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DISPLACEMENT-TRACTION BOUNDARY VALUE
PROBLEMS FOR ELASTIC PLATES WITH

TRANSVERSE SHEAR DEFORMATION

IGOR CHUDINOVICH AND CHRISTIAN CONSTANDA

ABSTRACT. The existence, uniqueness and continuous
dependence on the data are studied in a Sobolev space setting
for the solutions of boundary integral equations arising in
the interior and exterior mixed boundary value problems for
bending of thin elastic plates.

1. Introduction. Applied mathematicians and engineers find
closed-form solutions to continuum mechanics problems very conve-
nient, since they facilitate the computation of highly accurate results.
The boundary integral equation (BIE) method offers one of the best
and most elegant ways of generating such solutions. For the Dirichlet,
Neumann and Robin boundary value problems (BVPs) it is possible
to construct classical (regular) solutions if the boundary and data are
sufficiently smooth. Unfortunately, this cannot be done satisfactorily
for mixed BVPs, where the data are usually discontinuous at the points
separating the displacement and traction boundary conditions. In this
case the net has to be cast wider in order to look for weak solutions to
the corresponding BIEs. This technique has two additional advantages:
it is also applicable to less smooth boundaries and data, and helps to
estimate the convergence rate in boundary element methods associ-
ated with the problem, since error bounds are defined quite naturally
by means of Sobolev space norms. Weak solution procedures are now
familiar to practitioners, who exploit their generality and usefulness
extensively.

Mixed BVPs for bending of elastic plates occur very frequently in the
modeling of industrial processes, for example, in aerospace engineering,
ship and marine technology, and car manufacture. Today’s computa-
tional power and design sophistication, on a general background of a
multitude of environmental issues (such as conservation of natural re-
sources), require more accurate plate bending models than Kirchhoff’s
classical one. The latter, which reduces to solving a nonhomogeneous
biharmonic equation with two boundary conditions, ignores the effects
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of transverse shear deformation and gives rise to certain mathemati-
cal discrepancies. Such drawbacks do not occur in the Mindlin-type
model proposed in [1], where a system of three second order equations
is solved together with three independent boundary conditions to give
a fuller picture of the behavior of the plate. This model, used in what
follows, is rigorous in the sense that it is based solely on the kinematic
assumption that the displacement field v = (v1, v2, v3)T with respect to
a system of rectangular Cartesian coordinates (x1, x2, x3) (here (x1, x2)
are in the middle plane of the plate) is of the form
(1) vα = x3uα(x1, x2), α = 1, 2, v3 = u3(x1, x2).

Boundary value problems for the system of partial differential equa-
tions obtained from (1) have already been studied by means of integral
equation methods in [1 5, 9, 14], where the existence of regular, [1 5,
14], and weak [9] solutions has been proved by potential methods for
the Dirichlet, Neumann and Robin BVPs. The results in [15] illustrate
the difficulties arising when regular solutions are sought for the mixed
problem.

Below we study the existence, uniqueness and continuous dependence
on the data of the weak solutions to the integral equations arising
in the interior and exterior displacement-traction case for thin plates
when the solutions are represented in terms of single or double layer
potentials. We offer a choice of four different integral representations for
the solution, of which the last two are of a type that, to our knowledge,
has never been used in such problems. The main results are contained
in Theorems 2 5.

This analysis is an essential first step in any applied problem and
needs to be carried out in order to validate the construction of subse-
quent numerical approximations.

Applications of the BIE approach in conjunction with weak solutions
in three-dimensional elastodynamics are described in [6 8]. The use of
a BIE technique in the numerical solution of a problem for Reissner’s
plate model is illustrated in [16]. An example of boundary element
Galerkin method based on the BIE formulation of a BVP with error
estimates derived in terms of Sobolev norms can be found in [13].

2. Preliminary results. Unless otherwise stated, in what follows
Greek and Latin subscripts take the values 1, 2 and 1, 2, 3, respectively,
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and the convention of summation over repeated indices is understood.
For simplicity, we use the same notation for spaces, norms and inner
products of vector functions as for scalar ones. Also the generic
symbol c, with or without subscripts, denotes various strictly positive
constants, (. . . ),i ≡ ∂(. . . )/∂xi and a superscript T indicates matrix
transposition.

