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GROUND STATES FOR CHOQUARD EQUATIONS
WITH DOUBLY CRITICAL EXPONENTS

XINFU LI AND SHIWANG MA

ABSTRACT. In this paper, an autonomous Choquard
equation with doubly critical exponents is studied. By us-
ing the Pohožaev constraint and the perturbed method, a
positive and radially symmetric ground state solution in
H1(RN ) is obtained. The result here extends and comple-
ments the earlier theorems obtained by Seok [19] and Moroz
and Schaftingen [14].

1. Introduction and main results. We are interested in the au-
tonomous Choquard equation

(1.1) −∆u+ u = (Iα ∗G(u))g(u) in RN ,

where N ≥ 3, α ∈ (0, N), g ∈ C(R,R), G(s) =
∫ s

0
g(t) dt, and Iα is the

Riesz potential defined for every x ∈ RN \ {0} by

(1.2) Iα(x) =
Γ((N − α)/2)

Γ(α/2)πN/22α|x|N−α

with Γ denoting the Gamma function [18, page 19].

For G(u) = |u|p/p1/2, (1.1) is reduced to the special equation

(1.3) −∆u+ u = (Iα ∗ |u|p)|u|p−2u in RN .

When N = 3, p = 2 and α = 2, (1.3) was investigated by Pekar [16]
in the study of the quantum theory of a polaron at rest. In [9],
Choquard applied it as an approximation to the Hartree-Fock theory
of one component plasma. It also arises in multiple particle systems [7]
and quantum mechanics [17]. There are many papers devoted to the
existence and multiplicity of solutions of (1.3) and their qualitative
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properties. See the survey paper [15] and the references therein.
For p ∈ ((N + α)/N, (N + α)/(N − 2)), Moroz and Schaftingen [13]
established the existence, qualitative properties and decay estimates of
ground states of (1.3). They also obtained some nonexistence results
under the range

p ≥ N + α

N − 2
or p ≤ N + α

N
.

Usually, (N + α)/N is called the lower critical exponent and (N + α)/
(N − 2) is the upper critical exponent for the Choquard equation.

For equation (1.1) with general nonlinearity, Moroz and Schaftin-
gen [14] considered the subcritical case. In the spirit of Berestycki and
Lions [2], they obtained the existence of ground states by using the
Pohožaev-Palais-Smale sequence method under sufficient and almost
necessary conditions on the nonlinearity g:

(g1) there exists a C > 0 such that, for every s ∈ R,

|sg(s)| ≤ C(|s|(N+α)/N + |s|(N+α)/(N−2)).

(g2) lims→0 G(s)/|s|(N+α)/N = 0 and lim|s|→∞ G(s)/|s|(N+α)/(N−2)

= 0.

(g3) There exists an s0 ∈ R \ {0} such that G(s0) ̸= 0.

(g4) g is odd and has constant sign on (0,∞).

More precisely, they obtained the following results.

Theorem 1.1. Assume that (g1)–(g3) hold. Then, (1.1) has a ground
state in H1(RN ). Furthermore, assume that (g4) holds. Then, every
ground state of (1.1) has constant sign and is radially symmetric with
respect to some point in RN .

Theorem 1.2. Assume that (g1) holds. Then, every solution u ∈
H1(RN ) to (1.1) satisfies the Pohožaev identity

N − 2

2

∫
RN

|∇u|2 + N

2

∫
RN

|u|2 =
N + α

2

∫
RN

(Iα ∗G(u))G(u).

Recently, many authors considered similar equations to (1.1) for the
critical case, see Alves et al. [1], Cassani and Zhang [4] for the upper
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critical case, Schaftingen and Xia [21] for the lower critical case, Gao
and Yang [5] for the strongly indefinite critical problem, and Gao and
Yang [6] for the Brezis-Nirenberg type critical problem. More recently,
Seok [19] considered (1.1) with doubly critical exponents. When

G(u) =
N

N + α
|u|(N+α)/N +

N − 2

N + α
|u|(N+α)/(N−2),

they obtained the following result.

Theorem 1.3. Let N ≥ 5 and α ∈ (0, N − 4). Then, (1.1) admits a
nontrivial solution u ∈ H1(RN ) which is radially symmetric.

