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CORRIGENDUM TO
THE MINIMUM MATCHING ENERGY

OF BICYCLIC GRAPHS WITH GIVEN GIRTH

GANG MA, SHENGJIN JI AND JIANFENG WANG

ABSTRACT. The matching energy of a graph was intro-
duced by Gutman and Wagner in 2012 and defined as the
sum of the absolute values of zeros of its matching polyno-
mial. In [16], the main result, Theorem 3.4, is in error. In
this paper, the correct result is given.

1. Introduction. In [16], the matching energy of bicyclic graphs
with n vertices and girth g was studied. The following theorem [16,
Theorem 3.4], where Sn−g(u)θ(1, g − 3, 1) denotes the graph obtained
by identifying the center of the star Sn−g with u, a vertex of degree
three in θ(1, g − 3, 1) was given.

Theorem 1.1. For any graph G ∈ Bn,g, we have

G ≽ Sn−g(u)θ(1, g − 3, 1),

and thus,
ME(G) ≥ ME(Sn−g(u)θ(1, g − 3, 1)),

where equality holds if and only if G ∼= Sn−g(u)θ(1, g − 3, 1).

It is easy to see that Sn−g(u)θ(1, g − 3, 1) has girth 4, and so,
Sn−g(u)θ(1, g−3, 1) /∈ Bn,g. In this paper, the correct result of Theorem
1.1 is given, that is, the extremal graphs with minimum matching
energy among all bicyclic graphs with given order and girth is given.

All graphs in this paper are finite, connected, simple and undirected.
The notation and terminology that will be used can be found in [1].
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Let G = (V,E) be a graph with order |V | = n and size |E| = m.
A matching in a graph G is a set of pairwise nonadjacent edges. A
matching is called a k-matching if it is of size k. Let mk(G) denote
the number of k-matchings of G, where m1(G) = m and mk(G) = 0
for k > ⌊n/2⌋ or k < 0. In addition, define m0(G) = 1. The matching
polynomial of graph G is defined as

α(G) = α(G, x) =
∑
k≥0

(−1)kmk(G)xn−2k.

Let λ1, λ2, . . . , λn be the eigenvalues of a graph G. The energy of graph
G [6] is defined as

E(G) =
n∑

i=1

|λi|.

An important tool of graph energy is the Coulson integral formula [6]
(when G is a tree T ):

(1.1) E(T ) =
2

π

∫ +∞

0

1

x2
ln

[∑
k≥0

mk(T )x
2k

]
dx.

The graph energy has been widely studied by theoretical chemists and
mathematicians. For more details, see the book on graph energy [18]
and reviews [8, 9].

In 2012, Gutman and Wagner [10] defined the matching energy of a
graph G. Let G be a simple graph, and let µ1, µ2, . . . , µn be the zeros
of its matching polynomial. Then,

ME(G) =
n∑

i=1

|µi|.

Similarly to equation (1.1), the matching energy also has a beautiful
formula, as follows [10]:

(1.2) ME(G) =
2

π

∫ +∞

0

1

x2
ln

[∑
k≥0

mk(G)x2k

]
dx.

By equation (1.2) and the monotonicity of the logarithm function, the
matching energy of a graph G is a monotonically increasing function
of any mk(G). This means that, if two graphs G and G′ satisfy
mk(G) ≤ mk(G

′) for all k ≥ 1, then ME(G) ≤ ME(G′). If, in addition,
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mk(G) < mk(G
′) for at least one k, then ME(G) < ME(G′). This

motivates the introduction of a quasi-order ≽ as follows: if two graphs
G1 and G2 have the same order and size, then

G1 ≽ G2 ⇐⇒ mk(G1) ≥ mk(G2) for 1 ≤ k ≤
⌊n
2

⌋
.

If G1 ≽ G2 and there exists some k such that mk(G1) > mk(G2), then
we write G1 ≻ G2. If G1 ≽ G2, we say that G1 is m-greater than G2,
or G2 is m-smaller than G1. If G1 ≽ G2 and G2 ≽ G1, the graphs G1

and G2 are said to be m-equivalent ; this is denoted by G1 ∼ G2. If
G1 ≻ G2, we say that G1 is strictly m-greater than G2. It is easy to
see that

G1 ≽ G2 =⇒ ME(G1) ≥ ME(G2)

and
G1 ≻ G2 =⇒ ME(G1) > ME(G2).

