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EQUIVALENT KERNELS FOR SMOOTHING SPLINES

P.P.B. EGGERMONT AND V.N. LARICCIA

To Ken Atkinson on the occasion of his 65th birthday

ABSTRACT. In the study of smoothing spline estimators,
some convolution-kernel-like properties of the Green’s func-
tion for an appropriate boundary value problem, depending
on the design density, are needed. For the uniform density,
the Green’s function can be computed more or less explic-
itly. Then, integral equation methods are brought to bear to
establish the kernel-like properties of said Green’s function.
We briefly survey how the Green’s function arises in spline
smoothing as the equivalent kernel, the reproducing kernel
of a suitable Hilbert space, and as the Green’s function for
the Euler equations of a semi-continuous version of the spline
smoothing problem.

1. Introduction. In this paper, we study the Green’s function for
the boundary value problem,

(1.1)
(−h2)m u(2m) + w u = v on (0, 1),

u(k)(0) = u(k)(1) = 0, k = m, . . . , 2m− 1.

Here, m is a positive integer, h is a positive parameter tending to 0,
and w is a positive measurable function, which is bounded and bounded
away from 0, i.e., there exist positive constants w1 and w2 such that

(1.2) w1 ≤ w(t) ≤ w2, a.e. t ∈ (0, 1).

Also, u(k) denotes the kth derivative, for k = 1, 2, . . . . The above
Green’s function arises in the precise analysis of the smoothing spline
estimator for the following, standard nonparametric regression prob-
lem. One observes the data (X1, Y1), (X2, Y2), . . . , (Xn, Yn), which is
interpreted as

(1.3) Yi = f0(Xi) +Di, i = 1, 2, . . . , n.
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Here, Xn = (X1, X2, . . . , Xn) is the random design, i.e.,X1, X2, . . . , Xn

are independent, identically distributed (iid) random variables with
common probability density function (pdf) w(t) on a bounded interval,
which we take to be (0, 1). The noise Dn = (D1, D2, . . . , Dn) are iid,
conditional on the design Xn, with

(1.4) E[Dn | Xn] = 0, E[DT
nDn | Xn] = σ2 In×n,

where σ2 is not known. In addition, one needs that, for some constant
κ > 3,

(1.5) E[|D1|κ | X1] <∞.

The goal is to estimate the function f0, which is assumed to be smooth,
i.e., for some integer m ≥ 1,

(1.6) f0 ∈Wm,2(0, 1),

where Wm,2(0, 1) is the Sobolev space of order m. Specifically,
(1.7)

Wm,2(0, 1) =

{
f ∈ Cm−1[0, 1]

∣∣∣∣∣ f (m−1) absolutely continuous

f (m) ∈ L2(0, 1)

}
.

For general introductions to nonparametric regression and the various
estimators, including smoothing splines, see, e.g., Eubank [17], Wahba
[28] and Györfy et al. [18].

The smoothing spline estimator of f0 is then defined as the solution
of the problem

(1.8)
minimize LS(f) def=

1
n

n∑
i=1

| f(Xi) − Yi|2 + h2m‖f (m)‖2

such that f ∈Wm,2(0, 1).

where ‖ · ‖ denotes the L2(0, 1) norm.

There are several ways in which the Green’s function for (1.1) arises.

Reproducing kernel Hilbert spaces. First, one needs to worry about
whether the problem (1.8) is properly formulated, in particular, whether
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the point evaluations f �→ f(Xi) make sense. It is well known that
Wm,2(0, 1) embeds continuously into C[0, 1], so that there exists a con-
stant cm such that for all f ∈Wm,2(0, 1) and all x ∈ [0, 1],

(1.9) |f(x)| ≤ cm

{
‖f‖2 + ‖f (m)‖2

}
1/2 ,

see, e.g., Adams and Fournier [2]. Thus, the objective function in
(1.8) is well defined, and establishing the existence and uniqueness of
solutions of the problem (1.8) is straightforward. However, it makes
sense to amend the result (1.9) in two ways. First, it seems reasonable
to replace the L2(0, 1) norm, ‖f‖2, by the weighted L2 norm, defined
by

(1.10) ‖f‖2
L2(w) = 〈f, f〉L2(w),

where

(1.11) 〈f, g〉L2(w) =
∫ 1

0

f(x) g(x)w(x) dx.

In other words, the design density is taken into account. Second, in view
of the spline smoothing problem, it makes sense to weight ‖f (m)‖2 by
the factor h2m. Thus, we introduce the inner products

(1.12) 〈f, g〉wmh = 〈f, g〉L2(w) + h2m 〈f (m), g(m)〉L2(0,1),

and, as usual, define the norm by ‖f‖wmh = {〈f, f〉wmh}1/2. Now, a
scaling argument applied to (1.9) results in the inequality, for 0 < h <
1, all x ∈ [0, 1] and all f ∈Wm,2(0, 1),

(1.13) |f(x)| ≤ cm h−1/2 ‖f‖mh ≤ cmw h
−1/2 ‖f‖wmh ,

the last inequality because of (1.2), with cmw = cm w
−1/2
1 . The

inequality (1.13) says that, for each h, the space Wm,2(0, 1) with the
innerproduct 〈·, ·〉wmh is a reproducing kernel Hilbert space, so that
there exists a function Rwmh(x, y), x, y ∈ [0, 1], such that Rwmh(x, ·) ∈
Wm,2(0, 1) for each x ∈ [0, 1], and for all x ∈ [0, 1] and all f ∈
Wm,2(0, 1),

(1.14) f(x) = 〈f, Rwmh(x, ·)〉wmh.



200 P.P.B. EGGERMONT AND V.N. LARICCIA

Then, (1.13) implies the nifty bound

(1.15) ‖Rwmh(x, ·)‖wmh ≤ cmw h
−1/2,

with cmw as in (1.13). For more on reproducing kernel Hilbert spaces,
see Aronszajn [3]. Of course, the reproducing kernel Rwmh(x, y) is the
Green’s function for (1.1), see, e.g., Dolph and Woodbury [11].