In [19], the workspace is the radially symmetric subspace H1
r (RN ) of

the usual Sobolev space H1(RN ). By using the mountain pass lemma,
the author first obtained a (PS)c sequence {un} ⊂ H1

r (RN ) for some
suitable constant c, and then, using radial symmetry, he proved that
the (PS)c sequence is relatively compact in H1(RN ) and convergent
to a nontrivial solution u ∈ H1

r (RN ). The solution obtained in [19]
may not be a ground state. A natural question arises: Can we obtain
a ground state? The answer is yes, if we can obtain a (PS)c sequence
{un} ⊂ H1

r (RN ) with c not being larger than the ground state energy.
However, it seems that this problem is not an easy issue. Fortunately,
in this paper, we obtain a critical point sequence {un} ⊂ H1

r (RN ) for
a sequence of perturbed functional with some extra properties for its
energy level. Based on that, we can obtain a ground state. A similar
technique was used in [11], in which the authors obtained a positive
radially symmetrical ground state for a class of Schrödinger equations.

More precisely, in this paper, we consider the equation in RN

(1.4) −∆u+λu = (Iα ∗(µ|u|p∗ +ω|u|p
∗
))(µp∗|u|p∗−2u+ωp∗|u|p

∗−2u),

where N ≥ 3, α ∈ (0, N), λ, µ, ω > 0 are constants, p∗ = (N + α)/N
and p∗ = (N + α)/(N − 2). The main result of this paper is as follows.

Theorem 1.4. Let N ≥ 5 and α ∈ (0, N − 4). Then, for every λ, µ,
ω > 0, (1.4) admits a positive ground state solution u ∈ H1(RN ) which
is radially symmetric.
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At the end of this section, we outline the methods used in this paper.
To prove Theorem 1.4, inspired by [11, 19] (see also [8, 12]), we
consider the equation
(1.5)

−∆u+ λu = (Iα ∗ (µ|u|p∗+a + ω|u|p
∗−a))

× (µ(p∗ + a)|u|p∗+a−2u+ ω(p∗ − a)|u|p
∗−a−2u) in RN

with a ∈ [0, a0] and a0 = (p∗ − p∗)/4. For a = 0, equation (1.5) is
reduced to (1.4), and, for a > 0, equation (1.5) is subcritical, which
was studied in [14].

From the Hardy-Littlewood-Sobolev inequality and the Sobolev em-
bedding theorem, the functional Ia : H1(RN ) → R of (1.5) is defined
as

(1.6)

Ia(u) =
1

2

∫
RN

|∇u|2 + λ|u|2 − 1

2

∫
RN

{(Iα ∗ (µ|u|p∗+a + ω|u|p
∗−a))

× (µ|u|p∗+a + ω|u|p
∗−a)}

and

(1.7)

⟨I ′a(u), v⟩ =
∫
RN

∇u∇v + λuv −
∫
RN

{(Iα ∗ (µ|u|p∗+a + ω|u|p
∗−a))

× (µ(p∗ + a)|u|p∗+a−2u+ ω(p∗ − a)|u|p
∗−a−2u)v}

for any u, v ∈ H1(RN ), that is, any critical point of Ia in H1(RN ) is
a weak solution of (1.5). A nontrivial solution u ∈ H1(RN ) of (1.5) is
called a ground state if

Ia(u) = cga := inf{Ia(v) : v ∈ H1(RN ) \ {0} and I ′a(v) = 0}.(1.8)

To prove Theorem 1.4, we define

(1.9) ca = inf{Ia(u) : u ∈ H1(RN ) \ {0} and Pa(u) = 0},
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where

Pa(u) =
N − 2

2

∫
RN

|∇u|2 + N

2

∫
RN

λ|u|2

− N + α

2

∫
RN

{(Iα ∗ (µ|u|p∗+a + ω|u|p
∗−a))

× (µ|u|p∗+a + ω|u|p
∗−a)}.

By Lemma 2.6, ca is well defined and ca < +∞. By Remark 2.7, ca ≤ cga
for a ∈ [0, a0] and ca = cga for a ∈ (0, a0]. Let an ∈ (0, a0] be a sequence
satisfying limn→∞ an = 0. Theorem 1.1, Theorem 1.2 and Remark 2.7
imply that there exists a positive sequence {un} ⊂ H1

r (RN ) \ {0} such
that

(1.10) I ′an
(un) = 0, Ian(un) = can and Pan(un) = 0.

