ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 49, Number 1, 2019

DISTRIBUTIONAL ANALYSIS OF RADIATION
CONDITIONS FOR THE 3+1 WAVE EQUATION

J.A. ELLISON, K.A. HEINEMANN AND S.R. LAU

ABSTRACT. Consider the Cauchy problem for the ordi-
nary 341 wave equation. Reduction of the spatial domain
to a half-space involves an exact radiation boundary con-
dition enforced on a planar boundary. This boundary con-
dition is most easily formulated in terms of the tangential-
Fourier and time-Laplace transform of the solution. Using
the Schwartz theory of distributions, we examine two other
formulations: (i) the nonlocal spacetime form and (ii) its
three-dimensional (tangential/time) Fourier transform. The
spacetime form features a convolution between two tempered
distributions.

1. Introduction and preliminaries.

1.1. Introduction. Numerical wave simulation on finite computa-
tional domains requires the introduction of fictitious boundaries at
which one must specify boundary conditions; see, for example, the
review article [6]. Ideally, such boundary conditions stem from ex-
act reduction of an infinite domain, allowing for radiation flux off the
incomplete computational domain. We consider perhaps the simplest
nontrivial example: the ordinary 341 wave equation on R?® and reduc-
tion to a half-space. This reduction involves specification of a radia-
tion condition on a planar boundary, here taken as z = § > 0 with
z < 4 the half-space of interest. We write the 3+1 wave equation as
OU = g(t,x,2), with O := =07 + 07 + 07 + 02 and U = U(L,x, 2).
Here, x := (z,y) are the coordinates tangential to the boundary. The
exact radiation condition encodes assumptions (given below) about the
supports of the source g and the initial data U(0, -, -),U¢(0, -, -).
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In order to state the goals of this paper and provide an overview of
our results, we first describe the radiation condition in its most compact
spacetime incarnation:

9 W', %, 5)
1.1 - = = RSN bt R/
(L)) W (tx,0) /dt / e
0 e/ [<(1—17)

This nonlocal expression relates the characteristic variables
(1.2) wE.=27Y2(—U, +U,)

on the planar boundary z = §. These variables are determined by the
outward-pointing normal vector to the boundary. Viewing the “com-
putational domain” as z < §, equation (1.1) expresses W~ (which
propagates in the negative z-direction) in terms of W™ (which propa-
gates in the positive z-direction). Confirmation that W* propagate in
the stated directions follows from the wave equation expressed in the
first-order symmetric hyperbolic (FOSH) form

1
OIW™ = FO,WT — —(8,D1 + 9,D2),
t + \/i( 1 y2)
1
1.3 0Py = ———=0,(WT + W),
(13) 1Pa = =5 0u(WF W)
1
U = ——(WH+W"),

where @ = 1,2. This FOSH form features the variables W+, &; := U,,
®,y :=U,, and U. The right-hand side of equation (1.1), an integral over
history, is remarkable in two regards. First, it involves a convolution
with P(t,x) = 20,[t 2H(t — |x|)], where H(-) is the Heaviside step
function. Second, it features the normalized average of W over a
disk: the intersection of the boundary z = ¢ and the interior of the
backward light cone with apex (¢,x,d). We also find it remarkable that
(1.1) is formally equivalent to



RADIATION CONDITIONS 3

(1.4)

i
W*(t,x,a)zfdt’ 2 [ / dsy ————1—~

0 Ix—x/[=(t—")

— dx’

[x—x'|<(t—t")

W+t x',0)

w(t —t)2
Here dsy is the arc-length measure along the “ring” r := |x—x'| = t—t'.
Within the square brackets resides the difference of two normalized
averages, the first over the ring r = ¢ —/, and the second over the disk
r <t —t. For smooth W, this difference approaches 0 sufficiently
fast as ¢ — t~ to ensure that the singularity in (1.4) is integrable.
We analyze a third expression (1.11) below, an alternative to (1.1) and
(1.4), which is more amenable to analysis.

The condition (1.1) has a corresponding form in the “Fourier-Laplace
domain,” namely,

Vv[/i(S,g, (S) - f’(s,&)ﬁ/+(5,§', 5)7

1.5 v s — /52 2
(1.5) Blo.g) o STVEHE

s+ /52 + €2

where s is the Laplace variable dual to ¢, and & = (1, &) are the Fourier
variables dual to x = (z,y). Moreover, £ > 0 is defined by £2 = £2 +¢£2,
and, as described in the appendix, the branch for \/s2 + £2 is chosen
to ensure that the expression has positive real part for Res > 0. We
view (1.5) as more fundamental than (1.1); it is (1.5) that we are able
to derive from the inhomogeneous wave equation together with certain
assumptions on the source and initial data (see below).

Strategies have been proposed to numerically implement the radia-
tion condition. Typically, the idea is to approximate (1.5) in a fashion
which is amenable to inversion, thereby obtaining a tractable spacetime
condition. In particular, a strategy due to Hagstrom, Warburton and
Givoli [7, 8] introduces auxiliary variables on the boundary. These
auxiliary variables obey a system of evolution equations in their own
right. When coupled to the interior, this system determines W~ in
terms of W7, and in a fashion which approximates the above con-
ditions. In fact, we have leveraged the Hagstrom-Warburton-Givoli
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approach in our own work on the evaluation of retarded-time integrals
[3]. That reference assumed a “sheet source” g(t,x,z) = —2f(t,x)d(z)
and vanishing initial data; here, we consider more general sources and
data.