The reproducing kernel gets used as follows. Taking the existence
and uniqueness of the solution of (1.8) for granted, we denote the
solution of (1.8) by f = fnh. Then, since we are dealing with a
quadratic minimization problem, one obtains the quadratic behavior
of the objective function around its minimizer,

(1.16)
1
n

n∑
i=1

|ε(Xi)|2 + h2m ‖ε(m)‖2 = LS(f0) − LS(fnh),

where ε ≡ fnh − f0. After some standard manipulations, as detailed in
[14], one then arrives at

(1.17)
1
n

n∑
i=1

|ε(Xi)|2 + h2m ‖ε(m)‖2 ≤ Sn(ε) + h2m ‖f (m)
0 ‖ ‖ε(m)‖,

where, for f ∈Wm,2(0, 1),

(1.18) Sn(f) =
1
n

n∑
i=1

Di f(Xi).

Now, the problem is to bound Sn(ε) in terms of a suitable norm of ε.
Since ε ∈ Wm,2(0, 1), one obtains by way of the representation (1.14)
that

(1.19) Sn(ε) = 〈ε, Snh〉wmh ≤ ‖ε‖wmh ‖Snh‖wmh ,

in which Snh(x) = Sn

(
Rwmh(·, x)

)
. In other words,

(1.20) Snh(x) =
1
n

n∑
i=1

Di Rwmh(Xi, x), x ∈ [0, 1].



EQUIVALENT KERNELS FOR SMOOTHING SPLINES 201

To get a feeling for the size of Snh, using the properties (1.4) of the
noise and the bound (1.15), it is straightforward to show that

(1.21) E
[∥∥Snh

∥∥2

wmh

∣∣ Xn

]
≤ c2mw (nh)−1.

A moment’s reflection shows that the rate (nh)−1 is sharp, since the
“rate” h−1/2 in (1.15), respectively (1.13), is sharp.

Thus, the right-hand side of (1.17) may be (crudely) bounded by{
‖Snh‖wmh + h2m ‖f (m)

0 ‖
}
· ‖ε‖wmh,

and this would go a long way towards obtaining bounds on ‖ε‖wmh, if
in the left-hand side of the inequality (1.17), one could replace the sum

(1.22)
1
n

n∑
i=1

|ε(Xi)|2 by ‖ε‖2
L2(w).

For this, it suffices to obtain a bound like

(1.23)
∣∣∣ 1
n

n∑
i=1

|ε(Xi)|2 − ‖ε‖2
L2(w)

∣∣∣ ≤ ηnh ‖ε‖2
wmh,

where ηnh → 0 almost surely, provided h does not tend to 0 too fast.
(Say nh3 bounded away from 0.) It is interesting that the reproducing
kernel again enters into the picture. Starting with ε2 replaced by
just f , and then, using the reproducing kernel Hilbert space trick
f(Xi) = 〈f, Rwmh(Xi, ·)〉wmh (and Fubini’s theorem), one obtains for

(1.24) Δn(f) def=
1
n

n∑
i=1

f(Xi) −
∫ 1

0

f(x)w(x) dx

the representation and bound

(1.25)

∣∣Δn(f)
∣∣ ≤ ∣∣〈f, wnh − wh〉wmh

∣∣
≤
∥∥f∥∥

wmh

∥∥wnh − wh

∥∥
wmh

,
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where

(1.26)
wnh(x) =

1
n

n∑
i=1

Rwmh(Xi, x),

wh(x) = E[wnh(x)] =
∫ 1

0

Rwmh(x, t)w(t) dt.

Note that wnh is an estimator of the design density. We are tempted
to call it a reproducing kernel density estimator, in analogy with the
standard kernel density estimator, in which Rwmh(Xi, x) is replaced by
a convolution kernel Kh(Xi − x), see the classic Devroye and Györfy
[10], or the authors’ favorite, [13].

Now, the task at hand is to bound ‖wnh − wh‖wmh, and obviously,
this requires some properties on the reproducing kernel Rwmh. Finally,
one needs to replace f by ε2. See [14] for the full details.

Remark 1. The above elementary approach is a somewhat nonstan-
dard way of dealing with the random sums Sn(ε). The standard way is
by considering a suitable closed set F ⊂Wm,2(0, 1), e.g., the unit ball,
and studying the supremum of Sn(f) over f ∈ F . Now, the “size”of
F as a subset of L2(0, 1) comes into play, where the “size” is measured
in terms of the Kolmogorov (or metric) entropy of F . We shall not
address this further. See, e.g., Dudley [12].

C-splines. In the above, we outlined how the error in the smoothing
spline is bounded by a suitable norm of Snh. In fact, the error
behaves exactly in this way. In [14], we show that under the conditions
(1.2) (1.6) that

(1.27) fnh(x) − E[fnh(x) | Xn] = Snh(x) + δnh(x),

with
‖δnh‖∞ = o

(
(nh)−1/2

)
almost surely,

provided n→ ∞, h→ 0, with nh3 bounded way from 0. The way this
comes about is as follows. Write∣∣f(Xi) − Yi

∣∣2 =
∣∣f(Xi) − f0(Xi)

∣∣2 − 2Di

(
f(Xi) − f0(Xi)

)
+
∣∣Di

∣∣2,
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and as in (1.22), approximate the sum 1/n
∑n

i=1

∣∣f(Xi) − f0(Xi)
∣∣2 by

the corresponding integral. This leads to the minimization problem

(1.28)
minimize CLSn(f − f0) + h2m ‖f (m)‖2

subject to f ∈Wm,2(0, 1),

where

(1.29) CLS(f) = ‖f‖2
L2(w) −

2
n

n∑
i=1

Di f(Xi).

We call the solution a C-spline estimator (C for continuous). This
is slightly different from the “continuous” splines of Cox [7, 8]. The
solution of (1.28) should be a pretty good approximation to the solution
fnh of (1.8), and indeed it is.