It can be shown that {un} ⊂ H1
r (RN ) is an almost critical point

sequence of I0 with 0 < infn Ian(un) ≤ supn Ian(un) < c0. By using
these properties, {un} is shown to converge to a nontrivial ground state
of (1.4), see Section 3.

This paper is organized as follows. In Section 2, we give some
preliminaries. Section 3 is devoted to the proof of Theorem 1.4.

1.1. Basic notation. Throughout this paper, we assume that N ≥ 3.
C∞

c (RN ) denotes the space of infinitely differentiable functions with
compact support in RN . Lr(RN ) with 1 ≤ r < ∞ denotes the Lebesgue
space with the norms

∥u∥r =

(∫
RN

|u|r
)1/r

.

H1(RN ) is the usual Sobolev space with norm

∥u∥H1(RN ) =

(∫
RN

|∇u|2 + |u|2
)1/2

.

D1,2(RN ) = {u ∈ L2N/(N−2)(RN ) : |∇u| ∈ L2(RN )}.

H1
r (RN ) = {u ∈ H1(RN ) : u is radially symmetric}.
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2. Preliminaries. In this section, we give some preliminary lem-
mas. The following, well known Hardy-Littlewood-Sobolev inequality
can be found in [10].

Lemma 2.1. Let p, r > 1 and 0 < α < N with 1/p+(N−α)/N+1/r =
2. Let u ∈ Lp(RN ) and v ∈ Lr(RN ). Then, there exists a sharp
constant C(N,α, p), independent of u and v, such that∣∣∣∣ ∫

RN

∫
RN

u(x)v(y)

|x− y|N−α

∣∣∣∣ ≤ C(N,α, p)∥u∥p∥v∥r.

If p = r = 2N/(N + α), then

C(N,α, p) = Cα(N) = π(N−α)/2 Γ(α/2)

Γ((N + α)/2)

{
Γ(N/2)

Γ(N)

}−α/N

.

Remark 2.2. By the Hardy-Littlewood-Sobolev inequality above, for
any v ∈ Ls(RN ) with s ∈ (1, (N/α)), Iα ∗ v ∈ LNs/(N−αs)(RN ) and

∥Iα ∗ v∥Ns/(N−αs) ≤ Aα(N)C(N,α, s)∥v∥s.

The following Strauss inequality is used to construct a dominated
function for radically symmetric function, see [22, Lemma 4.5] for its
proof.

Lemma 2.3. If N ≥ 2, then there exists a CN > 0 independent of u
such that, for every u ∈ H1

r (RN ),

|u(x)| ≤ CN∥u∥1/22 ∥∇u∥1/22 |x|(1−N)/2 almost everywhere on RN .

The following lemma can be found in [3, 23].

Lemma 2.4. Let Ω ⊂ RN be a domain, and q ∈ (1,∞) and {un} a
bounded sequence in Lq(Ω). If un → u almost everywhere on Ω, then
un ⇀ u weakly in Lq(Ω).

The following lemma will be frequently used in this paper. For
convenience, we give its short proof.
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Lemma 2.5. Let N ≥ 3, q ∈ [2, 2N/(N − 2)] and u ∈ H1(RN ). Then,
there exists a positive constant C independent of q and u such that

∥u∥q ≤ C∥u∥H1(RN ).

Proof. By the Hölder inequality and the Sobelev imbedding theorem,

∥u∥q ≤ ∥u∥θ2∥u∥1−θ
2N/(N−2) ≤ (C1∥u∥H1(RN ))

θ(C2∥u∥H1(RN ))
1−θ

≤ max{C1, C2}∥u∥H1(RN ),

where 1/q = θ/2 + (1− θ)/[2N/(N − 2)]. The proof is complete. �

Define uτ by

uτ (x) =

{
u(x/τ) τ > 0,

0 τ = 0.
(2.1)

The following lemma shows that ca is well defined, where ca is defined
in (1.9).

