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EIGENVALUES FOR SYSTEMS OF
FRACTIONAL p-LAPLACIANS

LEANDRO M. DEL PEZZO AND JULIO D. ROSSI

ABSTRACT. We study the eigenvalue problem for a sys-
tem of fractional p-Laplacians, that is,

(=Ap)'u= A%\u|o‘72u|v\ﬂ in Q,
(—Ap)*v = ALJu|* P20 in @,
u=v=0 in Q¢ =RV \ Q.

We show that there is a first (smallest) eigenvalue that is
simple and has associated eigenpairs composed of positive
and bounded functions. Moreover, there is a sequence of
eigenvalues A\, such that A\, — oo as n — oo.

In addition, we study the limit as p — oo of the first ei-
genvalue, A1, and we obtain [A1,]'/P — A1 oo as p — oo,

where
o fmax{[uly,c0; [V]s,00 } 1 R
A1,00 = inf T 1,—1“ : = .
(o) U " o' =1 Loo () R(Q)
Here,

R(Q) := maxdist(z,0Q) and [w]t,c0 := sup M
v€Q) @yea eyl

Finally, we identify a PDE problem satisfied, in the vis-
cosity sense, by any possible uniform limit along subse-
quences of the eigenpairs.

1. Introduction. In this work, we deal with the nonlocal nonlinear
eigenvalue problem

Ay = /\%|u|°‘_2u|v|’3 in ©,
A

(_
(L.1) (—Ap)*v = AZJul*w]’ 2y in Q,
u=v=0 in Q¢ =RV \ Q,
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where p > 2, r,s € (0,1) and «, 8 € (0,p) are such that
a+B=p, min{a;5} =1,
and ) is the eigenvalue. Here, and subsequently, € is a bounded smooth

domain in RY and (—A,)" denotes the fractional (p, t)-Laplacian, that
is,

u(@) — u()|P~*(u(@) — u(y))
|z —y|N

(—Ap) u(x) = 2PV/ dy, =z € Q.

RN
The natural functional space for our problem is

W)(Q) := WP (Q) x WHP(K).

Here, WhP (©2) denotes the space of all u that belong to the fractional
Sobolev space

WhP(Q) := {’U e LP(Q): /m dedy < oo}

such that w € W*P(RY) where u is the extension by zero of u and
02 = Q x Q. For a more detailed description of these spaces and some
of their properties, see for instance, [1, 15].

Note that, in our eigenvalue problem, we consider two different
fractional operators (since we allow for ¢t # s), and therefore, the
natural space to consider here, that is, W,(,T’S) (Q) =WnP(Q) x WP(Q)
is asymmetric.

In this context, an eigenvalue is a real value A\ for which there is a
(u,v) € Wpr’s)(Q) such that uv # 0, and (u,v) is a weak solution of
(1.1), i.e.,

[ lee) = )P ate) ) 0t) = )
]RZN

|z —y| NP

:)\g/ lu|® 2 ulv|Pw dx
pJa
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R TO R CE RO
]R2N

|z — y [N

:)\é/ |u|®|v|?~2vz da
P Ja

for any (w,z) € W,(,T’S)(Q). The pair (u,v) is called a corresponding
elgenpair.

Observe that, if A is an eigenvalue with eigenpair (u,v), then uv # 0

and
[ul?,, + [v]%

)\ — 4 S,p
y4 )
|(u7v)‘a,ﬂ
where
p . [ |w@) —wl)”
[w]t’p = /RQN = gt dz dy
and
(o)l o= [ fulfolde
Thus,
A Z )\1,p7
where
N AL )]4 s
(1.2) A1,p = inf {M: (u,v) € WZ(, #)(Q), uv # 0}.

Our first aim is to show that A;, is the first eigenvalue of our
problem. In fact, in Section 3, we prove the following result.

Theorem 1.1. There is a nontrivial minimizer (up,vp) of (1.2) such
that both components are positives, up,vp > 0 in Q, and (up,vp) is a
weak solution of (1.1) with A = A1 ,. Moreover, A1, is simple.