Now, by way of the Euler equations, one verifies that the solution of
(1.28), denoted as ψnh(x), may be written as

(1.30) ψnh(x) = E[ψnh(x)] +
1
n

n∑
i=1

Di Rwmh(Xi, x),

with

E[ψnh(x)] =
∫ 1

0

Rwmh(x, y) f0(y)w(y) dy, x ∈ [0, 1].

This uses the fact that Rwmh is the Green’s function for the boundary
value problem (1.1).

Desirable properties of the Green’s function. It is clear that for a
detailed study of the random functions Snh(x) and wnh(x), some in-
formation on the Green’s function Rwmh(x, y) is needed. In the prob-
ability literature, powerful results are available on random functions of
the form

(1.31) ϕnh(x) =
1
n

n∑
i=1

DiKh(x−Xi), x ∈ [0, 1],
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where Kh(x) = h−1K
(
h−1x

)
, for some nice function K, in particular,

(1.32) K ∈ L1(R)
⋂
BV (R), K(x) = 0 for |x| > 1.

See, e.g., Deheuvels and Mason [9], and Einmahl and Mason [16], with
precursors like Konakov and Piterbarg [20], and Härdle, Janssen and
Serfling [19]. The functions K satisfying (1.32) are usually referred to
as “kernels.” To distinguish them from reproducing kernels, we shall
call them “convolution kernels.” Now, the Green’s function Rwmh(x, y)
is not a convolution kernel, but we prove in this paper that it has
properties quite analogous: There exist positive constants c, γ and δ
such that for all h, 0 < h < 1,

(1.33)

sup
x∈[0,1]

∥∥Rwmh(x, ·)
∥∥
∞ ≤ c h−1,

sup
x∈[0,1]

∥∥Rwmh(x, ·)
∥∥

1
≤ c,

sup
x∈[0,1]

∣∣Rwmh(x, ·)
∣∣
BV (0,1)

≤ c h−1,

and for all x, y ∈ [0, 1],

(1.34)
∣∣Rwmh(x, y)

∣∣ ≤ γ h−1 exp
(
−δ h−1 |x− y|

)
.

In (1.33), ‖ · ‖p denotes the standard norm on Lp(0, 1), for 1 ≤ p ≤ ∞,
and | · |BV (A) denotes the semi-norm on the space of functions (no
equivalence classes) of bounded variation on A ([0, 1] or R); see, e.g.,
Ziemer [29]. Note that convolution kernels have these properties,
except for the exponential decay (but obviously, a convolution kernel
decays like an L1 function.) The properties (1.33) are useful for
establishing rates of convergence of Snh in various norms, e.g., the
sup-norm. The exponential decay (1.34) is useful for showing that√
nhSnh converges to “white noise,” e.g., it implies that for x �= y,

(1.35) nhE[Snh(x) Snh(y) | Xn] −→ 0, h→ 0, nh→ ∞.

An additional property of convolution kernels deals with measures
of compactness of the sets

{
Kh : a < h < b

}
where 0 < a < b < 1.
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This comes about if one wishes to study the behavior of ϕnh as a
function of h. This may take the form of inquiring about the almost
sure boundedness of expressions like

(1.36) lim sup
n→∞

sup
h∈Hn

Dn(h)
/√

nh (log(1/h) ∨ log log n)

whereDn(h) = ‖ϕnh‖∞ and Hn is an interval, e.g., Hn = [n−1 log n, 1/2].
The difficulty is that one cannot really deal with the supremum, other
than by approximating it with a finite maximum. Ignoring the scaling
in (1.36), one may consider

(1.37) sup
h∈Hn

Dn(h) ≤ max
1≤i≤N

Dn(hi) + sup
h∈H

min
1≤i≤N

∣∣Dn(h) −Dn(hi)
∣∣,

where N and a = h1 < h2 < · · · < hN = b must be chosen
“appropriately” so as to balance the number of points N and the
resulting approximation error (the second term on the right). This leads
straight to the metric entropy of the aforementioned sets. See, e.g.,
Dudley [12] and Remark 1. Obviously, some information is required
on the behavior of Dn(h) as a function of h. What is required are
results like ∥∥Kh −Kλ

∥∥
1
≤ c

∣∣1 − h/λ
∣∣

and

(1.38)
∥∥Kh −Kλ

∥∥
∞ ≤ c

∣∣h−1 − λ−1
∣∣.

It is an exercise to show that K ∈ BV (R) and K having compact
support imply (1.38). In Section 6, we formulate and prove the analogue
of (1.38) for the reproducing kernels Rwmh.

Equivalent kernels. In the spline smoothing literature, the Green’s
function goes under the name of “equivalent kernel,” see, e.g., Speck-
man [27], Cox [7, 8], Silverman [26], Messer [22], Messer and Goldstein
[23], Nychka [24] and Chiang, Rice and Wu [6].

There are two aspects to the equivalent kernel set-up. One aspect con-
cerns the convolution-kernel like properties of the reproducing kernel
and the properties of the reproducing kernel estimator of the regres-
sion function. The other one deals with the accuracy of the reproducing
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kernel estimator as an approximation to the original smoothing spline
estimator.

Regarding the first problem, for the uniform design density, Cox
[7] computes the Green’s function for (1.1) with periodic boundary
conditions by means of Fourier series, and then fixes the natural
boundary conditions (for m = 2). Messer and Goldstein [23] determine
the Green’s function for (1.1) on the line by means of Fourier transform
methods, and then fix the natural boundary conditions on the finite
interval. In Section 3, we give the details of this construction.

For “arbitrary,” smooth design densities w, Nychka [24] for m = 1
and Chiang et al. [6] and Abramovich and Grinshtein [1] for m = 2,
use the venerable WKB method, although only the latter explicitly
mention it. The WKB method applies to the boundary value problem,

(1.39)
(−h2)m u(2m) + wu = v, on the line,

u(k)(x) −→ 0 for x −→ ±∞, for k = m, . . . , 2m− 1,

and deals with the asymptotic behavior of the solution as h→ 0. See,
e.g., Mathews and Walker [21]. One drawback of this approach is
that the boundary behavior of the Green’s function is inaccessible,
since the boundaries are pushed out to infinity. This implies that the
approximations are only valid away from the boundary.