Lemma 2.6. Let N ≥ 3, α ∈ (0, N) and a ∈ [0, a0]. For any
u ∈ H1(RN ) \ {0}, there exists a unique τ0 > 0 such that Pa(uτ0) = 0.
Moreover, Ia(uτ0) = maxτ≥0 Ia(uτ ).

Proof. Set φ(τ) = Ia(uτ ). Direct calculation gives that
(2.2)

φ(τ) =
τN−2

2

∫
RN

|∇u|2+τN

2
λ

∫
RN

|u|2−τN+α

2

∫
RN

(Iα∗G(u, a))G(u, a),

where G(u, a) = µ|u|p∗+a + ω|u|p∗−a. Thus, φ(τ) has a unique
critical point τ0 which corresponds to its maximum, that is, Ia(uτ0) =
maxτ≥0 Ia(uτ ) and

0 = φ′(τ0) =
N − 2

2
τN−3
0

∫
RN

|∇u|2 + N

2
τN−1
0 λ

∫
RN

|u|2

− N + α

2
τN+α−1
0

∫
RN

(Iα ∗G(u, a))G(u, a).

Hence, Pa(uτ0) = 0. The proof is complete. �

The following is a series of lemmas and remarks concerning the
properties of ca.
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Remark 2.7. Theorem 1.2 implies that ca ≤ cga for a ∈ [0, a0]. By
using the results of [14], we can further obtain that ca = cga for
a ∈ (0, a0]. Indeed, [14] yields that

cga = cmp
a := inf

γ∈Γ
sup

t∈[0,1]

Ia(γ(t)),

where the set of paths is defined as

Γ = {γ ∈ C([0, 1], H1(RN )) : γ(0) = 0, Ia(γ(1)) < 0}.

For any u ∈ H1(RN )\{0}, with Pa(u) = 0, let uτ be defined as in (2.1).
By (2.2), there exists a τ0 > 0 large enough such that Ia(uτ0) < 0.
Lemma 2.6 implies that

cmp
a ≤ max

τ≥0
Ia(uτ ) = Ia(u).

Since u is arbitrary, cga = cmp
a ≤ ca. Hence, ca = cga for a ∈ (0, a0].

Lemma 2.8. Let N ≥ 3, α ∈ (0, N) and a ∈ [0, a0]. Then, ca ≥ 0.

Proof. Let {vn} ⊂ H1(RN ) \ {0} be a sequence satisfying

lim
n→∞

Ia(vn) = ca and Pa(vn) = 0.

Then, we have

Ia(vn) = Ia(vn)−
1

N + α
Pa(vn)

=

(
1

2
− N − 2

2(N + α)

)∫
RN

|∇vn|2

+

(
1

2
− N

2(N + α)

)
λ

∫
RN

|vn|2

≥ 0,

which implies that ca ≥ 0. �

Lemma 2.9. Let N ≥ 3, α ∈ (0, N) and a ∈ (0, a0]. Then,
lim supa→0 ca ≤ c0.

Proof. For any ϵ ∈ (0, 1), there exists a u ∈ H1(RN ) \ {0} with
P0(u) = 0 such that I0(u) < c0+ϵ. By (2.2), there exists a τ0 > 0 large
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enough such that I0(uτ0) ≤ −2. By the Young inequality, we have

(2.3)

|u|p∗+a ≤ p∗ − p∗ − a

p∗ − p∗
|u|p∗ +

a

p∗ − p∗
|u|p

∗
,

|u|p
∗−a ≤ a

p∗ − p∗
|u|p∗ +

p∗ − p∗ − a

p∗ − p∗
|u|p

∗
,

and, by the Hardy-Littlewood-Sobolev inequality and the Sobolev
embedding theorem, there exist C1, C2 > 0, independent of u, such
that

(2.4)

∫
RN

(Iα ∗ |u|p∗)|u|p∗ ≤ C1∥u∥2p∗
2 ≤ C2∥u∥2p∗

H1(RN )
,∫

RN

(Iα ∗ |u|p
∗
)|u|p

∗
≤ C1∥u∥2p

∗

2N/(N−2) ≤ C2∥u∥2p
∗

H1(RN )
,∫

RN

(Iα ∗ |u|p∗)|u|p
∗
≤ C1∥u∥p∗

2 ∥u∥p
∗

2N/(N−2) ≤ C2∥u∥p∗+p∗

H1(RN )
.