Suppose that a homogeneous and isotropic plate occupies a region
S̄ × [−h0/2, h0/2], where S ⊂ R2 is a domain bounded by a simple,
closed, Lipschitz, piecewise C2-curve ∂S, and h0 = const is the plate
thickness. We denote by S+ the finite domain interior to ∂S and set
S− = R2\(S+ ∪ ∂S). The equilibrium equations for bending can be
written in the form [1]

(2) A(∂x)u(x) + q(x) = 0, x ∈ S+ or x ∈ S−,

where x = (x1, x2), u = (u1, u2, u3)T is the vector characterizing the
displacements in accordance with (1), q is a combination of the body
forces and moments and of the forces and moments on the faces, the
partial differential matrix operator A(∂x) = A(∂/∂x1, ∂/∂x2) is defined
by

A(ξ1, ξ2)

=

⎛
⎝h2μΔ + h2(λ+ μ)ξ21 − μ h2(λ+ μ)ξ1ξ2 −μξ1

h2(λ+ μ)ξ1ξ2 h2μΔ + h2(λ+ μ)ξ22 − μ −μξ2
μξ1 μξ2 μΔ

⎞
⎠ ,

λ and μ are the Lamé constants of the material, h2 = h2
0/12, and

Δ = ξ21 + ξ22 . We also consider the boundary operator T (∂x) of the
normal moments and shear force, given by

T (ξ1, ξ2)

=

(
h2(λ + 2μ)ν1ξ1 + h2μν2ξ2 h2μν2ξ1 + h2λν1ξ2 0

h2λν2ξ1 + h2μν1ξ2 h2μν1ξ1 + h2(λ + 2μ)ν2ξ2 0

μν1 μν2 μ(ν1ξ1 + ν2ξ2)

)
,

where ν = (ν1, ν2)T is the unit outward normal to ∂S. In what follows
we assume that λ + μ > 0 and μ > 0, which ensures that (2) is an
elliptic system.
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Let F be the space of rigid displacements, which is spanned by
z(1) = (1, 0,−x1)T , z(2) = (0, 1,−x2)T and z(3) = (0, 0, 1)T [1]. Since
every z ∈ F is infinitely differentiable, to simplify the notation we use
the symbols z and F regardless of whether the rigid displacements are
considered as functions in S+, S−, on ∂S, or on the whole of R2.

We denote by A the space of functions in S− that, as r = |x| → ∞,
admit an asymptotic expansion (in terms of polar coordinates) of the
form

u1(r, θ) = r−1[a0 sin θ + 2a1 cos θ − a0 sin 3θ + (a2 − a1) cos 3θ]
+ r−2[(2a3 + a4) sin 2θ + a5 cos 2θ − 3a3 sin 4θ + 2a6 cos 4θ]
+ r−3[2a7 sin 3θ + 2a8 cos 3θ + 3(a9 − a7) sin 5θ

+ 3(a10 − a8) cos 5θ] +O(r−4),
u2(r, θ) = r−1[2a2 sin θ + a0 cos θ + (a2 − a1) sin 3θ + a0 cos 3θ]

+ r−2[(2a6 + a5) sin 2θ − a4 cos 2θ + 3a6 sin 4θ + 2a3 cos 4θ]
+ r−3[2a10 sin 3θ − 2a9 cos 3θ + 3(a10 − a8) sin 5θ

+ 3(a7 − a9) cos 5θ] +O(r−4),
u3(r, θ) = −(a1 + a2) ln r − [a1 + a2 + a0 sin 2θ + (a1 − a2) cos 2θ]

+ r−1[(a3 + a4) sin θ + (a5 + a6) cos θ − a3 sin 3θ + a6 cos 3θ]
+ r−2[a11 sin 2θ + a12 cos 2θ + (a9 − a7) sin 4θ

+ (a10 − a8) cos 4θ] +O(r−3),

where a0, . . . , a12 are arbitrary constants.

In [10] it is shown that boundary value problems for (2) can be
reduced to similar ones for the homogeneous equations. Consequently,
without loss of generality, from now on we assume that q = 0.