While the Hagstrom-Warburton-Givoli approzimation is both fas-
cinating and important for numerical implementation, our focus here
lies with the above forms of the exact radiation condition. More pre-
cisely, rather than focusing on (1.1) and (1.5), we will instead examine
equivalent (and similar) expressions which are more amenable to anal-
ysis. These equivalent expressions, (1.11) and (1.9), are introduced
shortly. Our key objective is to establish the correspondence between
the spacetime and Fourier-Laplace (or “frequency domain”) forms of
the radiation condition. We have considered this correspondence be-
fore. Indeed, this correspondence is addressed in [3, Appendix] via
classical arguments, with the Laplace inversion carried out in terms
of a Bromwich contour properly in the right-half s-plane. Our goal
here is to establish the correspondence using the Schwartz theory of
distributions. The analysis we present involves the three-dimensional
Fourier transform (in ¢,x) associated with the history of the planar
boundary. The motivation for a second distributional investigation of
the correspondence is the following.

e Our “pure” Fourier transform approach also treats the time di-
mension via Fourier transformation. This approach is often adopted in
investigations by physicists.

e The analysis features structures of theoretical interest, e.g., a
convolution in which both factors are tempered distributions. Our
results may then be viewed as a nonstandard version of the Fourier
convolution theorem; see the concluding section.

e The results constitute a first step towards understanding the issue
of domain reduction in the context of rough (distributional) solutions to
the wave equation, whence our results may, for example, prove relevant
for shocks. Regarding this bullet, note that, as seen in equation (1.12)
below, equation (1.1) involves a three-dimensional convolution in (¢, x)
with a kernel Q. Since equations (1.1) and (1.12) hold for any z = § > 0,
this three-dimensional convolution may be viewed as a four-dimensional
convolution in (¢,x,z) involving a kernel which is the tensor product
of @ with the Dirac distribution (the convolutional identity). This
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four-dimensional perspective is likely the natural one from which to
investigate whether a particular distributional solution to the 341 wave
equation satisfies equation (1.1).

This paper is organized as follows. We complete this first section
with a rough derivation of the above radiation condition (1.5), one
meant to fix ideas. Section 2 presents our theoretical results and
main theorems. The key theorem involves a certain assumption, an
estimate which must be obeyed by the tangential-Fourier/time-Laplace
transform of a solution to the wave equation. Section 3 verifies
this assumption for a class of solutions to the wave equation. The
concluding section, Section 4, describes our results as a version of the
Fourier convolution theorem. An appendix describes the key function
s+ 1/82 + £2 as an analytic function of s.

1.2. Derivation of the radiation condition. We sketch the deriva-
tion of (1.5), that is, the radiation condition in the Fourier-Laplace
domain; for details, see [3] and the references therein. Consider then
the 3+1 wave equation U = g, and assume the following reduction
conditions:

(R1) For z > 0 the inhomogeneity vanishes: ¢(t,x,z) = 0 for all
t €[0,00), x € R2.

(R2) For z > 0 the initial data vanishes: U(0,x,z2) =0 = U(0,x, z)
for all x € R2.

To these, we might add a third condition.

(R3) The initial data is of compact support in space, and the source
of compact support in spacetime.

These assumptions are depicted schematically in Figure 1. In par-
ticular, (R1) and (R2) imply that, for z > 0, the solution U is a
superposition of Fourier-Laplace “modes”

(1.6) ELe(t,x,2) = eSHEx—2V*+8 5 5,

Note that each mode E; ¢ solves the homogeneous wave equation, and
that E, ¢(t,x,2) — 0 as z — oo, provided Res > 0. More precisely, we
have
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n+ioco
1 1 v
1. = — -
(L.7)  U(t,x,2) 5 /d£27ri / dsU(s,&,0)Es¢(t,x,z — 9),
R2 n—ioo
where z—4, n > 0, and l}(, -,0) is the Fourier-Laplace transform of the

boundary trace U(+,-,d). The variable n defines the Bromwich contour
for the inverse Laplace transform.

FIGURE 1. Planar boundary z = 6. The “computational domain” corre-
sponds to z < 0. As depicted by the green and yellow objects, the source
and initial data may be nontrivial (although both are of compact support)
on the computational domain; however, both vanish for z > 0.

As above, we introduce the characteristic variables W# relative to
the planar boundary z = §. If the z-axis points straight up the page,
as depicted in Figure 1, then W™ propagates like + and W~ as |.
The exact radiation condition both expresses W~ in terms of W+ and
encodes assumptions (R1) and (R2) above. This exact condition is
easily expressed in the Fourier-Laplace domain. Indeed, due to the form
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of the mode (1.6), the Fourier-Laplace transforms of the characteristic
variables W (-, -, §) from (1.2) are

(1.8) WE(s,€,6) = =272 (s + /52 + E2)U(s,£, ).

These formulas then yield the radiation condition (1.5), and (1.5) is
algebraically equivalent to
(L) W™ (5,€,6) = —W*(5,0) + Q(s,€)sW(5,€,9),
where
(1.10) Q(s.€) ’
. $,€)i= ———.
24+ & +s
Reference [3] used 131 and P in place of é and (), where the subscript 1
merely served to distinguish P; from P.