Hence, the Lebesgue dominated convergence theorem implies that

τN+α

2

∫
RN

(Iα ∗ (µ|u|p∗+a + ω|u|p
∗−a))(µ|u|p∗+a + ω|u|p

∗−a)

is continuous on a ∈ [0, a0] uniformly with τ ∈ [0, τ0]. Thus, there
exists a δ > 0 such that

|Ia(uτ )− I0(uτ )| < ϵ

for 0 < a < δ and 0 ≤ τ ≤ τ0, which implies that Ia(uτ0) ≤ −1 for all
0 < a < δ. Since Ia(uτ ) > 0 for τ small enough and Ia(u0) = 0 for any
a ∈ [0, a0], there exists a τa ∈ (0, τ0) such that (d/dτ)Ia(uτ )|τ=τa = 0,
and then, Pa(uτa) = 0. By Lemma 2.6, I0(uτa) ≤ I0(u). Hence,

ca ≤ Ia(uτa) ≤ I0(uτa) + ϵ ≤ I0(u) + ϵ < c0 + 2ϵ

for any 0 < a < δ. Thus, lim supa→0 ca ≤ c0. �

Lemma 2.10. Let N ≥ 3, α ∈ (0, N), an → 0+ and {un} ⊂
H1

r (RN ) \ {0} satisfy (1.10). Then, {un} is bounded in H1(RN ) and
lim infn→∞ can > 0.
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Proof. By Lemma 2.9, for n large enough, we have

(2.5)

c0 + 1 ≥ can = Ian(un)−
1

N + α
Pan(un)

=

(
1

2
− N − 2

2(N + α)

)∫
RN

|∇un|2

+

(
1

2
− N

2(N + α)

)
λ

∫
RN

|un|2,

which implies that {un} is bounded in H1(RN ).

In view of (2.3) and (2.4), and by the Cauchy inequality, there exist
C3, C4 > 0, independent of n, such that

0 = Pan(un)

=
N − 2

2

∫
RN

|∇un|2 +
N

2
λ

∫
RN

|un|2

− N + α

2

∫
RN

{(Iα ∗ (µ|un|p∗+an + ω|un|p
∗−an))

× (µ|un|p∗+an + ω|un|p
∗−an)}

≥ C3∥un∥2H1(RN ) − C4(∥un∥2p∗
H1(RN )

+ ∥un∥2p
∗

H1(RN )
),

which implies that there exists a C5 > 0, independent of n, such that

(2.6) ∥un∥H1(RN ) ≥ C5.

Combining (2.5) and (2.6), we obtain that lim infn→∞ can > 0. �

By Lemmas 2.9 and 2.10, we have c0 > 0. In the following, we give
an upper estimate of c0. Towards this end, we define

(2.7) S1 = inf
u∈H1(RN )\{0}

∫
RN |u|2

(
∫
RN (Iα ∗ |u|p∗)|u|p∗)1/p∗

and

(2.8) S2 = inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2

(
∫
RN (Iα ∗ |u|p∗)|u|p∗)1/p∗ .

It is known that

U(x) =
A

(1 + |x|2)N/2
and V (x) =

B

(1 + |x|2)(N−2)/2
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are the extremal functions of S1 and S2, respectively, see [19]. In the
following, we choose A and B such that∫

RN

(Iα ∗ |U |p∗)|U |p∗ = 1 and

∫
RN

(Iα ∗ |V |p
∗
)|V |p

∗
= 1.

By direct calculation, we have the following result.

Lemma 2.11. Assume that N ≥ 5 and α ∈ (0, N − 4). Then,

c0 <min

{
2 + α

2(N + α)

(
N − 2

(N + α)ω2

)(N−2)/(2+α)

S
(N+α)/(2+α)
2 ,

α

2(N + α)

(
N

(N + α)µ2

)N/α

(λS1)
(N+α)/α

}
.