Let ∂S = Γ̄1 ∪ Γ̄2, where mes Γα �= 0 and Γ1 ∩ Γ2 = ∅. The interior
and exterior mixed problems for (2) are formulated as follows:

(M+) Find u satisfying (2), with q = 0, in S+ and u|Γ1 = f ,
Tu|Γ2 = g.

(M−) Find u ∈ A satisfying (2), with q = 0, in S− and u|Γ1 = f ,
Tu|Γ2 = g.

Here f and g are prescribed functions. The corresponding variational
formulations of these problems can be found in [11] and [12].
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Let Ω be a domain in R2, and let bΩ(u, v) =
∫
Ω

2E(u, v) dx, where

2E(u, v) = h2E0(u, v) + h2μ(u1,2 + u2,1)(v1,2 + v2,1)
+ μ[(u1 + u3,1)(v1 + v3,1) + (u2 + u3,2)(v2 + v3,2)],

E0(u, v) = (λ+ 2μ)(u1,1v1,1 + u2,2v2,2) + λ(u1,1v2,2 + u2,2v1,1).

E(u, u) is the internal energy density [1], which, in view of the con-
ditions on λ and μ, is a positive quadratic form. When Ω = S+ and
Ω = S−, we write bΩ = b+ and bΩ = b−.

We denote by Hs(Ω), s ∈ R, the well-known Sobolev space with norm

‖ · ‖s;Ω. We also consider the space
◦
Hs(Ω) consisting of all u ∈ Hs(R2)

with suppu ⊂ Ω̄.

We write ū = (u1, u2) and introduce the space L2
ω(Ω) of all u such

that

‖u‖2
0,ω;Ω =

∫
Ω

|ū(x)|2

(1 + |x|)2(1 + ln2(1 + |x|))
dx

+
∫

Ω

|u3(x)|2

(1 + |x|)4(1 + ln2(1 + |x|))
dx <∞.

It is easily verified that ‖ · ‖0,ω;Ω is fully compatible with the class A.

Let H1,ω(R2) be the space of three-component distributions u on R2

with finite norm ‖u‖2
1,ω = ‖u‖2

0,ω;R2 +bR2(u, u), and let H1,ω(Ω) be the
space of the restrictions to Ω of all u ∈ H1,ω(R2). The norm in this
space can be defined in two equivalent ways, namely,

‖u‖2
1,ω;Ω = ‖u‖2

0,ω;Ω + bΩ(u, u)

or

‖u‖1,ω;Ω = inf
v∈H1,ω(R2):v|Ω=u

‖v‖1,ω,

but in what follows we make use of the former. Clearly, if Ω is bounded,
then the norm in L2

ω(Ω) is equivalent to that in L2(Ω), and the norm

in H1,ω(Ω) is equivalent to that in H1(Ω). Finally,
◦
H1,ω(Ω) is the

subspace of all u ∈ H1,ω(R2) such that supp u ⊂ Ω̄.

If Ω has a compact boundary ∂Ω, we denote by γΩ the trace operator
defined first on C∞

0 (Ω̄) and then extended by continuity to a surjection
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γΩ : H1,ω(Ω) → H1/2(∂Ω). (This is possible because of the local
equivalence of H1,ω(Ω) and H1(Ω).) When Ω = S+ and Ω = S−,
we denote the corresponding trace operators by γ+ and γ−. We also
consider a continuous extension operator lΩ : H1/2(∂Ω) → H1(Ω),
which, since the norm in H1(Ω) is stronger than that in H1,ω(Ω), may
be regarded as a continuous operator from H1/2(∂Ω) to H1,ω(Ω). The
symbols l+ and l− have the obvious meaning.

Let
◦
H−1,ω(Ω) (with norm ‖ · ‖−1,ω) and H−1,ω(Ω) (with norm

‖ · ‖−1,ω;Ω) be the duals of H1,ω(Ω) and
◦
H1,ω(Ω). It can be shown

that if u ∈
◦
H−1(Ω) and has compact support in Ω, or if∫

Ω

|ũ(x)|2(1 + |x|)2(1 + ln2(1 + |x|)) dx

+
∫

Ω

|u3(x)|2(1 + |x|)4(1 + ln2(1 + |x|)) dx <∞,

then u ∈
◦
H−1,ω(Ω).