As shown below and in [3], the spacetime form of (1.9) is the
“classical” (singularity free) relationship

(1.11)
W= (t,x,6) = —WT(t,x,0)
1 t 1 27
-s—;/dt’/dgg/d(/)DoWJr(t/,X-*‘(t—t/>9’/(¢)75)7
0 0 0

where Dy indicates differentiation in the time slot and v(¢) = (cos ¢,
sin ¢). We also compactly write this expression as

(1.12)

t

_ _ i p ,DoW™(t',x',8)
W~ (t,x,6) = -W (t,x,5)+/dt / dx T R
0 x—x/|<(t—t)
where the integral on the right-hand side is a spacetime convolution
involving Q(t,x) = 2t72H(t — |x|). We note that we have neither
a spacetime derivation nor a direct spacetime verification of (1.11).
Rather than (1.1) and (1.5), we shall work instead with (1.11) and
(1.9).

The equivalency of (1.1), (1.4) and (1.12) is easily established.
Indeed, with mild conditions (A1)—(A3) on DoW™(-,-,d) given shortly,
the Dy can be pulled outside of the ¢ and p integrations in (1.11) as
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the operator 0; + 9y. The t’ integration of the 9y derivative then gives
(1.13)

W= (t,x,9) /dt at/dgg/d(éW"’t x+ (t —t")ov(9),9),

that is, (1.1) written as an iterated integral. With the change of
variables r = (t — t’)p, the last integral becomes

t (t— t

(1.14) W~ (t,x.9) / / drr/d¢W+ X+ v(9),9)

(t — )2
0

Performance of the ¢ differentiation here yields (1.4) expressed as two
iterated integrals.

2. Distributional analysis. Let XV/(s,é) = sW*(s,Sﬁ), so that
V(t,x) = DoW™(t,x,d). Then, (1.9) and (1.11) become

(2.1) W (5.€,8) = — W+ (s,€,8) + Qs, )V (5, )
and

(2.2) W= (t,x,6) = =W*(t,x,0) + Z(t,x; V),
where

(2.3)  Z(t,x;V) /dt’/dgg/dev (t',x+ (t—t")ov()).
0 0

To investigate the equivalency between (2.1) and (2.2), we only need

focus on the relationship between CVQYV/ and Z. As shown below, é(s{)
is the Fourier-Laplace transform of

(2.4) Qt,x) == 2t2H (t — |x|),

and another expression for (2.3) is the Fourier-Laplace convolution

t
25) T(txV) = 2i / d / A Qt — ', x — x VWV (¥, ).
s
RQ

0
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Now, V = DoW*(-,-,6) for the specific case of equation (1.11), but
this section views V as a generic function, although one subject to
further assumptions:

(A1) V is continuous in all its arguments, except possibly in ¢ at
t = 0. Moreover, V(t,x) =0 for t < 0, x € R?.

(A2) An R > 0 exists such that V(¢,-) is supported in the ball
B(R+1t)={x:|x| < R+t}.

(A3) The function V is bounded in spacetime, i.e., |V (t,x)| < Vp
for all t > 0, x € R2. Likely, we could consider a uniform bound in
space which permits polynomial growth in time.

Assumptions (A1)—(A3) are common to the whole section; by design,
they ensure, in particular, that the Fourier-Laplace transform Vof V
exists for Res > 0. Below, we consider an extension of ‘v/ to Res = 0.
The (A.1) condition V(¢,-) = 0 for ¢ < 0 is also described by the
statement “V is causal.” Further assumptions on V are stated later in

(A4).

Conditions (A1)—(A2) for V place restrictions on the support of Z.
First, Z(t,-) is also causal by (A1), i.e., it vanishes for ¢ < 0. Moreover,
notice that, in (2.3), the spatial argument of V' is x’ = x+ (t — ') ov (),
where 0 < p<1,0<t¢t—¢ <tand |v(d)| =1. Therefore, since

(2.6) x| = |x" = (t = t)ov(0) < X'| +1,

the inequality R + 2t < |x| implies that R + ¢ < |x’| and, in turn, that
V(-,x") = 0 by condition (A2). We conclude that Z(¢,-) is supported
in B(2t+ R).

Remark 2.1. For the target application of equation (1.11), the condi-
tions (A1)~(A3)on V = DoW*(-,-,8) = 272 [=Uy(-,, 8)+Up.(-, -, 0)]
hold, provided there exists a unique, bounded, C? solution U to the
Cauchy problem for OU = g, subject to assumptions (R1)—(R3).

We aim to show that the formula (2.3) can be written

n+ico

1) TexV)= o [degn [ dset Qs eVs6)
R2

n—ioo
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We have two arguments. One is classical, and takes n = Res > 0;
it appears in [3, Appendix]. The other, relying on distributions and
considered here, makes sense of the case n = 0, in which case the
inversion corresponds to a three-dimensional inverse Fourier transform.
Both arguments also consider the “forward transform” of Z(¢,x; V).

Before examining (2.3) in terms of distributions, we first study the
generalized function (2.4). Throughout this section, = (a wide hat)
and " (an upside down “vee”) refer to different Fourier transforms; the
first is with respect to the spatial boundary variables x, and the latter
with respect to the spacetime boundary variables (¢,x).