Regarding the error made when approximating the spline smoother
by the equivalent kernel estimator, Nychka [24] and Chiang et al. [6],
following Cox [7], employ an interesting operator equation method.
First, since the spline smoother fnh is linear in the data, there exist
functions

rmh(·, Xi | Xn) ∈Wm,2(0, 1), i = 1, 2, . . . , n,

such that

(1.40) fnh(x) =
n∑

i=1

Yi rmh(x,Xi | Xn), x ∈ [0, 1].

Now, introduce the operator Fn : Wm,2(0, 1) →Wm,2(0, 1),

(1.41) [Fn g](x) =
∫ 1

0

Rwmh(x, t) g(t)
(
dWn(t) − dW (t)

)
,
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for x ∈ [0, 1]. Here, W (t) is the distribution function corresponding
to the pdf w, and Wn(t) is the empirical distribution function for the
design Xn, i.e.,

(1.42) W (t) =
∫ t

0

w(s) ds, Wn(t) =
1
n

n∑
i=1

1(Xi ≤ t).

Then, they show that η = fnh − ψnh satisfies the operator equation

(1.43) η + Fn η = −Fnψ
nh.

Since ψnh is given explicitly in terms of Rwmh, see (1.30), it is
now useful to study the Neumann series representation of

(
I +

Fn

)−1 Fn Rwmh(·, t) to get explicit approximations to the functions
rmh(t,Xi | Xn) above. In fact, they obtain bounds of the form

(1.44)
∣∣rmh(x,Xi | Xn)−Rwmh(x,Xi)

∣∣ ≤ c δn exp
(
−c1 h−1 |x−Xi|

)
,

for suitable positive constants c and c1 and

δn = h−2 ‖Wn −W‖∞.

(So the error is small and decays very fast as |x − Xi| increases.)
Informally, (1.43) may be obtained from the Euler equations for the
problems (1.8) and (1.28).

In this paper, only the properties of the Green’s function are ad-
dressed. First, we more or less explicitly compute the Green’s func-
tion for the uniform density case, using Fourier methods following
Messer and Goldstein [23], including the precise treatment of the nat-
ural boundary conditions. Then, we show that the Green’s function for
“arbitrary” designs solves a Fredholm integral equation of the second
kind, with the uniform Green’s function as the kernel (more or less),
and we take it from there.

The accuracy of the reproducing kernel estimator is treated in [14],
by directly comparing the minimization problems (1.8) and (1.28).

Remark 2. In a different context, there is a huge literature dealing
with the case m = 1. With periodic (as opposed to natural) boundary
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conditions, it is usually referred to as Hill’s equation. Here, for h = 1
and w square integrable, the spectral properties are known in detail.
See Pöschel [25] and the references therein. The relevance of this to
the convolution-kernel like properties of the Green’s function for h→ 0
are not clear.

In the next section, we phrase the main theorem on the Green’s
function, and outline the proof. The details are provided in later
sections.

Notations. For 1 ≤ p ≤ ∞, we let ‖ · ‖p denote the standard norm on
Lp(0, 1). The L2(0, 1) norm is denoted simply as ‖ · ‖. We let I denote
the identity operator on Lp(0, 1) (for all p). If T : Lp(0, 1) → Lp(0, 1),
then the operator norm of T is again denoted as ‖T‖p, the case p = 2
not being an exception this time. Also, | · |BV (A) denotes the semi-norm
on the space of functions (no equivalence classes) of bounded variation
on A ([0, 1] or R). If there should be no confusion about the set A in
question, we write simply | · |BV . See, e.g., Ziemer [29].

2. The main theorem. In this section, we state the main
theorem of the convolution-kernel like properties of the families of
kernels Rwmh and R

(m)
wmh, where R

(m)
wmh(t, s) denotes the mth order

derivative of Rwmh(t, s) with respect to s (or with respect to t, because
of symmetry).

Definition 1. A family of piecewise continuous functions Ah,
0 < h < 1, defined on [0, 1] × [0, 1], is kernel-like if there exists a
positive constant CA such that for all h, 0 < h < 1, and all t ∈ [0, 1],

‖Ah(·, t)‖1 ≤ CA,

‖Ah(·, t)‖∞ ≤ CAh
−1,

|Ah(·, t)|BV ≤ CAh
−1,

and there exist positive constants γ and κ such that for all s, t ∈ [0, 1],

∣∣Ah(s, t)
∣∣ ≤ γ h−1 exp

(
−κh−1|s− t|

)
.
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Main theorem. Under the assumption (1.2), the families

h
�
R

(�)
wmh, 0 < h < 1, � = 0, 1, . . . ,m,

are kernel-like in the sense of Definition 1.

How the main theorem solves the problem of obtaining uniform error
bounds for smoothing splines is demonstrated in [14].

We now outline the proof of the main theorem, filling in the details
in later sections. The first observation is that the case of the uniform
design density is straightforward albeit lengthy, relying as it does on
more or less explicit computations using Fourier analysis. So, let

(2.1)
Rmh(t, s), 0 < h < 1, denote the Green’s
function for (1.1) with the uniform design density.

Of course, Rmh(t, s) is symmetric in t and s. The following theorem is
proved in Section 3.

Theorem 1 (Messer and Goldstein [23]). The families

h
� R(�)

mh(t, s), 0 < h < 1, � = 0, 1, . . . ,m,

are kernel-like in the sense of Definition 1.

Next, integral equation methods are used to get to the Rwmh. Write
the differential equation (1.1) as

(2.2) (−λ2)mu(2m) + u = ṽ −Mu,

where wlow = w1/2; λ = hw
−1/(2m)
low ; M is the multiplication operator

by the function M ,

(2.3) M(t) = (w(t) − wlow)/wlow,

and ṽ = v/wlow. Now, if v ∈ L2(0, 1) and u solves the boundary value
problem (1.1), then u solves the integral equation

(2.4) u+ TλMu = w−1
low Tλv,
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where Tλ : L2(0, 1) → L2(0, 1) is defined as

(2.5) [Tλu](t) =
∫ 1

0

Rmλ(t, τ )u(τ ) dτ, t ∈ [0, 1].