We denote by 〈· , ·〉0;Ω the inner product in L2(Ω), and consider the
spaces

◦
H1(S+,Γα) = {u ∈ H1(S+) : γ+u ∈

◦
H1/2(Γα)},

◦
H1,ω(S−,Γα) = {u ∈ H1,ω(S−) : γ−u ∈

◦
H1/2(Γα)},

Ĥ1/2(∂S) = {f ∈ H1/2(∂S) : 〈f, z(i)〉0;∂S = 0},
H−1/2(∂S) = {f ∈ H−1/2(∂S) : 〈f, z(i)〉0;∂S = 0}.

3. Boundary operators. Let f ∈ H1/2(∂S), and let u ∈ H1(S+)
be the (unique) solution [11] of the variational problem

b+(u, v) = 0 ∀ v ∈
◦
H1(S+), γ+u = f.

We consider an arbitrary α ∈ H1/2(∂S) and write w = l+α. Using
the Riesz representation theorem, we can define an operator T + on
H1/2(∂S) by

(3) 〈T +f, α〉0;∂S = b+(u,w).
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This definition is consistent, for if w̃ ∈ H1(S+) is another extension of

α, then w − w̃ ∈
◦
H1(S+) and b+(u,w − w̃) = 0.

Now let u ∈ H1,ω(S−) be the (unique) solution [12] of the variational
problem

b−(u, v) = 0 ∀ v ∈
◦
H1,ω(S−), γ−u = f,

and let w = l−α. Similarly, we define an operator T − by 〈T −f, α〉0;∂S =
−b−(u,w).

T ± are known as the Poincare-Steklov operators corresponding to
(2). Some important properties of T ±, which are used in what follows,
can be found in [9].

We introduce boundary operators π±
αβ : H1/2(∂S) → H1/2(Γα) ×

H−1/2(Γβ), α �= β, defined by π±
αβf = {παf, πβT ±f}, where πα are

the operators of restriction from ∂S to Γα.

Theorem 1. The operators π±
αβ are homeomorphisms.

Proof. It is obvious that the π±
αβ are continuous. To prove the

existence and continuity of their inverses, we first consider functions

f1 ∈
◦
H1/2(Γβ), in other words, such that παf1 = 0. Let g1 = πβT +f1,

and let u1 ∈ H1(S+) be the (unique) solution of the interior Dirichlet
problem with boundary value γ+u1 = f1. Then, by formula (7) in [11],

which is valid for u1 ∈
◦
H1(S+,Γβ),

‖f1‖2
1/2;∂S ≤ c‖u1‖2

1;S+ ≤ cb+(u, u)

= c〈T +f1, f1〉0;∂S ≤ c‖g1‖−1/2;Γβ
‖f1‖1/2;∂S ;

therefore,

‖f1‖1/2;∂S ≤ c‖g1‖−1/2;Γβ
= c‖π+

αβf1‖1/2;Γα,−1/2;Γβ
,

where

(4) ‖{f, g}‖1/2;Γα,−1/2;Γβ
= ‖f‖1/2;Γα

+ ‖g‖−1/2;Γβ
.

The estimate

(5) ‖f1‖1/2;∂S ≤ c‖π−
αβf1‖1/2;Γα,−1/2;Γβ
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is derived analogously.

We now consider functions f2 ∈ H1/2(∂S) such that T +f2 ∈
◦
H−1/2(Γα), that is, for which πβT +f2 = 0. If u2 ∈ H1(S+) is the solu-
tion of the interior Dirichlet problem with boundary value γ+u2 = f2,
then ‖u2‖2

1;S+ ≤ c[b+(u2, u2) + |
∫
Γα
u2 ds|2]. (This inequality follows

from Theorem 7 in [11] and the fact that |
∫
Γα
z ds| = 0 implies that

z = 0.) Consequently,

‖f2‖2
1/2;∂S ≤ c‖u2‖2

1;S+ ≤ c

[
b+(u2, u2) +

∣∣∣∣
∫

Γα

u2 ds

∣∣∣∣
2]

≤ c(〈T +f2, f2〉0;∂S + ‖παf2‖2
1/2;Γα

)

≤ c(‖T +f2‖−1/2;∂S‖παf2‖1/2;Γα
+ ‖παf2‖2

1/2;∂S)

≤ c‖f2‖1/2;∂S‖παf2‖1/2;Γα
,

which reduces to

(6) ‖f2‖1/2;∂S ≤ c‖παf2‖1/2;Γα
= c‖π+

αβf2‖1/2;Γα,−1/2;Γβ
.