Lemma 2.2. The Fourier-Laplace transform of Q in (2.4) is the
expression @ in (1.10) for Res > 0.

Proof. The ordinary spatial Fourier transform @ of @ is

1 .
—/ dxe €% >0,
2.8 Gy = | ™ st
() Q(vE)* 1 t=0+,
0 t <O0.

Direct calculations and standard identities for Bessel functions then
yield

~ 2(t6) " () tE >0,
2.9 t,€) =
(29) Q(t.¢) {1 o

Finally, [1, formula 29.3.58] shows that

LQE)(s) =2/(s+ /52 +€2). O

Note that @(t, &) =0 for t < 0, since Q(t,x) = 0 for t < 0. Let
us attempt to compute the three-dimensional (boundary spacetime)
Fourier transform of (). Respectively, the small and large-z asymptotics
of Ji(z) imply that lim, o+ Q(t,€) = 1 and |Q(¢,&)| = O(t=3/2) as

~

t — oo, provided £ # 0. Therefore, Q(+, ) is integrable on the half-line
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when £ # 0, and the following Fourier integral exists:

JAY

_ L i —iot ()
(2.10) Q60 &) = —= 0/ dte (1, E), € #0.

On the other hand, the integral does not exist for & = 0, in part
motivating our distributional analysis below.

Remark 2.3. Note that Q(t,0) = H(t), and let h € S'(R) be the
tempered distribution defined by (h, ) := [, dtH(t)y(t) on Schwartz-
class functions. Denote by i € &(R) its one-dimensional distributional
Fourier transform. Then, the action of & on Schwartz-class functions is

[5]:

(2.11) <ﬁ,¢>:\/§¢(0)—\/12?[p.v./d)\¢()\>\)], ¥ € S(R).
R

In this paragraph, the Schwartz space is associated with R. However,
we stress that, in order to find a distributional interpretation for the
Fourier transform of @, we must instead consider S(R?); the relevant
analysis is presented below.

Remark 2.4. Throughout this remark assume £ # 0 is fixed, so that
Q(+,€) € Ly(RT). Tt follows that Q(-, &) lies in the Hardy space for the
right-half s-plane. Moreover, lim,_,o+ Q(n + 1o, §) exists as

(i) a limit in Ly(R), and
(ii) a limit for almost every &g.

These statements then follow from the treatment in [10, Chapter 5],

with the observation that @(',5) in (2.10) lies in the Hardy space for
the lower-half £y-plane.

2.1. Tempered distribution ¢. Stemming from (2.4) is a distribu-
tion ¢ € D'(R?) induced by the following test-function pairing:

(2.12) (q,0) = / dt dxQ(t x)p(t,x), o € Co(R3).
R3
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Note that Qg € L'(R?), so the integration is well defined. Here, and in
what follows, if a function induces a distribution via integration against
test functions, then we denote the distribution by the corresponding
lowercase letter.

Lemma 2.5. ¢ € S'(R3) is a tempered distribution.

Proof. Let ¢ € S(R?) be a Schwartz-class function. First, Q1 is also
in L'(R3). Moreover, by Fubini’s theorem,

(2.13) (g, ) = [ dtt™ | dxi(t,x).
[ |

[x|<t

Since [(g,¥)| < 27 (sup|¢| + sup [t2¢]) follows from this expression, ¢
indeed defines a continuous linear form on S(R?). O

Every ¢ € 8'(R?) has a Fourier transform ¢ € S'(R3) defined by

(q,v) = (q,v) for all Schwartz-class functions . We will show that
the action of our ¢ on Schwartz-class functions is given by

(2.14) (@) = / d0de) (6o, €)1 (60, €),
R?’

where

(2.15) Q(60, &) :

= lim
n—0t

1 v
QO + &, £).
\/%Q(U £0,§)
This expression for é(go, &) agrees with (2.10) when £ # 0; it is singular

when (&,€&) = (0,0). We prove this in Theorem 2.7, which relies on
the next lemma.

Lemma 2.6. For n > 0, define the approzimation q" to q by the
following action on test functions:

(2.16) (q",¢) = /dtdxe*”tQ(t,X)cp(t,x).
R3
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Then, q" is a tempered distribution, and its Fourier transform ¢" is
induced by the function
(2.17)

A v 2
Q"(&0,&) == \/%71- (n+io, &) = \/;(52—&—521)1/2—1—3’ s =n+i&o-

Proof. The proof that ¢ € S'(IR?) is similar to that for Lemma 2.5.
To show that the action of "7 on Schwartz-class functions is induced
by integration against expression (2.17), note that the action of ¢" is
induced by integration against Q"(¢,x) := 2t 2H(t — |x|)e™"". It can
easily be shown that Q7 € L;(R?); its Fourier transform (as an integral)
therefore exists:

(2.18) @"(ﬁo,é) - 3/2 /dt dxe— (ntigo)i+ig: *Q(t, %),

and, clearly, the stated relationship between @’7 and CVQ holds. Moreover,
by the definition of the distributional Fourier transform,

@) = (")

(2.19) = /dt dxQ" (L, X)) (t, x)
R3
— [ dtade (&0, 01600
R3
The last equality is established in [5, Theorem 8.1.3]. |

Theorem 2.7. The tempered distribution q is induced by the function

(2.20) Q&0 €)

\/>V —&5 + &2 +i&y’

where the square-root factor is defined by

(€2 — )12 for |&o| <&,
2.21 G+ =
(2.21) m {sign(io) (g — €2 for € <&l
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Therefore,

(e for leol < .
(2.22) |Q(%.€)| = {(2/) PE— )2 4 |6] 7" for € < l6ol,

and the singularity at (£o,&) = (0,0) is integrable.

