ and M̃ are compact, then

(100) σes(D) = σew(D) = σ+(D) = σ−(D) = σ(L̃) ∪ σ(M̃).

Theorem 20. Suppose that the operator L̃ acts in Lp(S), the
operator M̃ acts in Lp(T ), and N = 0. Then

(101) σ(D) = σ(L̃) + σ(M̃),

(102) σeb(D) = (σeb(L̃) + σ(M̃)) ∪ (σ(L̃) + σeb(M̃)),

and, for λ /∈ σeb(D), one has

(103) κ(D,λ) =
∑

(α,β)∈E

κ(L̃, α) · κ(M̃, β),

where

E = {(α, β) : α+ β = λ, α ∈ σ(L̃)\σeb(L̃), β ∈ σ(M̃)\σeb(M̃)}.

Moreover, one has

n−(λI −D) =
∑

α+β=λ

∞∑
j=1

(n−((αI − L̃)j)− n−((αI − L̃)j−1))

· (n−((βI − M̃)j)− n−((βI − M̃)j−1)),(104)

n+(λI −D) =
∑

α+β=λ

∞∑
j=1

(n+((αI − L̃)j)− n+((αI − L̃)j−1))

· (n+((βI − M̃)j)− n+((βI − M̃)j−1))(105)

for λ /∈ σew(D).
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To illustrate Theorems 19 and 20, consider the linear integral equation

(106) λx(t, s) +
∫ 1

−1

l(s− σ)x(t, σ) dσ+
∫ t

0

m(t, τ )x(τ, s) dτ = g(t, s),

which occurs in the mechanics of continuous media (see, e.g., [1 3,
23]). Here S = [−1, 1], T = [0, a], the kernel l(ξ) has the form

l(ξ) =
1
2

∫ +∞

−∞
l̃(z)exp(iθzξ) dz,

where θ is a parameter (which has a mechanical meaning), and l̃(z) is
a positive, even continuous function satisfying

l̃(z) = A+O(z2), z → 0, |z|l̃(z) = B + o(z−1), z →∞;

moreover, the kernel m(t, τ ) is either continuous or weakly singular,
and the function g(t, s) has the form

g(t, s) = g1(s) + g2(t) + sg3(t), g1 ∈ Lp(S), g2, g3 ∈ Lp(T ).

Equation (106) may be studied in the space Lp(T × S). Under the
hypotheses given above, the operators L̃ and M̃ are compact, and thus
Theorems 19 and 20 apply. The spectrum of L̃ consists of 0 and a
finite number (or a sequence converging to 0) of Fredholm points λ,
while the spectrum of M̃ contains only 0. Consequently, the spectrum
of the operator D coincides with that of the operator L̃; in particular,
all elements of σ(D) are Fredholm points.

Altogether, equation (106) admits, for each λ with −λ /∈ σ(D), a
unique solution x(t, s) ∈ Lp(T × S) for any g(t, s) ∈ Lp(T × S).
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