The estimate

(7) ‖f2‖1/2;∂S ≤ c‖π−
αβf2‖1/2;Γα,−1/2;Γβ

is derived similarly.

Combining (4) (7), we now find that

‖f1 + f2‖1/2;∂S ≤ c(‖παf2‖1/2;Γα
+ ‖πβT ±f1‖−1/2;Γβ

)

= c(‖πα(f1 + f2)‖1/2;Γα
+ ‖πβT ±(f1 + f2)‖−1/2;Γβ

)

= c‖π±
αβ(f1 + f2)‖1/2;Γα,−1/2;Γβ

.

We claim that the sets {π±
αβ(f1 + f2) : f1 ∈

◦
H1/2(Γβ), T ±f2 ∈

◦
H−1/2(Γα)} are dense in H1/2(Γα)×H1/2(Γβ). Assuming the opposite,

we can find a nonzero {σ, τ} ∈
◦
H−1/2(Γα) ×

◦
H1/2(Γβ) (the dual of

H1/2(Γα) ×H−1/2(Γβ)) such that

(8) 〈παf2, σ〉0;∂S + 〈τ, πβT ±f1〉0;∂S = 0.
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If we take f2 = 0, f1 = τ , then 〈τ, πβT ±τ 〉0;∂S = 〈τ, T ±τ 〉0;∂S = 0.

Hence, τ ∈
◦
H1/2(Γβ) is a rigid displacement that vanishes on Γα, so

τ = 0, and (8) becomes

(9) 〈παf2, σ〉0;∂S = 0.

Setting f2 = z(i) in (9), we find that σ ∈ H−1/2(∂S), which means that
the equation T ±f2 = σ is solvable. Any solution f2 of this equation
satisfies 〈T ±f2, f2〉0;∂S = 0. This yields f2 ∈ F and T ±f2 = σ = 0,
which contradicts our assumption and thus completes the proof.

In what follows we make extensive use of the single and double layer
plate potentials V ϕ and Wψ. Their properties can be found in [1] and
[9], together with the properties of the boundary operators V̂0 and Ŵ±

defined by

V̂0ϕ = V0ϕ− 〈V0ϕ, z̃
(i)〉0;∂S z̃

(i), ϕ ∈ H−1/2(∂S),

Ŵ±ψ = W±ψ − 〈W±ψ, z̃(i)〉0;∂S z̃
(i), ψ ∈ Ĥ1/2(∂S),

where {z̃(i)} is the set obtained from {z(i)} by orthonormalization
in L2(∂S) and V0 and W± are the boundary operators defined by
V0ϕ = γ+V ϕ = γ−V ϕ and W±ψ = γ±Wψ.

4. First representation of the solution. For simplicity, we
refer in the singular to the equations corresponding to the interior and
exterior problems written simultaneously by means of the symbol ±.

We seek solutions of (M±) of the form

(10) u = V̂ ϕ+ z in S±,

where the density ϕ ∈ H−1/2(∂S) and z ∈ F are unknown. In view of
the properties of the single layer potential [1], (M±) reduce to the pair
of boundary integral equations

(11) π1(V̂0ϕ+ z) = f, π2T ±V̂0ϕ = g.

Theorem 2. (i) System (11) has a unique solution for every
f ∈ H1/2(Γ1) and g ∈ H−1/2(Γ2).
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(ii) If {ϕ, z} ∈ H−1/2(∂S) × F is the solution of (11), then (10) is
the solution of (M±).