Proof. First, the expression (2.20) is the n — 07 limit of @" (&0, )
from (2.17). The cases in (2.21) stem from the definition of 1/s2 + £2;
see the appendix. Equation (2.22) then easily follows. To establish
the integrability of the origin singularity, note that, if £ < |£p], then

[(€2 — )Y2 + 6] s &~1. Therefore, a combination of the cases in
(2:22) yields |62<so,s>| < (2/m'/2!

(2.23)  lim dgo / d€|Q(&, &) < lim 4v2r(1 — ) = 4v/2r.
y—0+ y—0+t
-1 ~<fg<

It remains to show that (2.20) induces ¢. For ¢" defined in the last
lemma, we have ¢ = lim,_,o+ ¢” holding in §’(R*). By the sequential
continuity of Fourier transformation as a map on &’(R?),

(2.24) q= hm ¢" <= ¢= lim ¢",

n—0+ n—0+

with the second limit also holding in S’(R3). Therefore, the previous
lemma yields

(2.25)  (¢,%) = lim (¢",%)
n—0t

. (5075)
= lim \/> d .
n—0% / ot (n+i&o) + v/ (n+1&)? + &2

The integrand here is controlled by the integrable function |1 (&, £)]¢71,
as seen by

1

(2.26)
5+ /52 + &2

S:n—’_lgOa

1 1

< <
’ n+vn? -+ ¢
where the second inequality is trivial, and the first is proven in the

appendix. The limit/integration exchange relies on the Lebesgue
dominated convergence theorem. ]
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Remark 2.8. The integrand in (2.25) is é”(fo,f) from (2.17). Define

(227) KT,(&O) = én(é(% 0) = \/522_"_12%7

and the associated tempered distribution k7 € §'(R), where (k") =
Jr A€o K" (&0)1p(&o) for all v € S(R). Standard computations then show

(2.28) (k" 9) — \/iw(()) - \/%[p.v. Rdw(;)} ¥ € S(R).

This observation is consistent with that in Remark 2.3; in the n — 0
limit k7 — h in S’(R). Again, we stress that the observations made
here and in Remark 2.3 pertain to distributions in S’(R), whereas, in
the main text, we are concerned with distributions in &'(R?).

2.2. Main result. Our distributional statement of (2.7) stems from
Theorem 2.10 below. We now set the stage for its statement. Through-
out this subsection, we suppress the V in Z(t,x;V). The function
Z(t,x) defined by (2.3) is continuous in (¢,x); whence, it induces a
distribution 2 € D'(R?) via the test-function pairing

(2.29) (1, ) = / dt dXT(t, X)p(t,x), @ € Co(RP).
Rg

Lemma 2.9. With V obeying conditions (A1)—(A3), we have @ €
S'(R3).

Proof. By assumption (A3), |Z(¢,x)| < Vpgt; therefore, Zp € L1(R3)
for 1 € S(R3). Consider the pairing

(2.30) (s,%) :/dtdxl'(t,x)w(t,x) :/dt / dxZ(t,x)(t,x),

R3 0 |x|<R+2t

where the last equality stems from Fubini’s theorem and the causality
and support properties of Z; see the discussion after assumptions (Al)-
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(A3). The last formula shows that

(2.31) ‘<Z,1/)>| <sup |y - /dt / dx|I(t,x)‘

0 |x|<R+2t

+sup|t51/)|~/ dt /dxt*5|I(t,x)|,
1

|x| < R+2t

where the last integral on the right-hand side is convergent since

We now consider the spacetime Fourier transform 7 € S’(R?) of 1.
To state the main result, we first note that, by assumptions (Al)-
(A3), the function V also defines a tempered distribution v. Moreover,
with V7(t,-) := e "V(t,-) for n > 0, by (A1)-(A3), we also have
V7 € Li(R3) and V'(&,€) = (20)" Y2V () + i€, €). In order to
prove our main result, we need three more conditions on V, which
are combined into assumption (A4).

(A4) (a) As n — 0T, the function v converges almost everywhere
on R3. We denote by V the function which equals the n — 0% limit of
V", where it exists, and 0 otherwise.

(A4) (b) Through pairing by integration, V induces a tempered
distribution ©.

(A4) (c) The Fourier-Laplace transform Vof V obeys

Vv V.

where hy is integrable and the bound is uniform in n > 0.

We view V(-,€) as the continuation of (2r)~1/2V (-, £) from the open
right-half s-plane to the imaginary axis.

Theorem 2.10. Assume conditions (A1)—(A3) so that, in particular,
by the last lemma, v is a tempered distribution. Assume conditions
(A1)-(A4) on V. Then, the pairing of ? with Schwartz-class functions
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is given by

(2:32) (0} = [ deaded €0, &)060.8),
R3

where we have defined

(2.33) 2(6,€) = V27 Q(60, &)V (&, ).