Finally, there is a sequence of eigenvalues A\, such that \,, — oo as
n — o0o.

It is yet to be ascertained whether or not the first eigenvalue is iso-
lated. Here, our aim is to study A;, for large p. Towards this end,
we look for the asymptotic behavior of A\, as p =+ co. From now on,
for any p > 1, (up,vp) denotes the eigenpair associated to Aq, such
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that |(u,v)|a,s3 = 1. In order to study the limit as p — oo, we need to
assume that

(1.3) pmin{r, s} > N,

and

(1.4) lim 22 =T, 0<T<1.
p—oo P

Note that the last assumption and the fact that oy, + 8, = p implies

lim @:1—1‘, 0<1-T<1.
p—oo p
In order to state our main theorem concerning the limit as p — oo,
we need to introduce the following notation:

[w]t,oo = sup M

(z,y)eQ jz —yl*

)

W) = {w € Co(Q): (w0 < 00},
WE(Q) 1= W2 (Q) x (),

and

R(Q) := max dist(z, 09).

Now, we are ready to state our second result. It states that there is
a limit for [\ ,]'/? and that this limit verifies both a variational char-
acterization and a simple geometrical characterization. In addition,
concerning eigenfunctions, there is a uniform limit (along with subse-
quences) that is a viscous solution to a limit PDE eigenvalue problem.
The proofs of our results concerning limits as p — oo are shown in
Section 4.

Theorem 1.2. Under assumptions (1.3) and (1.4), we have that

i 1/p —
pli{go[)\l,p] - Al,oo>

where

l,00 =

. max{[u]r 00 [U]s oo} (r,s) }
inf ’ =1 (u,v) € W () ¢
ST el .
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Moreover, we have the following geometric characterization of the limit

eigenvalue:
1 ] (1-T)s+Tr

A = | ===
o [R(Q)
Lastly, there is a sequence p; — oo such that (up,,vp,) — (u,v) con-

verges uniformly in €, where (Uso, Voo) 15 a minimizer of A oo, and a
viscous solution to

min{L, u(z); L u(z) — Ay oul (2)o! " T(2)} =0 in Q,

min{ L oou(z); LT u(z) — Ay soul (z)o " (z)} =0 in Q,
u=v=_0 in RN\ Q,
where

Licow(x) := szoow(a:) + L, ow(r)

— sup w(x)—wf(y) + inf w(w)—w*(y)
yern |z =yl yeRN |z — gyt

To end the introduction, we briefly refer to previous references on
this subject. The limit of p-harmonic functions (solutions to the local p-
Laplacian, that is, —A,u = —div(|Vu|P~2Vu) = 0) as p — oo, has been
extensively studied in the literature (see [3, 4]) and naturally leads to
solutions of the infinity Laplacian, given by —A u = —VuD?u(Vu)! =
0. Infinity harmonic functions (solutions to —Au = 0) are related to
the optimal Lipschitz extension problem (see the survey [3]) and find
applications in optimal transportation, image processing and tug-of-
war games (see, e.g., [10, 19, 25, 26], and the references therein). In
addition, limits of the eigenvalue problem related to the p-Laplacian
with various boundary conditions have been exhaustively examined
[18, 22, 23, 27, 28] and naturally yield the infinity Laplacian eigen-
value problem (in the scalar case)

(1.5) min{|Vu| — Au, —Asu} =0.

In particular, the limit, as p — oo of the first eigenvalue A, p of the p-
Laplacian with Dirichlet boundary conditions and of its corresponding
positive normalized eigenfunction u,, has been studied in [22, 23]. It
was proven there that, up to a subsequence, the eigenfunctions wu,, uni-
formly converge to some Lipschitz function ue, satisfying ||teol|ec = 1
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and

r N
A6 o)™ = A= Lo Tle ~ RO
Moreover, uq is an extremal for this limit variational problem, and the
pair Us, Aco,p 18 & nontrivial solution to (1.5). This problem has also
been studied from an optimal mass-transport point of view [11]. Note
that, here, the fact that we are dealing with two different operators in
the system is reflected in that the limit is given by

)

(1-T)s+I'r

A= |1
hee [R(Q)]

a quantity that depends upon s and t.