Proof. (i) Let α = (π±
12)

−1{f, g} ∈ H1/2(∂S), and let z0 be such
that α − z0 ∈ Ĥ1/2(∂S). By Theorem 5 in [11], the equation V̂0ϕ =
α − z0 = 0 has a unique solution ϕ0 ∈ H−1/2(∂S). We claim that
{ϕ0, z0} is a solution of (11). Indeed, since V̂0ϕ0 + z0 = α, it follows
that π±

12(V̂0ϕ0 + z0) = π±
12α = {f, g}, so π1(V̂0ϕ0 + z0) = f and

π2T ±V̂0ϕ0 = g.

The difference (ϕ, z) of any two such solutions satisfies

π1(V̂0ϕ+ z) = 0, π2T ±V̂0ϕ = π2T ±(V̂0ϕ+ z) = 0.

Then V̂0ϕ + z = (π±
12)

−1{0, 0} = 0. Since V̂0ϕ ∈ Ĥ1/2(∂S) and z ∈ F ,
we conclude that z = 0 and V̂0ϕ = 0; therefore, ϕ = 0, which proves
the uniqueness of the solution.

(ii) If ϕ ∈ H−1/2(∂S), then V̂ ϕ belongs to both H1(S+) and
H1,ω(S−) [9], and so, too, does V̂ ϕ+ z.

5. Second representation of the solution. We now seek solutions
of (M±) of the form

(12) u = Ŵψ + z in S±,

where ψ ∈ Ĥ1/2(∂S) and z ∈ F are unknown. The corresponding
system of boundary integral equations in this case is

(13) π1(Ŵ±ψ + z) = f, π2T ±Ŵ±ψ = g.

Theorem 3. (i) System (13) has a unique solution for every
f ∈ H1/2(Γ1) and g ∈ H−1/2(Γ2).

(ii) If {ψ, z} ∈ Ĥ1/2(∂S)×F is the solution of (13), then (12) is the
solution of (M±).

Proof. (i) Let α and z0 be the same as in the proof of Theorem 2,
and let ψ0 ∈ Ĥ1/2(∂S) be the solution of the equation Ŵ±ψ0 =
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α − z0, whose existence is guaranteed by Theorem 6 in [9]. Since
Ŵ±ψ0 + z0 = α, it follows that π±

12(Ŵ
±ψ0 + z0) = π±

12α = {f, g}, so
π1(Ŵ±ψ0 + z0) = f and π2T ±Ŵ±ψ0 = g. Consequently, {ψ0, z0} is a
solution of (13). The difference {ψ, z} of two such solutions satisfies

π1(Ŵ±ψ + z) = 0, π2T ±Ŵ±ψ = π2T ±(Ŵ±ψ + z) = 0.

Hence, Ŵ±ψ + z = (π±
12)

−1{0, 0} = 0. Since Ŵ±ψ ∈ Ĥ1/2(∂S) and
z ∈ F , we conclude that z = 0 and Ŵ±ψ = 0, which yields ψ = 0.
This means that the solution of (13) is unique.

(ii) If ψ ∈ Ĥ1/2(∂S), then Ŵψ belongs to bothH1(S+) andH1,ω(S−)
[9]; hence, so does Ŵψ + z.

6. Third representation of the solution. This time we seek
solutions of (M±) of the form

(14) u = V̂ ϕ1 +Wψ2 + z in S±,

where ϕ1 ∈
◦
H−1/2(Γ1) ∩ H−1/2(∂S) and ψ2 ∈

◦
H1/2(Γ2) are unknown

densities and z is an unknown rigid displacement. Such a representation
leads to the pair of boundary integral equations

(15) π1(V̂0ϕ1 +W±ψ2 + z) = f, π2(T ±V̂0ϕ1 + T ±W±ψ2) = g.

Theorem 4. (i) System (15) has a unique solution for every
f ∈ H1/2(Γ1) and g ∈ H−1/2(Γ2).

(ii) If {ϕ1, ψ2, z} ∈ (
◦
H−1/2(Γ1)∩H−1/2(∂S))×

◦
H1/2(Γ2)×F is the

solution of (15), then (14) is the solution of (M±).

Proof. We consider (M+); (M−) is treated similarly.