Proof. To compute the Fourier transform of ¢ and prove Theorem
2.10, we again rely on exponential damping. First, with V"(t,x) =
e~V (t,x) and Q"(t,x) = 2t 2H (t — |x|)e~", both V" and Q" are in
L1 (R3). In the ordinary sense, we have I = V2rQ" % V', where
(2.34)

(t, x) : /dt /detft x - X)WVt x')=e "I(tx).

Moreover, by a standard version of the Fourier convolution theorem,
(2.35)

17(€0,€) = V21 Q" (€0, €)V (€0, &) = ——=Q(n + %0, &)V (1 + i&o, £).

ﬁ\

Finally, as is easily shown, 27 — 1 in S’(R?). Therefore, the action of 7
on Schwartz-class functions is
(2.36)

(t,9) = lim (27,9)

n—0t

= lim r/déb/dﬁ@ 77+1§o7$) (n +i&o, §)1 (&0, €)-

n—0t

The result now follows from (A4), (2.26), and the Lebesgue dominated
convergence theorem. |

Remark 2.11. Evidently, f(fo,ﬁ) in (2.33) stems from the ordinary
Fourier transform in the following sense:

(237)  1(60.€) = lim T(6,8) = lim (2m)"*Z(y + 6o, €),

although the limit need not be finite for certain arguments. Since both
Q(&, &) and V (&, &) are, up to (2m)~ /2 factors, also extensions to the
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imaginary axis of Fourier-Laplace transforms, we may formally write
(2.33) as

3/2 v
) 60, )V (0. ).

Of course, this is a statement regarding the function which induces
the action of 2 on Schwartz-class functions. However, performing a
formal, spacetime, inverse Fourier transform of the last expression, we
obtain equation (2.7). Therefore, Theorem 2.10 indicates in what sense
equation (2.7) holds for n = 0.

(2.38) T(&0, &) =

3. Boundary Fourier-Laplace transform of monopole solu-
tions. This section considers a class of solutions to the homogeneous
3+1 wave equation for which conditions (A4) hold, thereby confirming
that the analysis of Section 2 is relevant for at least some solutions. For
the solutions considered, verification that (A1)-(A3) hold is trivial.

3.1. Monopole solutions. Define the retarded time

(3.1) u=t—p>+(=+0?% P =2+,

where ¢ > 0 is a positive constant. As shown in Figure 2, choose a
smooth profile function f supported in [uy,us] := [—€B1, —£f2], where
0 < By < B1 < 1. It follows that

(3.2) VPP + 0 +0)2< —(0+0) <ug <ug <O0.

Then,

N (/i Cais)

P2+ (z+10)?

(3.3) , t>0
is a solution of the 3+1 wave equation, namely, a monopole solution
relative to the point (xg, yo, z0) = (0,0, —¢); see [2] for this terminology.

We have arranged for the support of the initial data, U(0, x, z) and
U:(0,x%, z), to look as in Figure 3 since, for z = 0 = y, its support
is such that €85 < z 4+ ¢ < £B,. Therefore, the initial data vanishes
for z > 0. For simplicity, we have placed the (xg,yo) location of the
source at the origin of the planar-boundary z = §. Note that the case
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(20,90) # (0,0) then corresponds to the replacement
(3.4) U(s,&,8) — e €700 (s,€,5),

in terms of the Fourier-Laplace transform U (+,-,0) of the boundary
trace U(-,+,6). Therefore, our placement of the source results in no
loss of generality.

3.2. Fourier-Laplace transform of the monopole. The key result
is the following.

Claim 3.1. For the monopole solution (3.3), the Fourier-Laplace trans-
form U(-,-,8) of the boundary trace U(-,-,§) is given by

o~ (46)\/57 1€

3.5 U(s,€,6) = als) o,
where a(s qu due™*% f(u) is analytic in s.

Proof. The same result is found whether we perform the spatial
Fourier transform first and then the Laplace transform or vice versa.
We take the Laplace transform first; the computation proceeds as
follows:

(3.6)

L(U(-x,6))(s) = —otdtf(t p? + (6 +0)?)

el

f(u)

| | -
Uy = —551 Ug = —552

FIGURE 2. Profile function.
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I
=
-

|
S

5V}
o

r+—0Y

FIGURE 3. Initial support of the monopole solution.

TR ¥ )
= — / due™" f(u)

P+ (0 +0)?
—/p?+(5+£)?

Y/ CExE
= — [ du
Vo2 + (0 +0)?
uy
where we have used (3.2) and the assumed support of f to obtain the
last equality. Now, perform the boundary spatial Fourier transform:

(3.7)

e f(u),

U(s,€,6) =

21 e}

—s\/PP (102

%?/daﬁ/dﬂpexp(*ip”(‘z’) ’£>6p2+—(5+€)2’
0

0

where v(¢) = (cos ¢, sin ¢) is a unit vector. Therefore,

i 02+ (0-+0)
3.8 8) = /d Jo(p€) S,
(3-8) Uls,€,0) = a(s J ppJo(p€) RN pEw)E

which we recognize as a Hankel transform #(g(-))(€) of order 0, where

o5/ (6102

(3.9) 9(p) = m
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According to [4, page 9, formula (24)], if
(3.10)
flx) =222 + %)~ Y2 exp[—a(z? + 52)'/?]; Rea >0, Ref > 0,

then, for y > 0,
(3.11)

/f(x)Jo(wy)(xy)l/Qdaf =2y + o) exp[-B(y* + )2
0

A combination of these formulas yields

oo

i1 p efa(m2+62)1/2 b 675(y2+0‘2)1/2
(3.12) o(zy) (22 +,32)1/2 T = (12 +a2)1/2 )
This formula yields the result. ]

3.3. Verification of assumption (A4). The following claim estab-
lishes that assumption (A4) is indeed satisfied by some solutions to the
wave equation, namely, those of the form (3.3).