On the other hand, there is rich recent literature concerning eigen-
values for systems of p-Laplacian type (we refer, e.g., to [5, 12, 14, 16,
29], and the references therein). The only known references concerning
the asymptotic behavior as p goes to infinity of the eigenvalues for a
system are [6, 12], where the authors studied the behavior of the first
eigenvalue for a system with the usual local p-Laplacian operator.

Finally, concerning limits as p — oo in fractional eigenvalue problems
(a single equation), we refer the interested reader to [9, 17, 22]. In
[22], the limit of the first eigenvalue for the fractional p-Laplacian was
studied, while in [17], higher eigenvalues were considered.

2. Preliminaries. We begin with a review of the basic results that
will be needed in subsequent sections. The known results are generally
stated without proofs, but we provide references where the proofs may
be found. In addition, we introduce some of our notational conventions.

2.1. Fractional Sobolev spaces. Let s € (0,1) and p € (1,00).
There are several choices for a norm for W#?(€2). We choose the fol-
lowing:

a2 <= [l g + lulZp

_ p
i = [ MO
o=

|z — y|N e

where
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Observe that, for any u € W“’(Q), we obtain
uls,p < [u]sp-

Our first aim is to show a Poincaré-type inequality.

Lemma 2.1. Let s € (0,1). For any p > 1, there is a positive constant
C, independent of p, such that

WN . —s 178
[ult , > g(dlam(ﬁ) +1) p||u||’zp(m for all w € W*P(Q),

where wy 1s the N -dimensional volume of an Euclidean ball of radius 1.

Proof. Let u € W”’(Q). Then,

7p—/ "U/ |p/Ql x_ |N+Sp dydx7

where Q1 = {y € Q°: dist(y,Q2) > 1}. Now, we observe that, for any
x € Q, we have Bgy1(x)¢ C ©p where d = diam(2). Thus,

dy dy
N+sp = N+sp
Q1 |x - y‘ Bd+1 :E)L ‘x - y|

< dp  wy
= WN = d+1
/d+1 psPtl Sp P )

for all z € Q. Therefore, we conclude that

[u]? sp = 7(d+ 1)~ sPH“Hip(Qy U
The next result will be one of the keys in the proof of Theorem 1.2.

Lemma 2.2. Let s € (0,1) and p > N/s. If ¢ € (N/s,p) and t =
s — N/q, then
lullLaoy < 12177 |lul| o @)

and
|ult,g < diam(Q)N/P|QPP/ 2P|,

for all w € W*P(Q).
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Proof. Since q¢ < p, the first inequality is trivial. Therefore, we
only need to prove the second one. Let u € W*P(Q). It follows from
Holder’s inequality that

— q
02

|z — yl*

. p q/p
< (/ |u(w)u(y)|dxdy> ‘Q|2—2q/p
02

|z — y|*P

q/p
< diam(@)Norr( [ DO, 0 N gz
B o |z —y[Pty Y 7

as we wanted to show. O

2.2. Weak and viscous solutions. Here, we discuss the relation be-
tween the weak solutions of

u=>0 in Q°,
and the viscous solutions of the same problem.

We begin by introducing the precise definitions of weak and viscous
solutions.

Definition 2.3. Let f € W—P(Q) (the dual space of Ws’p(Q)) and
u € WP (Q). We say that u is a weak solution of (2.1) if and only if

/ |u(z) — u(y)P~*(u(z) — uly))(v(z) — v(y))

|z —y| NP

dx dy = (f,v)

for every v € W”’(Q). Here, (-,-) denotes the duality pairing of
W#P(Q) with W—5P(Q).