Proof. For δ, ϵ > 0, define uδ(x) = δN/2U(δx) and vϵ(x) =
ϵ(2−N)/2V (x/ϵ). For N ≥ 5, vϵ(x) ∈ H1(RN ). In the following, we
use uδ and vϵ to estimate c0. By Lemma 2.6, there exists a unique
τδ such that P0((uδ)τδ) = 0 and I0((uδ)τδ) = supτ≥0 I0((uδ)τ ). Thus,
c0 ≤ supτ≥0 I0((uδ)τ ). By direct calculation, we have

(2.9)

I0((uδ)τ )

=
τN−2

2

∫
RN

|∇uδ|2 +
τN

2
λ

∫
RN

|uδ|2

− τN+α

2

∫
RN

(Iα ∗ (µ|uδ|p∗ + ω|uδ|p
∗
))(µ|uδ|p∗ + ω|uδ|p

∗
)

=
τN−2

2
δ2

∫
RN

|∇U |2 + τN

2
λ

∫
RN

|U |2

− τN+α

2
µ2

∫
RN

(Iα ∗ |U |p∗)|U |p∗

− τN+α

2
ω2δ[2(N+α)]/(N−2)

∫
RN

(Iα ∗ |U |p
∗
)|U |p

∗

− τN+αµωδ(N+α)/(N−2)

∫
RN

(Iα ∗ |U |p∗)|U |p
∗
.

We claim that there exist τ0, τ1 > 0, independent of δ, such that
τδ ∈ [τ0, τ1] for δ > 0 small. Suppose, by contradiction, that τδ → 0 or
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τδ → ∞ as δ → 0. Equation (2.9) implies that c0 ≤ 0 as δ → 0, which
contradicts c0 > 0. Thus, the claim holds.

Since N > 4 + α, we have (N + α)/(N − 2) < 2. Thus, for δ > 0
small enough,

c0 < sup
τ≥0

{
τN

2
λ

∫
RN

|U |2 − τN+α

2
µ2

∫
RN

(Iα ∗ |U |p∗)|U |p∗

}
=

α

2(N + α)

(
N

(N + α)µ2

)N/α

(λS1)
(N+α)/α.

Similarly, we have

I0((vϵ)τ )

=
τN−2

2

∫
RN

|∇vϵ|2 +
τN

2
λ

∫
RN

|vϵ|2

− τN+α

2

∫
RN

(Iα ∗ (µ|vϵ|p∗ + ω|vϵ|p
∗
))(µ|vϵ|p∗ + ω|vϵ|p

∗
)

=
τN−2

2

∫
RN

|∇V |2 + τN

2
λϵ2

∫
RN

|V |2

− τN+α

2
ω2

∫
RN

(Iα ∗ |V |p
∗
)|V |p

∗

− τN+α

2
µ2ϵ[2(N+α)]/N

∫
RN

(Iα ∗ |V |p∗)|V |p∗

− τN+αµωϵ(N+α)/N

∫
RN

(Iα ∗ |V |p∗)|V |p
∗

and

(2.10)

c0 < sup
τ≥0

{
τN−2

2

∫
RN

|∇V |2 − τN+α

2
ω2

∫
RN

(Iα ∗ |V |p
∗
)|V |p

∗
}

=
2 + α

2(N + α)

(
N − 2

(N + α)ω2

)(N−2)/(2+α)

S
(N+α)/(2+α)
2 .

The proof is complete. �

3. Proof of the main result. Based on the results obtained in
Section 2, we prove Theorem 1.4 in this section.
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Proof of Theorem 1.4. Let an → 0+ as n → ∞ and {un} ⊂ H1
r (RN )

be a positive sequence which satisfies (2.10). Lemma 2.10 shows that
{un} is bounded in H1(RN ). Thus, there exists a nonnegative function
u ∈ H1

r (RN ) such that, up to a subsequence, un ⇀ u weakly in
H1(RN ), un → u strongly in Ls(RN ) for s ∈ (2, 2N/(N − 2)), and
un → u almost everywhere on RN . Since an → 0+, and {un} is
bounded in L2(RN ) ∩ L(2N)/(N−2)(RN ), by Lemma 2.5, we have

{ω(p∗ − an)|un|p
∗−an−2un} is bounded in L(2Np∗)/[(p∗−1)(N+α)](RN ),

(3.1)

{µ(p∗ + an)|un|p∗+an−2un} is bounded in L(2Np∗)/[(p∗−1)(N+α)](RN ),

and

(3.2) {µ|un|p∗+an + ω|un|p
∗−an} is bounded in L(2N)/(N+α)(RN ).