Claim 3.2. Using the monopole (3.5), define V.= DoW(-,-,0)
272[—Uy(-,-,8) + Us(-,-,6)]. Then V satisfies assumption (A4)

above.

Proof. In the Fourier-Laplace domain,
(3.13) XV/(s,£) = —2_1/23(3 +s2+ 62)[}(8,57(5).

This result relies on the fact that the initial data vanishes for z = 4. To
establish (A4) (a) and (A4) (b) for 0”({0,5) = (27r)*1/2‘>(77 +i&, &),
we first examine (}(77 + 10, &, 0) using the expression in equation (3.5).
With the definition of 1/s2 4 £2 given in the appendix, we have

(3.14)

Vs e = \/W 2P+ €2) + (6 - €22 > \ /I — €2,

Moreover,

(3.15) Rey/(n +16)2 + € >0 for n > 0.
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Finally, from the definition of a(s) and u; < ug < 0, we get
Uuo

B16)  alr+ig0)| < [ due 7] < L
uy

Taken together, the last three estimates yield
(3.17)

}[}(774-150,5,5)1/)(5075” < eH|u1|||f||L1(u17u2) "‘/}(5076)‘

VI — €l

where ¢ € S(R3). Now, the n — 0% limit of (27)~Y/2U (5 + i&, £, 0)
exists and is finite, provided & # ¢2. Furthermore, the limiting

function (27r)_1/2(j'(i§07 ¢,9) induces a tempered distribution 4. Indeed,
with (3.17) and essentially the same argument used to compute ¢ in
the last section, we see that # is the Fourier transform of the tempered
distribution u induced by U(:,-,d). Up until now, we have established
that (A4) (a) and (A4) (b) hold for U7(&, €) = (27)~Y2U(n + i&, ),
rather than ‘A/”(fo,f). That (A4) (a) and (A4) (b) hold for ‘A/"(ﬁo,f)
then follows from equation (3.13).

Finally, to establish (A4) (c), consider

(3.18) Q(s,€)V (5,8) = 225U (s,€,9),

n € (0, H],

where we have used the explicit expressions for CVQ and V. Therefore,
the results from the last paragraph also yield
(319) QU+ i€, &)V (1 +io,£)(&, )]
< 2207 + &)1 2|U (1 + o, &, )4 (60, €)|
¥ (&, €)]

for n € (0, H]. The last expression is integrable, establishing (A4) (c).
O

< 2V2(H? 4 )2 f 1

Remark 3.3. The singularities in (3.19) correspond to glancing waves.
Indeed, a plane wave with the dispersion relation &2 = &7 + £ has a
propagation direction which is parallel to the boundary.
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4. Conclusions. Here we discuss in what sense our results are
an incarnation of the Fourier convolution theorem. As shown, the
functions @}, V, and Z define tempered distributions ¢, v, 2. In fact,
1 = /2mq * v, that is, 7 is a convolution in the distributional sense. To
establish this statement, first choose ¢ € C§°(R?), and define

(4.1) we(t,x) = /d/\/dyV(/\,y)go(t—f—)\,x-i-y)
R R2

:/dA /dyvu,y)so(tH,xw),
0 lyI<R+X

where the second equality stems from the assumed support properties
for V. Since V is not of compact support, w, ¢ C§°(R3) in general.
However, we define the pairing (g+v, @) as (2m)~3/2(q, w,,), provided the
latter exists. Theorem 5.1.1 of [5] motivates this definition; however,
the (2m)~3/2 factor here stems from our “democratic” convention for
the Fourier transform (with 27 factors appearing symmetrically in the
transform and its inverse). This convention is different from that
in [5]. Since ¢ is only supported for non-negative times, the w, in
(g, wy) is then effectively of compact support. These observations show
g+v € D'(R?). Further calculation, relying on exchange of integrations,
shows that (2m)73/2(g,w,) = (27)"1/2(1, ), whence, 1 = v/27¢ * v in
D'(R?), and so also in S’ (R?).

Since, as shown in the last paragraph, : = v/27wg*v, a naive statement
of the Fourier convolution theorem would be

(4.2) § = V2rdh,

a formal statement only! A literal interpretation of this statement is
problematic, and we examine in what sense it does hold. Theorem 2.10
above shows that the distributional Fourier transform 72 = v/27(q * v)"
is induced through integration by the function

(4.3) ﬁ(fo,ﬁ) = @@(50,5)‘7(&),5)-

This result is a form of the Fourier convolution theorem; however, 2
cannot be directly expressed in terms of ¢ and 9. Indeed, a standard
interpretation of gt is problematic, since 9 need not be a multiplier on
S’ (R3); see [5] for a discussion of multipliers. The function V which
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induces ¥ does not have the requisite smoothness to define a map from
S(R3) to itself.