Of course, the point is that (2.4) is equivalent to the boundary value
problem.

Theorem 2. For each v ∈ L2(0, 1), the solution u ∈ L2(0, 1) of the
boundary value problem (1.1) exists and is unique, and is given by the
unique solution in L2(0, 1) of (2.4). Moreover,

sup
0<λ<1

‖(I + TλM)−1‖2 ≤ 1 +
w2

w1
.

The main trick is now to infer the uniform invertibility of I + TλM
on L1(0, 1), after which the rest is smooth sailing.

Theorem 3. Under the assumption (1.2) on the design density,
there exists a constant C1, such that for all p, 1 ≤ p ≤ ∞,

sup
0<λ<1

‖(I + TλM)−1‖p ≤ C1.

Proof of the main theorem. Fix s ∈ (0, 1), and set u = Rwmh(·, s).
Then, u is the solution to

(2.6) u+ TλMu = w−1
lowRmλ(·, s).

and by Theorem 3, we get ‖u‖1 ≤ C1w
−1
low‖Rmλ(·, s)‖1 ≤ C2, for a

suitable constant C2.

Now,
∣∣[TλMu](t)

∣∣ ≤ ‖Rmλ(t, ·)‖∞‖Mu‖1, and of course,

‖Mu‖1 ≤ w−1
low‖w − wlow‖∞‖u‖1.

So then, from (2.6),

|u(t)| ≤ w−1
low |Rmλ(t, s)| + ‖Rmλ(t, ·)‖∞ ‖Mu‖1,
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and it follows with Theorem 1 that ‖u‖∞ ≤ c1λ
−1 ≤ c h−1. Moreover,

this holds uniformly in s ∈ [0, 1].

For the BV -property, note that, for all f ,

|Tλ f |BV ≤ sup
s∈[0,1]

|Rmλ(·, s)|BV ‖f‖1,

so that, again from (2.6),

|u|BV ≤ w−1
low |Rmλ(·, s)|BV + sup

s∈[0,1]

|Rmλ(·, s)|BV ‖Mu‖1,

and the bound |u|BV ≤ c h−1 follows. Thus, the family of Green’s
functions Rwmh(t, s), 0 < h < 1, are kernel-like.

Now, let 1 ≤ � ≤ m. After � times differentiating both sides of (2.5),
the above derivations may be repeated to show that the kernels

h
�
R

(�)
wmh(t, s)

are kernel-like as well.

Apart from the exponential decay, the main theorem has been proved.

In the remaining sections, Theorems 1, 2, 3 and the missing part of
the main theorem regarding the exponential decay are proved.

3. The Green’s function for the uniform design. In this
section, we prove Theorem 1. There is little doubt that this is all
very predictable: First, we determine a fundamental solution of the
differential equation, ignoring the boundary conditions,

(−h2)m u(2m) + w u = δs,

with δs the point mass at s, using Fourier methods. Then, all homoge-
neous solutions of the differential equation are computed, and finally,
the correct linear combination of the homogeneous solutions is added
to the fundamental solution so as to match the (natural) boundary
conditions of (1.1). This follows Cox [7] for the case m = 2 (but he
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constructs the Green’s function for (1.1) with periodic boundary condi-
tions, and then matches the natural boundary conditions), and Messer
and Goldstein [23] (who slightly fudge the natural boundary condi-
tions, see the remark following (3.17)). When all is said and done, this
leads to the following theorem.

Theorem 4. Define the function Bmh(x), x ∈ R, by its Fourier
transform

̂Bmh(ω) =
(
1 + (2πhω)2m

)−1
, ω ∈ R,

and let

ϕ�,h(x) =

{
exp

(
h−1�� x

)
� = 0, 1, . . . ,m− 1,

exp
(
h−1�� (x− 1)

)
� = m,m+ 1, . . . , 2m− 1,

where

�� = exp
(

2�+m+ 1
2m

πi

)
, � = 0, 1, . . . , 2m− 1.

Then, for a suitable h0 > 0 and for all h < h0, there exist functions
a�,h and positive constants cm, κm such that for all x, y ∈ [0, 1], the
Green’s function Rmh may be represented as

Rmh(x, y) = Bmh(x− y) +
2m−1∑
�=0

h−1ϕ�,h(x) a�,h(y).

Moreover, for all y ∈ [0, 1],

sup
0≤�≤m−1

|a�,h(y)| ≤ cm exp(−h−1κmy),

sup
m≤�≤2m−1

|a�,h(y)| ≤ cm exp(−h−1κm(1 − y)),

and Rmh(x, y) = Rmh(y, x) for all x, y ∈ [0, 1].

Before proving Theorem 4, we show how it may be used to derive
Theorem 1. This requires some information regarding the functions
Bmh and ϕ�,h, stated in the next lemma. Notationally, B

(k)
mh(t) denotes

the kth order derivative of Bmh(t).
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Lemma 1. Let m ≥ 1. There exist positive constants κm and cm
such that for x ∈ [0, 1], t ∈ R and k = 0, 1, . . . , 2m− 1,

|ϕ(k)
�,h(x)| ≤ cmh

−k exp(−h−1κmx), 0 ≤ � ≤ m− 1,(a)

|ϕ(k)
�,h(x)| ≤ cmh

−k exp(h−1κm(x− 1)), m ≤ � ≤ 2m− 1,(b)

|B(k)
mh(t)| ≤ cmh

−k−1 exp(−h−1κm|t|), 0 ≤ k ≤ 2m− 1.(c)

sup
h>0

sup
�

∫ 1

0

hk−1|ϕ(k)
�,h(y)| dy <∞,(d)

sup
h>0

sup
x∈[0,1]

∫ 1

0

hk|B(k)
mh(x− y)| dy <∞.(e)

Proof. Only (c) needs some attention. First, define Bm by means of

B̂m(hω) = ̂Bmh(ω), ω ∈ R.