(i) Let u+ ∈ H1(S+) and u− ∈ H1,ω(S−) be, respectively, the unique
solutions of the variational problems

b+(u+, v) = 〈g, γ+v〉0;∂S ∀ v ∈
◦
H(S+,Γ2), π1γ

+u+ = f,

b−(u−, v) = −〈g, γ−v〉0;∂S ∀ v ∈
◦
H1,ω(S−,Γ2), π1γ

−u− = f.



432 I. CHUDINOVICH AND C. CONSTANDA

We write

U(x) =
{
u+(x) x ∈ S+,
u−(x) x ∈ S−,

and ψ20 = γ−u− − γ+u+. Clearly, ψ20 ∈
◦
H1/2(Γ2) and Φ = U −Wψ20

satisfies

γ+Φ = γ+u+ −W+ψ20, γ−Φ = γ−u− −W−ψ20,

γ+Φ − γ−Φ = γ+u+ − γ−u− − (W+ −W−)ψ20 = −ψ20 + ψ20 = 0.

We choose z0 so that γ+Φ − z0 = γ−Φ − z0 ∈ Ĥ1/2(∂S) and set
ϕ10 = V̂ −1

0 (γ+Φ − z0) = V̂ −1
0 (γ−Φ − z0).

We now verify that {ϕ10, ψ20, z0} is a solution of (15). We already

know that ψ20 ∈
◦
H1/2(Γ2) and ϕ10 ∈ H−1/2(∂S). It remains to show

that ϕ10 ∈
◦
H−1/2(Γ1). Since V̂ ϕ10 is a solution of both the interior and

exterior Dirichlet problems with boundary data γ+Φ− z0 = γ−Φ− z0,
it follows that

T +V̂0ϕ10 = T +(γ+Φ − z0) = T +γ+Φ = T +γ+u+ − T +W+ψ20,

T −V̂0ϕ10 = T −(γ−Φ − z0) = T −γ−Φ = T −γ−u− − T −W−ψ20,

so ϕ10 = (T +V̂0 − T −V̂0)ϕ10 = T +γ+u+ − T −γ−u−. Hence, π2ϕ10 =
π2(T +γ+u+ − T −γ−u−) = g − g = 0, and we deduce that ϕ10 ∈
◦
H−1/2(Γ1).

Next, from the definition of ϕ10, we see that

V̂0ϕ10 + z0 − γ+Φ = V̂0ϕ10 + z0 +W+ψ20 − γ+u+ = 0;

consequently, π1(V̂0ϕ10 + W+ψ20 + z0) = π1γ
+u+ = f . Finally, since

V̂0ϕ10 +W+ψ20 + z0 = γ+u+, we find that

T +(V̂0ϕ10 +W+ψ20) = T +γ+u+,

π2(T +V̂0ϕ10 + T +W+ψ20) = π2T +γ+u+ = g,

which means that {ϕ10, ψ20, z0} is a solution of (15).
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The difference {ϕ1, ψ2, z} ∈ (
◦
H−1/2(Γ1)∩H−1/2(∂S))×

◦
H1/2(Γ2)×F

of two solutions of (15) satisfies

π1(V̂0ϕ1 +W+ψ2 + z) = 0, π2(T +V̂0ϕ1 + T +W+ψ2) = 0,

so V̂0ϕ1 + W+ψ2 + z = (π+
12)

−1{0, 0} = 0. Since in this case u+ = 0
in S+ and u− = 0 in S−, we conclude that ψ2 = γ−u− − γ+u+ = 0.
The equality V̂0ϕ1 + z = 0 implies that z = 0 and V̂0ϕ1 = 0, so ϕ1 = 0.
Hence, the solution of (15) is unique.

(ii) Since ϕ1 ∈ H−1/2(∂S), we have V̂ ϕ1 ∈ H1(S+). NowWψ2 differs
from Ŵψ2 by a rigid displacement; therefore, since ψ2 ∈ H1/2(∂S), it
follows that Wψ2 ∈ H1(S+). Consequently, (14) is a solution of (M+).

7. Fourth representation of the solution. We seek solutions of
(M±) of the form

(16) u = Wψ1 + V̂ ϕ2 + z in S±,

where ψ1 ∈
◦
H1/2(Γ1) and ϕ2 ∈

◦
H−1/2(Γ2) ∩ H−1/2(∂S) are unknown

densities and z is an unknown rigid displacement. This representation
yields the boundary integral equations

(17) π1(W±ψ1 + V̂0ϕ2 + z) = f, π1(T ±W±ψ1 + T ±V̂0ϕ2) = g.