Since the research of extremal graph energy is an interesting prob-
lem, the study on extremal matching energy is also interesting.

A connected simple graph with n vertices and n, n+ 1, n+ 2 edges
are called unicyclic, bicyclic and tricyclic graphs, respectively. In [10],
the authors gave some elementary results on the matching energy and
obtained that ME(S+

n ) ≤ ME(G) ≤ ME(Cn) for any unicyclic graph G,
where S+

n is the graph obtained by adding a new edge to the star Sn. In
[12], Ji, et al., proved that if G is a bicyclic graph with n ≥ 10 or n = 8,
ME(S∗

n) ≤ ME(G) ≤ ME(P 4,n−4
n ). In [13], the authors characterized

the connected graphs (and bipartite graphs) of order n having minimum
matching energy with m (n + 2 ≤ m ≤ 2n − 4) edges. In particular,
among all tricyclic graphs of order n ≥ 5, ME(G) ≥ ME(S∗∗

n ) with
equality if and only if G ∼= S∗∗

n or G ∼= Kn−4
4 . In [3], extremal tricyclic

graphs with maximum matching energy were given. For more results
about matching energy, see [2, 4, 11, 14, 15, 17, 19, 20, 21, 22, 23].

Denote by Bn,g the set of all connected bicyclic graphs with order n
and girth g. Now, define two special classes of bicyclic graphs. Let
∞n(g, r) denote the graph obtained by the coalescence of two end
vertices of a path Pn−g−r+2 with one vertex of two cycles Cg and
Cr, respectively, and let θ(r, s, t) denote the graph obtained by fusing
two triples of pendent vertices of three paths Pr+2, Ps+2, Pt+2 to two
vertices, see Figure 1. Clearly, any bicyclic graph must contain either
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the left graph or the right graph in Figure 1 as an induced graph, called
its brace. The set Bn,g can be partitioned into two subsets B1

n,g and

B2
n,g, where B1

n,g is the set of all bicyclic graphs which contain a brace

of the form ∞n′(g, r), and B2
n,g is the set of all bicyclic graphs which

contain a brace of the form θ(r, s, t).

u w1u1

u2

C r

u r-1

u r v w t

w t-1

w3

w2v1

v2

vs

u3

Cg

u vx1 xn-g-r

Figure 1. Graph ∞n(g, r) is on the left. Graph θ(r, s, t) is on the right.

The main result of this paper is the following theorem which gives the
graph in Bn,g with minimummatching energy. Let θ(a, b, b)(u)Sn−g−b+1

be the graph obtained by identifying the vertex u of θ(a, b, b) with the
center of star Sn−g−b+1, see Figure 2 (b).

Theorem 1.2. Let g ≥ 3 be an integer, a = ⌊(g − 2)/2⌋ and b = g −
2− a. For any G ∈ Bn,g, we have G ≽ θ(a, b, b)(u)Sn−g−b+1, and thus,

ME(G) ≥ ME(θ(a, b, b)(u)Sn−g−b+1),

where equality holds if and only if G ∼= θ(a, b, b)(u)Sn−g−b+1.

2. Preliminaries. We now exhibit some basic results which will be
used later.

Lemma 2.1 ([10]). Let G be a graph and e one of its edges. Let G−e
be the subgraph obtained by deleting from G the edge e, but keeping all
of the vertices of G. Then:

ME(G− e) < ME(G).

In [5, 7], two fundamental identities are established as follows.
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Lemma 2.2. Let G be a graph. Then, for any edge e = uv and N(u) =
{v1(= v), v2, . . . , vt}, we have the following two identities:

(2.1) mk(G) = mk(G− uv) +mk−1(G− u− v),

(2.2) mk(G) = mk(G− u) +

t∑
i=1

mk−1(G− u− vi).