Now, observe that

1 + (2πω)2m =
2m−1∏
�=1

factor (ω, �),

where

factor(ω, �) = 2πω − exp
(

(2�+ 1)πi
2m

)
= 2πω − (−i) exp

(
(2�+m+ 1)πi

2m

)
= (−i)

(
2πiω − exp

(
(2�+m+ 1)πi

2m

))
= (−i)

(
2πiω −��

)
,

with �� as in Theorem 4. Then, the partial fraction decomposition of

̂

B
(k)
m (ω) = (2πi ω)k B̂m(ω) =

(2πi ω)k

1 + (2πω)2m
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may be written as

̂

B
(k)
mh(ω) =

2m−1∑
�=0

α�,k(2πiω −��)−1,

for suitable constants α�,k. Finally, observe that {2πiω −��}−1 is the
Fourier transform of

− exp(x��)1(x ≤ 0) or exp(x��)1(x ≥ 0)

depending on whether the real part of �� is positive or negative. Note
that Re�� �= 0 for all �.

The properties of the families Rmh(x, y), and R(m)
mh , h > 0, now

follow.

Proof of Theorem 1. Lemma 1 (a), (b), (c) imply that for k = 0 and
k = m,

‖hk R(k)
mh(t, ·)‖∞ ≤ c h−1.

Lemma 1 (d), (e), together with the bounds on the a�,h, imply for
k = 0,m, that

‖hk R(k)
mh(t, ·)‖1 ≤ c h−1, |hk R(k)

mh(t, ·)|BV ≤ c h−1,

where we used that

|R(k)
mh(x, ·)|BV = ‖R(k+1)

mh (x, ·)‖1,

and that Rmh(x, y) is symmetric.

The remaining properties follow likewise.

Proof of Theorem 4. The first step is to determine a fundamental
solution. Consider the boundary value problem on the line

(3.1)
(−h2)mu(2m) + u = v on (−∞,∞),

u(k)(x) −→ 0 as |x| → ∞, k = m,m+ 1, . . . , 2m− 1,
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with v ∈ L2(R). The easiest way to solve this problem is by means of
Fourier transforms. Letting

û(ω) =
∫
R

u(x)e−2πiωx dx,

one obtains
û(ω) =

v̂(ω)
1 + (2πhω)2m

, ω ∈ R,

and consequently, u is given as a convolution, u = Bmh ∗ v, with

̂Bmh(ω) =
(
1 + (2πhω)2m

)−1
.

It follows that Bmh(x − y) is the Green’s function for the boundary
value problem (3.2), and a fundamental solution for (1.1). The required
properties of Bmh follow from Theorem 1 and Lemma 1.

All homogeneous solutions. Consider the differential equation

(3.2) (−h2)m u(2m) + u = 0 on (0, 1).

The homogeneous solutions are of the form u(x) = exp(i λ x) for
suitable constants λ. Substituting this into the differential equation
shows that λ must satisfy (hλ)2m + 1 = 0, and one verifies that the
solutions are given by λ = −i h−1��, 0 ≤ � ≤ 2m − 1. This gives the
homogeneous solutions

u�(x) = exp(h−1��x), � = 0, 1, . . . , 2m− 1.

It is useful to scale the u� such that

max
x∈[0,1]

|u�(x)| = 1,

with the maximum occurring at either x = 0 or x = 1. This leads to
the 2m homogeneous solutions ϕ�,h, � = 0, 1, . . . , 2m − 1, defined in
Theorem 4.

Since these solutions are obviously linearly independent, they are a
basis for the set of all homogeneous solutions of the differential equation
(3.3).
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Taking care of the boundary conditions. We now construct the
Green’s function as a linear combination of the fundamental solution
and the basic homogeneous solutions, in the form

(3.3) Rmh(x, y) = Bmh(x− y) +
2m−1∑
�=0

h−1ϕ�,h(x)a�,h(y).

The coefficients a�,h(y) are to be determined such that the boundary
conditions of (1.1) are satisfied. This leads to the system of linear
equations

(6.4)

2m−1∑
�=0

�k
� ϕ�,h(x)a�,h(y) = B(k)

m

(
h−1(x− y)

)
,

for x = 0, 1, and k = m,m+ 1, . . . , 2m− 1.

We must show that the a�,h exist, so that Rmh(x, y) may indeed be
represented by (3.4) and that the bounds of Theorem 4 apply.

The bounds on the a�,h. Note that it is reasonable to partition the
system (3.5) into two blocks of equations corresponding to the boundary
conditions at x = 0 and at x = 1. It turns out that, for h → 0, this
partitioning amounts to an asymptotic decoupling, and two m × m
systems of equations result with coefficient matrices independent of h.
The existence of the solution, as well as the bounds on them, may then
be read off.

To implement this, write (3.4) in matrix vector notation, and parti-
tion the unknown a�,h into two blocks

(3.5) b0 =

⎡⎢⎢⎣
a0,h(y)
a1,h(y)

...
am−1,h(y)

⎤⎥⎥⎦ , b1 =

⎡⎢⎢⎣
am,h(y)
am+1,h(y)

...
a2m−1,h(y)

⎤⎥⎥⎦ ,
and likewise for the right-hand sides,

(3.6) rhs0 =

⎡⎢⎢⎢⎣
B

(m)
m (−y)

B
(m+1)
m (−y)

...
B

(2m−1)
m (−y)

⎤⎥⎥⎥⎦ , rhs1 =

⎡⎢⎢⎢⎣
B

(m)
m (1 − y)

B
(m+1)
m (1 − y)

...
B

(2m−1)
m (1 − y)

⎤⎥⎥⎥⎦ .
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The coefficient matrix is partitioned as

(3.7) A =
[
P R
S Q

]
,

with

(3.8) P =

⎡⎢⎢⎣
Pm,0 Pm,1 · · · Pm,m−1

Pm+1,0 Pm+1,1 · · · Pm+1,m−1

...
...

. . .
...