By (3.1) and the Hölder inequality,

{ω(p∗ − an)|un|p
∗−an−2unφ} is bounded in L(2N)/(N+α)(RN ),

{µ(p∗ + an)|un|p∗+an−2unφ} is bounded in L(2N)/(N+α)(RN )
(3.3)

and

(3.4) µp∗|u|p∗−2uφ and ωp∗|u|p
∗−2uφ ∈ L(2N)/(N+α)(RN ),

for every φ ∈ C∞
c (RN ), and then, Remark 2.2 shows that

(3.5) Iα ∗ (µp∗|u|p∗−2uφ+ ωp∗|u|p
∗−2uφ) ∈ L(2N)/(N−α)(RN ).

It follows from Lemma 2.4 and (3.2) that
(3.6)

µ|un|p∗+an+ω|un|p
∗−an ⇀ µ|u|p∗+ω|u|p

∗
weakly in L(2N)/(N+α)(RN ).

By (3.5) and (3.6), we obtain

∫
RN

(Iα ∗ (µ|un|p∗+an + ω|un|p
∗−an))(µp∗|u|p∗−2uφ+ ωp∗|u|p

∗−2uφ)

(3.7)

=

∫
RN

{(µ|un|p∗+an + ω|un|p
∗−an)

× (Iα ∗ (µp∗|u|p∗−2uφ+ ωp∗|u|p
∗−2uφ))}
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−→
∫
RN

(µ|u|p∗ + ω|u|p
∗
)(Iα ∗ (µp∗|u|p∗−2uφ+ ωp∗|u|p

∗−2uφ))

=

∫
RN

(Iα ∗ (µ|u|p∗ + ω|u|p
∗
))(µp∗|u|p∗−2uφ+ ωp∗|u|p

∗−2uφ)

as n → ∞ for any φ ∈ C∞
c (RN ).

It follows from N ≥ 5 that N/[[(N − 1)/2](p∗ − 1)] and

N

[(N − 1)/2](p∗ − 1)
∈
(

2N

N + α
,∞

)
.

Since an → 0+ and φ ∈ Lt(RN ) for t ∈ (1,∞), by Lemma 2.3 and the
Young inequality, there exists a constant C > 0 such that

(3.8)

||un|p∗+an−2unφ|, ||un|p
∗−an−2unφ| ≤ C(|un|p∗−1|φ|+ |un|p

∗−1|φ|)

≤ C(|x|[(1−N)/2](p∗−1)|φ|+|x|[(1−N)/2](p∗−1)|φ|) ∈ L(2N)/(N+α)(RN ).

By (3.3), (3.4), (3.8) and the Lebesgue dominated convergence theorem,

An := ∥µ(p∗ + an)|un|p∗+an−2unφ− µp∗|u|p∗−2uφ∥(2N)/(N+α) −→ 0

and

Bn := ∥ω(p∗ − an)|un|p
∗−an−2unφ− ωp∗|u|p

∗−2uφ∥(2N)/(N+α) −→ 0

as n → ∞. Hence, the Hardy-Littlewood-Sobolev inequality implies
that

∫
RN

(Iα ∗ (µ|un|p∗+an + ω|un|p
∗−an))(µ(p∗ + an)|un|p∗+an−2unφ

(3.9)

+ ω(p∗ − an)|un|p
∗−an−2unφ− µp∗|u|p∗−2uφ− ωp∗|u|p

∗−2uφ)

≤ C∥µ|un|p∗+an + ω|un|p
∗−an∥(2N)/(N+α)(An +Bn) −→ 0

as n → ∞. By (3.7) and (3.9), for any φ ∈ C∞
c (RN ),

0 = ⟨I ′an
(un), φ⟩

=

∫
RN

∇un∇φ+ λunφ−
∫
RN

{(Iα ∗ (µ|un|p∗+an + ω|un|p
∗−an))

× (µ(p∗ + an)|un|p∗+an−2unφ+ ω(p∗ − an)|un|p
∗−an−2unφ)}
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−→
∫
RN

∇u∇φ+ λuφ−
∫
RN

{(Iα ∗ (µ|u|p∗ + ω|u|p
∗
))

× (µp∗|u|p∗−2uφ+ ωp∗|u|p
∗−2uφ)}

as n → ∞, that is, u is a solution of (3.4).