Let Gi (i = 1, 2, . . . , n−1) be the graph obtained from G (v ∈ V (G))
by adding n−1 new vertices to G in the following manner: at v, attach
i − 1 pendent edges and a path of length n − i. It is easy to see that
the next lemma holds.

Lemma 2.3 ([16]). G1 ≻ G2 ≻ · · · ≻ Gn−1.

3. Proof of the main result. The following theorem and lemma
are from [16, Theorems 3.1, 3.2]. Let G(u)H be the graph obtained
by identifying a common vertex of G and H. Let Sn(g, g) be the graph
in B1

n,g with n+ 1− 2g pendent edges attached at the common vertex
of two Cg (see Figure 2 (a)). Let θ(r, s, t)(u)Sn−g−t+1 be the graph
obtained by identifying the vertex u of θ(r, s, t) with the center of star
Sn−g−t+1 (see Figure 2 (b)).

Theorem 3.1 ([16]). For any graph G ∈ B1
n,g, we have G ≽ Sn(g, g)

with equality if and only if G ∼= Sn(g, g).

Lemma 3.2 ([16]). Let r, s, t be three integers with r+ s+2 = g. For
any G ∈ B2

n,g with θ(r, s, t) as its brace, G ≽ θ(r, s, t)(u)Sn−g−t+1 with
equality if and only if G ∼= θ(r, s, t)(u)Sn−g−t+1.

Theorem 3.3. Let g ≥ 3 be an integer, a = ⌊(g − 2)/2⌋ and b =
g − 2− a. For any graph G ∈ B2

n,g, we have G ≽ θ(a, b, b)(u)Sn−g−b+1

with equality if and only if G ∼= θ(a, b, b)(u)Sn−g−b+1.

Proof. Suppose that G has θ(r, s, t) as its brace where r+ s+2 = g
and r ≤ s ≤ t. From Lemma 3.2, G ≽ θ(r, s, t)(u)Sn−g−t+1.

Claim 3.4. If s < t, then θ(r, s, t)(u)Sn−g−t+1 ≻ θ(r, s, s)(u)Sn−g−s+1.
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Figure 2. (a) The graph Sn(g, g). (b) The graph θ(r, s, t)(u)Sn−g−t+1.

Proof. LetG1=θ(r, s, t)(u)Sn−g−t+1 andG2=θ(r, s, s)(u)Sn−g−s+1.
From equation (2.1), we obtain

mk(G1) = mk(G1 − vwt) +mk−1(G1 − v − wt)

and
mk(G2) = mk(G2 − vws) +mk−1(G2 − v − ws).

Note that G1 − vwt
∼= Cg(u)Sn−g−t+1(u)Pt+1 and G2 − vws

∼=
Cg(u)Sn−g−s+1(u)Ps+1. Since s < t, from Lemma 2.3, mk(G1−vwt) ≥
mk(G2 − vws), and the inequality is strict for some k.

Also, note that G1 − v − wt
∼= Pr+1(u)Ps+1(u)Pt(u)Sn−g−t+1 and

G2−v−ws
∼= Pr+1(u)Ps+1(u)Ps(u)Sn−g−s+1. Since s < t, from Lemma

2.3, mk−1(G1 − v − wt) ≥ mk−1(G2 − v − ws), and the inequality is
strict for some k. �

Claim 3.5. If s − r ≥ 2, then θ(r, s, s)(u)Sn−g−s+1 ≻ θ(r + 1, s − 1,
s− 1)(u)Sn−g−s+2.

Proof. Let G2 = θ(r, s, s)(u)Sn−g−s+1 and G3 = θ(r + 1, s − 1,
s− 1)(u)Sn−g−s+2. From equation (2.1), we obtain

mk(G2) = mk(G2 − vws) +mk−1(G2 − v − ws)

and
mk(G3) = mk(G3 − vws−1) +mk−1(G3 − v − ws−1).