Definition 2.4. Let p > 2, f € C(Q) and u € C(RY) be such that
u =0 in Q°. We say that u is a viscous subsolution of (2.1) at a point
zo € Q if and only if, for any test function p € CZ(RY) such that
u(mg) = p(z0) and u(z) < ¢(z) for all z € RV, we have that

21/ lp(x0) — o(y) P2 (e (x0) — (y))
RN

|zg — y|NFeP

dy < f(xg).
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We say that u is a viscous supersolution of (2.1) at a point z¢ € Q if
and only if, for any test function ¢ € CZ(RY) such that u(xq) = (o)
and u(z) > ¢(z) for all z € RV, we have that

2/ le(z0) — ()P 2(p(x0) — ©(y))
RN

|0 — y| NP

dy > f(xo).

Finally, u is called a wviscous solution of (2.1) if it is both a viscous
super and subsolution at x( for any xg € Q.

By carefully following the proof of [24, Proposition 11], the next
result is obtained.

Theorem 2.5. Let p > 2 and f € C(Q). If u is a weak solution of
(2.1), then it is also a viscous solution.

The next result is key in showing that every eigenpair associated to
the first eigenvalue has a constant sign. For the proof, we refer to [24,
Lemma 12].

Lemma 2.6. Let p > 2. Assume that u >0 and u =0 in Q°. Ifu is
a viscous supersolution of (—A,)°u = 0 in Q, then either u > 0 in Q
oru=0 in RV,

3. The eigenvalue problem. We begin by showing that A , is the
first eigenvalue of our problem.

Lemma 3.1. There is a nontrivial minimizer (u,v) of (1.2) such that
u,v > 0 almost everywhere in Q, and (u,v) is a weak solution of (1.1)
with A = A1 p.

Proof. Since C§°(2) x C§°(Q2) C ngr’s)(Q), we have

(3.1) O<inf{M'(u v) € W) (Q) uv;‘é0}<oo
D 0EE Tag, ) ENTE: |

Now, consider a minimizing sequence {(t,,vy)}neny normalized ac-
cording to |(un,vn)|(a,sy = 1. It follows from (3.1) that {(un,vn)}
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is bounded in WI(,T’S)(Q). Then, by the compactness of the Sobolev
embedding theorem, there is a subsequence {(un;,vn;)} en such that
Up; — u weakly in VNV”’(Q), vp,; — v weakly in VN\/S”’(Q),
Upn; — u strongly in LP(Q), U, — v strongly in LP(Q).

Thus, |(u,v)](,s) =1, and

[ul?, + V], < lijrg inf{[un, 17, + [on, 12} = A1

Therefore, (u,v) is a minimizer of (1.2). Moreover, since

(ull}p + [10]1E, < [ul?y + V75

we can assume that v and v are nonnegative functions.

The fact that this minimizer is a weak solution (1.1) with A = Ay,
is straightforward and can be obtained from the arguments in [24].

Finally, since u and v are nonnegative functions and (u,v) is a weak
solution of (1.1) with A = Ay ,, by [7, Theorem A.1], we obtain that u
and v are positive functions almost everywhere in 2. ]

The next result follows from the classical inequality

lla] — 16| < |a —b] for all ab < 0.

Corollary 3.2. If (u,v) is an eigenpair corresponding to A1 p, then u
and v have constant sign.

Our next aim is to prove that all of the eigenpairs associated to A; ,
are bounded. For this, we follow ideas from [8, Theorem 3.2].

Lemma 3.3. If (u,v) is an eigenpair associated to A1, then u,v €
L (RN).

Proof. Without loss of generality, we can assume that » < s and
u,v > 0 almost everywhere in ).

It follows from the fractional Sobolev embedding theorem (see, e.g.,
[13, Corollary 4.53, Theorem 4.54]) that, if » > N/p, then the assertion
holds.
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Thus, we need to prove that the assertion also holds in the following
cases:

Case 1. r < N/p;
Case 2. r = N/p.

Before we start analyzing the different cases, we will show two ine-
qualities. For every M > 0, we define

up (x) == min{u(z), M} and vy (z):=min{v(x), M}.