We claim that u ̸≡ 0. Suppose, by contradiction, that u ≡ 0. Fix
ϵ ∈ (0, 2/(N−2)). In the Hardy-Littlewood-Sobolev inequality (Lemma
2.1), choosing

p =
2N(1 + ϵ)

N + α
and r =

2N(1 + ϵ)

(N + α)(1 + 2ϵ)
,

and noting that un → 0 strongly in Ls(RN ) for s ∈ (2, 2N/(N − 2)),
we obtain that

∫
RN

(Iα ∗ |un|p∗)|un|p
∗
≤ C1∥up∗

n ∥p∥up∗

n ∥r

(3.10)

= C1∥un∥p∗
2(1+ϵ)∥un∥p

∗

[(2N)/(N−2)][(1+ϵ)/(1+2ϵ)]

= o(1).

In view of (2.7), (2.8), (3.10), and by using Pan(un) = 0 and the Young
inequality (3.3), we get that

∫
RN

|∇un|2 +
N

N − 2
λ

∫
RN

|un|2

(3.11)

=
N + α

N − 2

∫
RN

{(Iα ∗ (µ|un|p∗+an + ω|un|p
∗−an))

× (µ|un|p∗+an + ω|un|p
∗−an)}

≤ p∗(µ2

∫
RN

(Iα ∗ |un|p∗)|un|p∗ + ω2

∫
RN

(Iα ∗ |un|p
∗
)|un|p

∗
) + o(1)

≤ p∗
(
µ2

(∫
RN |un|2

S1

)p∗

+ ω2

(∫
RN |∇un|2

S2

)p∗)
+ o(1),

which implies that either ∥un∥H1(RN ) → 0 or

lim sup
n→∞

∥∇un∥22 ≥
(

Sp∗

2

p∗ω2

)1/(p∗−1)

(3.12)
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or

lim sup
n→∞

∥un∥22 ≥
(

NλSp∗
1

(N + α)µ2

)1/(p∗−1)

.

If ∥un∥H1(RN ) → 0, then (3.5) implies that can → 0, which contradicts
Lemma 2.10.

If (3.12) holds, then

c0 ≥ lim sup
n→∞

can

= lim sup
n→∞

(Ian(un)−
1

N + α
Pan(un))

= lim sup
n→∞

{(
1

2
− N − 2

2(N + α)

)∫
RN

|∇un|2

+

(
1

2
− N

2(N + α)

)
λ

∫
RN

|un|2
}

≥ min

{
2 + α

2(N + α)

(
N − 2

(N + α)ω2

)(N−2)/(2+α)

S
(N+α)/(2+α)
2 ,

α

2(N + α)

(
N

(N + α)µ2

)N/α

(λS1)
(N+α)/α

}
,

which contradicts Lemma 2.11. Thus, u ̸≡ 0.

By Theorem 1.2, P0(u) = 0, and by the weakly lower semi-continuity
of the norm, we have

c0 ≤ I0(u)

= I0(u)−
1

N + α
P0(u)

=

(
1

2
− N − 2

2(N + α)

)∫
RN

|∇u|2 +
(
1

2
− N

2(N + α)

)
λ

∫
RN

|u|2

≤ lim inf
n→∞

{(
1

2
− N − 2

2(N + α)

)∫
RN

|∇un|2

+

(
1

2
− N

2(N + α)

)
λ

∫
RN

|un|2
}
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= lim inf
n→∞

(
Ian(un)−

1

N + α
Pan(un)

)
= lim inf

n→∞
can ≤ lim sup

n→∞
can ≤ c0.

Hence, I0(u) = c0. By the definition of cg0, we have cg0 ≤ I0(u) = c0,
which, combined with Remark 2.7, shows that cg0 = c0 = I0(u), that is,
u is a ground state solution of (3.4). The strongly maximum principle
implies that u is positive. The proof is complete. �
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