Theorem 5. (i) System (17) has a unique solution for every
f ∈ H1/2(Γ1) and g ∈ H−1/2(Γ2).

(ii) If {ψ1, ϕ2, z} ∈
◦
H1/2(Γ1)× (

◦
H−1/2(Γ2)∩H−1/2(∂S))×F is the

solution of (17), then (16) is the solution of (M±).

Proof. As above, we consider only (M+).

(i) Let u+ ∈ H1(S+) and u− ∈ H1,ω(S−) be, respectively, the
(unique) solutions of the variational problems

b+(u+, v) = 〈g, γ+v〉0;∂S ∀ v ∈
◦
H1(S+,Γ2), π1γ

+u+ = f,

b−(u−, v) = −〈T +γ+u+, γ−v〉0;∂S ∀ v ∈
◦
H1(S−,Γ1),

π2γ
−u− = π2γ

+u+.
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We write

U(x) =
{
u+(x) x ∈ S+,
u−(x) x ∈ S−,

and ψ10 = γ−u− − γ+u+. It is obvious that ψ10 ∈
◦
H1/2(Γ1) and that

Ψ = U −Wψ10 satisfies

γ+Ψ = γ+u+ −W+ψ10, γ−Ψ = γ−u− −W−ψ10,

γ+Ψ − γ−Ψ = γ+u+ − γ−u− − (W+ −W−)ψ10 = −ψ10 + ψ10 = 0.

We choose z0 so that γ+Ψ − z0 = γ−Ψ − z0 ∈ Ĥ1/2(∂S) and set
ϕ20 = V̂ −1

0 (γ+Ψ − z0) ∈ H−1/2(∂S).

We claim that ϕ20 ∈
◦
H−1/2(Γ2). Indeed, since V̂ ϕ20 is the solution

of the interior and exterior Dirichlet problems with boundary data
γ+Ψ − z0 = γ−Ψ − z0, we can write

T +V̂0ϕ20 = T +(γ+Ψ − z0) = T +γ+Ψ = T +γ+u+ − T +W+ψ10,

T −V̂0ϕ20 = T −(γ−Ψ − z0) = T −γ−Ψ = T −γ−u− − T −W−ψ10,

ϕ20 = (T +V̂0 − T −V̂0)ϕ20 = T +γ+u+ − T −γ−u−.

Consequently, π1ϕ20 = π1(T +γ+u+ −T −γ−u−) = 0, and we conclude

that ϕ20 ∈
◦
H−1/2(Γ2).

The definition of ϕ20 implies that V̂0ϕ20 + z0 − γ+Ψ = V̂0ϕ20 +
W+ψ10 + z0 − γ+u+ = 0, or W+ψ10 + V̂0ϕ20 + z0 = γ+u+. Hence,

π1(W+ψ10 + V̂0ϕ20 + z0) = π1γ
+u+ = f,

π2(T +W+ψ10 + T +V̂0ϕ20 + z0) = π2T +γ+u+ = g,

which shows that {ψ10, ϕ20, z0} is a solution of (17).

The difference {ψ1, ϕ2, z} ∈
◦
H1/2(Γ1)×(

◦
H−1/2(Γ2)∩H−1/2(∂S))×F

of two solutions satisfies

π1(W+ψ1 + V̂0ϕ2 + z) = 0, π2(T +W+ψ2 + T +V̂0ϕ2) = 0,

so W+ψ1 + V̂0ϕ2 + z = (π+
12)

−1{0, 0} = 0. Since in this case u+ = 0 in
S+ and u− = 0 in S−, it follows that ψ1 = γ−u− − γ+u+ = 0. The
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equality V̂0ϕ2 + z = 0 now implies that z = 0 and V̂0ϕ2 = 0, which
means that ϕ2 = 0. This proves the uniqueness of the solution.

(ii) We use the same procedure as in the proof of the second part
of the preceding theorem to show that u ∈ H1(S+) and that u is a
solution of (M+).

The case of (M−) is treated similarly.
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