P2m−1,0 P2m−1,1 · · · P2m−1,m−1

⎤⎥⎥⎦ ,
and similarly for the other matrices, and

(3.9)

Pk,� = �k
� , � = 0, 1, . . . ,m− 1,

Qk,� = �k
� , � = m,m+ 1, . . . , 2m− 1,

Sk,� = �k
� exp(−h−1��), � = m,m+ 1, . . . , 2m− 1,

Rk,� = �k
� exp(−h−1��), � = 0, 1, . . . ,m− 1,

and k = m,m+ 1, . . . , 2m− 1. The system (3.4) then takes the form

(3.10)
[
P R
S Q

] [
b0
b1

]
= −

[
rhs0
rhs1

]
.

A careful study of this system reveals that by Lemma 3.1,

(3.11)
‖rhs0‖∞ ≤ c exp

(
−h−1κmy

)
,

‖rhs1‖∞ ≤ c exp
(
−h−1κm(1 − y)

)
,

as well as

‖R‖∞ ≤ mcm exp(−h−1κm),
‖S‖∞ ≤ mcm exp(−h−1κm),

uniformly in h. Here, ‖ · ‖∞ denotes the max-norm on Rm, as well as
the induced matrix norm on Rm×m.

Now, the matrices P and Q, being Vandermonde matrices, see, e.g.,
Atkinson [4], are nonsingular (and they do not depend on h). It follows
that for some h0 > 0 and all h < h0, the matrix

(3.13) B
def=

[
P−1 0

0 Q−1

]
A =

[
I P−1R

Q−1S I

]
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is a small perturbation of the identity and so is invertible, with a
bounded inverse, uniformly in h small enough. See, e.g., Atkinson
[4, Section 7.4].

The new system of equations then reads as

(3.14)
[

I P−1R
Q−1S I

] [
b0
b1

]
= −

[
P−1rhs0
Q−1rhs1

]
.

and the new right-hand sides satisfy the same bounds as before. It
follows that

(3.15) sup
h<h0

‖b0‖∞ <∞, sup
h<h0

‖b1‖∞ <∞.

Moreover, from (3.14),

(3.16) b0 = −P−1rhs0 − P−1Rb1.

Now, the bound (3.15) on b1, and the bound (3.12) on R imply that
for all y ∈ [0, 1],

(3.17)
‖b0‖∞ = O(exp(h−1κmy)) + O(exp(h−1κm))

= O(exp(h−1κmy)).

A similar derivation applies to b1.

Remark 3. Messer and Goldstein [23] fudge the natural boundary
conditions slightly, by approximating the solution of (3.14) by the right-
hand side. This introduces a negligible error.

4. Convolution-like integral operators on Lp spaces. In this
section, we prove Theorems 2 and 3.

Proof of Theorem 2. One verifies that the boundary value problem
(1.1) constitutes the Euler equations for the problem

minimize ‖u‖2
L2(w) − 2〈u, v〉 + h2m‖u(m)‖2

subject to u ∈Wm,2(0, 1).
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Thus, for each v ∈ L2(0, 1), the (weak) solution of (1.1) exists and is
unique. Moreover, u satisfies

‖u‖2
L2(w) + h2m‖u(m)‖2 = 〈u, v〉 ≤ ‖u‖L2(w)‖v‖L2(1/w),

so that ‖u‖L2(w) ≤ ‖v‖L2(1/w), and then, by the assumption (1.2) on
the design density,

(4.1) ‖u‖ ≤ w−1
1 ‖v‖.

As far as the equivalence of (1.1) and (2.4) is concerned, obviously,
if u solves (1.1), then it also is a solution of (2.4). For the converse,
consider (2.4) with v ∈ L2(0, 1). The solution is unique: if u ∈ L2(0, 1)
and u+ TλMu = 0, then u = −TλMu, so that u satisfies

(−λ2)mu(2m) + u = −Mu

together with the natural boundary conditions, but this implies that

(−h2)mu(2m) + wu = 0

and consequently, see above, u = 0. Since TλM : L2(0, 1) → L2(0, 1)
is a compact integral operator, the Fredholm alternative, see, e.g.,
Atkinson [5], now implies that the solution of (2.4) exists. Then, (4.1)
implies that

‖(I + TλM)−1Tλ‖2 ≤ wlow/w1 =
1
2
,

and so ‖(I+TλM)−1TλM‖2 ≤ (1/2)(w2−wlow)/wlow, and finally, since
(I + TλM)−1 = I − (I + TλM)−1TλM , then

‖(I + TλM)−1‖2 ≤ 1 + (w2 − wlow)/(2wlow).

This is the bound of the theorem.

Proof of Theorem 3. The goal is to apply Theorem 3.1 of Eggermont
and Lubich [15], where the finiteness of sup0<λ<1 ‖(I + TλM)−1‖∞
is deduced from the finiteness of sup0<λ<1 ‖(I + TλM)−1‖2. To that
end, we need to introduce classes of kernels on [0, 1] × [0, 1], denoted
by F(b, e) where b ∈ L1(R) and e ∈ C(R), with e(0) = 0, are given
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functions. Now, we say that a function K defined on [0, 1] × [0, 1]
belongs to F(b, e) if there exists an h, with 0 < h < 1, such that

(4.2)
|K(t, s)| ≤ h−1b

(
h−1|t− s|

)
,

‖K(t+ δ, ·) −K(t, ·)‖1 ≤ e(h−1δ).

Note that by Theorem 1, there exists a constant c, such that for all
relevant t, s, δ and h, 0 < h < 1,

|Rmλ(t, s)M(s)| ≤ ch−1 exp
(
−κmh

−1|t− s|
)
,

as well as

‖Rmλ(t+ δ, ·)M(·) −Rmλ(t, ·)M(·)‖1 ≤ cδ‖R′
mλ(θ, ·)‖1

≤ ch−1|δ|.

Thus, the kernels Rmλ(t, s)M(s) of the integral operators TλM belong
to a subset A of the class F(b, e), with

b(t) = c exp(−κm|t|) and e(t) = c|t|,

for a suitable constant c. Thus, by Theorem 3.1 of [15], now Theorem 2
implies that there exists a constant C3 such that

sup
0<λ<1

‖(I + TλM)−1‖∞ ≤ C3.