To achieve a “pure distributional” statement of our results in the
form of a Fourier convolution theorem, we follow a different route.
Define Vr to be V such that Vp(t,-) = V(¢,-) for t < T, but Vp(t,-) =0
for ¢t > 2T. Moreover, we may arrange for Vp to be continuous in its
arguments. The cut-off function Vi then defines a distribution vr of
compact support. In this case, ¥ is a multiplier on S’(R?). Also,
1r := V27mq x v — 1 in S’(R?). These observations and a standard
distributional form [5] of the Fourier convolution theorem show that

(4.4) 1=V2m(qgxv)" = Tlim V2rqir,
— 00

with the limit holding in &’(R?). We view this result as a nonstandard
instance of the Fourier convolution theorem.

We close with remarks on an alternative to (1.5), namely, the (—)
choice in (1.8),

(4.5) W (s,€,0) = —27%(s — /2 + E)U(s,,0),

which relates the incoming characteristic variable directly to the funda-
mental wave variable. In [9, Appendix], this relationship was formally
inverted to achieve the spacetime relationship

t
- _ o-1/2 , 19 / /U(t’,x’,é)
(4.6) W~ (t,x,0) = -2 /dt o dsx =)
0 |x—x'|=t—t’
where, as in (1.4), the formula features arc-length measure along a
ring. This formula was apparently first discovered by Weston [11].
Remarkably, (4.6) can also be derived in spacetime directly from the
wave equation via integration by parts [9]. We have been unable to
find a corresponding “spacetime derivation” of either (1.1), (1.11), or
(1.12).
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A. APPENDIX
A.1. Analytic function s + /s2 + £2. We assume throughout that
1, &> 0and s =n+1& for & € R.
Definition A.1. With —7/2 < 01, 05 < 7/2, we write
(A1) s=n+ify = —i& 4 p1e?t = i€ + pyel®?,

and, using this expression, define

(A.2) \/m = p}/2p5/2ei(1/2)(91+92).

The restrictions on #; and 65 ensure that \/s2 + £2 has positive real
part for n = Res > 0. From (A.1) and (A.2),

(A.3)
s+ /82 +E2= (1/2)p1€i91 + (1/2)p26i02 + p%/Qp;/Qei(l/z)wl"‘e?)
= (1/2)([)}/261(1/2)91 + p;/261(1/2)92)2.

A.2. Argument, modulus and inverse of s++/s2 + £2. Inspecting
the first right-hand expression in (A.3), we see from the angle restric-

tions that s+ 1/s? + £2 has strictly positive real part (assuming, as we
are, that Res > 0). Moreover, the second right-hand expression yields

(A4) |s+V/s2+ &2 = (p1+p2+2p}/2pé/2cosq9)/2,

where ¢ := (61 — 62)/2. Since —7w < 01 — 02 < 7, we have —7/2 < ¥ <
7/2 and cos¥ is positive. It follows that

(AB) s+ s>+ > (p1+p2)/2> (1€ + &l + 1€ —&l)/2 > €
Formula (A.3) also establishes the following.

Claim A.2. Let w = s+ +/s? + &2. Then, the inverse function is
(A.6) s=(w—&wl)/2.

Proof. The claim is trivial to formally establish, but we confirm it
using the definition (A.3). From (A.1), we have

(A7) 4¢% = —(pleiel — p26i02)2,
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where the left-hand side is manifestly positive and real since p;e'?t and
p2€2 have the same real parts, as is geometrically seen. Substitution
of w=(1/2) (p%/zei(lm)gl + p;/261(1/2)92)2 into the right-hand side of
(A.6) followed by use of (A.7) consistently yields

(A.8) s = (p1e? + pae'??) /2,

a formula which also follows from (A.1). O

A.3. Key inequality. Here, we establish the result (2.26).

Claim A.3. |s+/s2 + &| > n+ /1?2 + €.

Proof. Again, set w = s + y/s2 + £2, and consider the polar form
w = rel¥ where r > £, as seen above. From s = n +i&, and (A.6),

(A9) n=(1/2)( - eost, & = (1/2)(r + V) sin.
Therefore, |w| = r corresponds to an ellipse in the s-plane:

2

(A.10) 12 Jr% =1, a(r):=(r—="1/2, br):=@r+r1))/2
Respectively, a and b are the semi-minor and semi-major axes. These
parameters are increasing with increasing r > £. Whence concentric
semi-circles w = re'¥ for —7/2 < ¢ < 7/2 in the w-plane correspond
to concentric semi-ellipses in the right-half s-plane. The value r = £
corresponds to the degenerate semi-ellipse (segment) between —i¢ and
i€, and r = oo to the infinite semi-circle (a ~ b as r — 00).

Choose a fixed r = R > £ and corresponding semi-minor A := a(R)
and semi-major B := b(R) axes. Notice A and R (both real positive)
by (A.10) are related in the same fashion as s and w (both generally
complex) in (A.6). Therefore, R = A++/A? + £2. Consider the vertical
line s = A+iR, which intersects the ellipse (/A4)?+(&/B)? = 1 only at
s = A. At all other points besides s = A the line intersects other ellipses
whose corresponding r-values are larger than the fixed one R. For any

point on the line, we then have |s++/$2 + 2| =r > R = A+ /A% + §2

namely, the claimed inequality.
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