CORRIGENDUM TO THE MINIMUM MATCHING ENERGY 1989

Note that G2 − vws
∼= Cg(u)Sn−g−s+1(u)Ps+1 and G3 − vws−1

∼=
Cg(u)Sn−g−s+2(u)Ps. From Lemma 2.3,

mk(G2 − vws) ≥ mk(G3 − vws−1),

and the inequality is strict for some k. Furthermore, note that G2 − v
−ws

∼= Pr+1(u)Ps+1(u)Ps(u)Sn−g−s+1 and G3−v−ws−1
∼= Pr+2(u)Ps

(u)Ps−1(u)Sn−g−s+2. From equation (2.1), we obtain

mk−1(G2 − v − ws) = mk−1(G2 − v − ws − vsvs−1)

+mk−2(G2 − v − ws − vs − vs−1)

and

mk−1(G3 − v − ws−1) = mk−1(G3 − v − ws−1 − ur+1ur)

+mk−2(G3 − v − ws−1 − ur+1 − ur).

In addition, note thatG2−v−ws−vsvs−1
∼=Pr+1(u)Ps(u)Ps(u)Sn−g−s+1

and G3 − v − ws−1 − ur+1ur
∼= Pr+1(u)Ps(u)Ps−1(u)Sn−g−s+2. From

Lemma 2.3, mk−1(G2−v−ws−vsvs−1) ≥ mk−1(G3−v−ws−1−ur+1ur)
and the inequality is strict for some k.

Now, we see that

G2 − v − ws − vs − vs−1
∼= Pr+1(u)Ps−1(u)Ps(u)Sn−g−s+1

and

G3 − v − ws−1 − ur+1 − ur
∼= Pr(u)Ps(u)Ps−1(u)Sn−g−s+2.

From Lemma 2.3, mk−2(G2 − v − ws − vs − vs−1) ≥ mk−2(G3 − v −
ws−1 − ur+1 − ur), and the inequality is strict for some k. �

First apply Claim 3.4 to obtain the form θ(r, s, s)(u)Sn−g−s+1, and
then repeatedly apply Claim 3.5 until we have r ≤ s ≤ r + 1. From
here, it is easy to verify that this works for r = a = ⌊(g − 2)/2⌋ and
s = b = g− 2−a, establishing the result and completing the proof. �

Theorem 3.6. Let g ≥ 3 be an integer, a = ⌊(g − 2)/2⌋ and b = g −
2− a. Then, Sn(g, g) ≻ θ(a, b, b)(u)Sn−g−b+1.

Proof. Let G = Sn(g, g) and H = θ(a, b, b)(u)Sn−g−b+1. Let u′
0 be

the common vertex of the two copies of Cg in G = Sn(g, g). Denote
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the vertices of one Cg in G by u′
0, u

′
1, u

′
2, . . . , u

′
g−1 subsequently. From

equation (2.1), we obtain

mk(G) = mk(G− u′
1u

′
2) +mk−1(G− u′

1 − u′
2)

and
mk(H) = mk(H − vwb) +mk−1(H − v − wb).

Note that

G− u′
1u

′
2
∼= Cg(u0)Sn+3−2g(u0)Pg−1

and

H − vwb
∼= Cg(u)Sn−g−b+1(u)Pb+1.

When g = 3, g − 1 = b + 1; thus, mk(G − u′
1u

′
2) = mk(H − vwb).

When g ≥ 4, g − 1 > b + 1, and, from Lemma 2.3, we get mk(G −
u′
1u

′
2) ≥ mk(H − vwb) such that the inequality is strict for some k.

Furthermore, note that G − u′
1 − u′

2
∼= Cg(u0)Sn+2−2g(u0)Pg−2 and

H − v − wb
∼= Pa+1(u)Pb+1(u)Pb(u)Sn−g−b+1. G − u′

1 − u′
2 has one

more edge than H − v − w, and Pa+1(u0)Pb+2(u0)Sn+2−2g(u0)Pg−2 is
a proper subgraph of G− u′

1 − u′
2. Finally, we see that g − 2 ≥ b, and,

from Lemmas 2.1 and 2.3, we obtain that

mk−1(G− u′
1 − u′

2) > mk−1(Pa+1(u0)Pb+2(u0)Sn+2−2g(u0)Pg−2)

≥ mk−1(H − v − wb).

The inequality is strict for some k. This completes the proof. �

Theorem 1.2 now follows from Theorem 3.1, Lemma 3.2, Theorem
3.3 and Theorem 3.6.
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