Of course, since Tλ and M are symmetric, then

‖(I + TλM)−1‖∞ = ‖(I +MTλ)−1‖1,

and since (I + TλM)−1 = M−1(I +MTλ)−1M , this gives

‖(I + TλM)−1‖1 ≤ ‖M‖1‖M−1‖1‖(I +MTλ)−1‖1

≤ 2(w2 − wlow)/wlow · C3

≤ C4 <∞.

and we are done.
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5. The decay of the Green’s function. The proof of the missing
part of the main theorem regarding the exponential decay of the Green’s
function Rwmh(t, s) rests on the following result. For κ > 0, define

(5.1) a(t) = λ−1 exp(−κλ−1|t|),

with λ as in (2.2). Also, recall Theorem 1, so that

(5.2)
∣∣Rmλ(t, s)

∣∣ ≤ cmλ
−1 exp(−kmλ

−1|t− s|).

Lemma 2. For all 0 < κ < km,∫ 1

0

∣∣∣a(τ − s)
a(t− s)

− 1
∣∣∣ ∣∣∣Rmλ(t, τ )

∣∣∣dτ ≤ 2cmκ
(km − κ)km

.

Proof. First, for |t| > |s|, we have

0 ≤ a(s)
a(t)

− 1 = exp
(
κλ−1(|t| − |s|)

)
− 1

≤ exp
(
κλ−1|t− s|

)
− 1.

For |t| ≤ |s|, one obtains likewise

0 ≤ 1 − a(s)
a(t)

≤ 1 − exp
(
−κλ−1|t− s|

)
≤ exp

(
κλ−1|t− s|

)
− 1.

It follows that the integral in the lemma is bounded by

cmλ
−1

∫ 1

0

(
eκλ−1|t−τ | − 1

)
e−kmλ−1|t−τ | dτ

≤ cm

∫ ∞

−∞

(
eκ|τ | − 1

)
e−km|τ | dτ.

Now, multiply out the integrand and integrate.
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Proof of the exponential decay of Rwmh. Fix s ∈ [0, 1]. Then

v(t) = Rwmh(t, s)
/
a(t− s)

satisfies the equation, cf. (2.4),

(5.3) v + Tλ,av = b,

where b(t) = w−1
lowRmλ(t, s)

/
a(t− s), and Tλ,a is defined by

[Tλ,ag](t) =
∫ 1

0

a(τ − s)
a(t− s)

Rmλ(t, τ )M(τ )g(τ ) dτ.

Note that b is bounded, uniformly in λ. Now, we may rewrite (5.3) as

v + TλMv + (Tλ,a − Tλ)Mv = b

so that

(5.4) v + Ev = (I + TλM)−1b,

where E = (I + TλM)−1(Tλ,a − Tλ)M . Now,∥∥E∥∥∞ ≤
∥∥(I + TλM)−1

∥∥
∞
∥∥(Tλ,a − Tλ)

∥∥
∞
∥∥M∥∥

∞ ≤ Cκ

for a suitable constant C. This uses Theorem 3 with p = ∞, and
Lemma 2 to bound

∥∥(Tλ,a − Tλ)
∥∥
∞. Now, choose κ ≤ 1/(2C). Then,∥∥E∥∥∞ ≤ 1/2, so that the Banach contraction principle applied to

(5.4) implies the inequality ‖v‖∞ ≤ const ‖b‖∞. Thus, v is bounded,
uniformly in λ. But this implies the exponential decay of Rwmh(t, s).

6. The dependence on h. In this section, we study the dependence
of the reproducing kernel Rwmh on the parameter h, analogous to the
inequalities (1.38) for convolution kernels.

Theorem 5. Under the conditions (1.2) on the design density, there
exists a constant c such that for all h, θ ∈ (0, 1), and all p, 1 ≤ p ≤ ∞,

sup
s∈[0,1]

‖Rwmh(·, s) − Rwmθ(·, s)‖p ≤ ch−1+1/p
∣∣∣1 − h

θ

∣∣∣.
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Proof. It suffices to prove the cases p = 1 and p = ∞. Let u =
Rwmh(·, s) and v = Rwmθ(·, s). Let λ = hw

−1/(2m)
low and η = θw

−1/(2m)
low .

Then, by Theorem 2, the functions u and v are the solutions to(
I + TλM

)
u = w−1

lowRmλ(·, s)
and (

I + TηM
)
v = w−1

lowRmη(·, s).

It follows that

(6.1) wlow(u− v) = first + second,

with

(6.2)
first =

(
I + TηM

)−1
{
Rmλ(·, s) −Rmη(·, s)

}
,

second =
{(

I + TλM
)−1 −

(
I + TηM

)−1
}
Rmλ(·, s).

Everything is in place to bound the two terms. From the semi-explicit
representation of Theorem 4, one obtains just as for convolution kernels
that for all p, 1 ≤ p ≤ ∞,

(6.3)
∥∥∥Rmλ(·, s) −Rmη(·, s)

∥∥∥
p
≤ cλ−1+1/p

∣∣∣1 − λ

η

∣∣∣.
and by Theorem 3, the same bound with a different constant applies
to the first term.

Regarding the second term, observe that(
I+TλM

)−1−
(
I+TηM

)−1 =
(
I+TλM

)−1(Tη −Tλ

)
M

(
I+TηM

)−1
,

so that, again with Theorem 3,

‖
(
I + TλM

)−1 −
(
I + TηM

)−1‖p ≤ c‖Tη − Tλ‖p.

Now, since

‖Tλ − Tη‖p ≤ c sup
x∈[0,1]

‖Rmλ(x, ·) −Rmη(x, ·)‖1

≤ c2

∣∣∣1 − λ

η

∣∣∣,
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then, with the bound from Theorem 4 valid for p = 1, and p = ∞,∥∥Rmλ(x·)
∥∥

p
≤ cλ−1+1/p,

the second term may be bounded as

∣∣second
∣∣ ≤ cλ−1+1/p

∣∣∣1 − λ

η

∣∣∣.
Finally, since λ/η = h/θ, and h = wlowλ, the theorem follows.
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