Since (u,v) € WS™(Q), it is not difficult to verify that (uas,var) €
WS (Q). Moreover, if ¢ > 1, then (ul,,v%,) € W (Q). Hence,
since (u,v) is an eigenpair associated to A1 p, unr < u, vy < v, and
a, B < p, we have

/ |u(z) — u(y)[P~2 (u(@) — u(y)) (ul (=) — vy (y)
R2N

|z — y[N+rP

dx dy

Q

[ o) = P ele) o)) = )
R2N

|z — y [N

< Al,p/ u“vP iy,
Q

Hence, by using [8, Lemma C2], we obtain

+p-1 +p-1
q( » ):D/ |u§\¢/11 P )/P(x) . US\(/II P )/P(y)|p dvdy
R2N

g+p—1 |z — y[NtrP
< )\171,/ uo‘Jrq*lvﬁdz,
Q

—1 —1
. P P/ v](&-ﬁ-P )/P(x) . UE\Z—&-P )/P(y)|p
qg+p—1) Jgen |z — y|N+re

(3.2)

dx dy

< >\17p/ w1y,
Q

We now begin to analyze the different cases.
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Case 1. r < N/p. Since r < s, then p* < p%. Therefore, by Sobolev’s
embedding theorem,

(/ ug\(;ﬂ—l)/p]pidx) PIv;
Q

(¢+p—1)/p

(¢+p—1)/p P
|uyy (z) — upr (v)]
< C(N Q) dr d
— ( 7T7p7 )/]RzN |m_y‘N+Tp X y?

(/ UE\(;erl)/p]pidx)p/pr
Q

< O(N,r5,p,9) /

R2N |z —y|NFre

|,UJ(\Z+P—1)/P(I) . U](\Z—‘rp—l)/?( )|p

dx dy.

Then, by (3.2), we obtain

. p/p;.
( / uggw—l)/p}mdm)
Q
Alp <(Z+p—1>pl/ +q—1
< : w18 4y,
o C(N7 p, Q) p Q
. p/py
</ Ug\(jﬁp—l)/p]prdm)
Q

-1
< )\1717 g+p—1 P / wPTe .
N C(N7T757paQ) p Q

By using Fatou’s lemma and Young’s inequality, we obtain

p/p;
(/ u[(p+p—1)/p]pf»dx>
Q
ALp <p+q—1)p_1(/ p+q—1 / +q-1 )
< U dx vPTI
- C(N,’l",p,Q) p Q * Q ’
p/p;.
(U/‘qu+p—1prIdx>
Q

Alp <q+p_1>p_1</ - / )
< : wPT9 de + [ P91z ).
C(N7T787paQ) p Q Q
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Taking Q@ = (¢ +p — 1)/p, we obtain

Q(N—rp)/QN
< / UQ[NP/(NTP)]dx)
Q
ALp p-1 / op / op
SC(NaTap,Q)Q ( Qu dm+ QU da ’
Q(N—rp)/QN
< / UQ[Np/(NTp)]dI)
Q

ALp -1 / o / o
< ; P P P ]
- C(N,T,S,p,Q)Q ( Qu dx+ Qv dx

Then,

Q 1
Il Zfesn-emmey < G oy @ (1P + 1ol 20y )-

A
Q 1, 1 Q.
||/U||L(pQN/N—rp)p(Q) < mgp (HUHLQp ) + ||UHL5D(Q)).

Hence,

1/Qp
Q Q
(LSS 1 AN

1/Q
< (Gt ) (QY9) /el 2y gy 0| ey
— C(N,T,s,p,ﬂ) L2r(Q) L2r(Q)

1/Qp

Now, taking the following sequence

N
N—rp’

QO =1 and Qn+1 Qn

we have

(Il

21 /o 1/Qu\(p=1)/p (|| ]| 1P I
< (o) (@) ([l et gy + 108 )

Qn
LQf+1P(Q) + HU|

Qnp 1/Qnp
L9n+1P(Q)

for all n € N. Moreover, since
Qn+1 = QnN/(N - Tp),

we have that
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1/Qnp
Qn Qn
(||u||LQ£+1P(Q)+HU||LQ£+1P(Q)>
2A1’ 1/Qnp _ O 0. 1/Qn-1p
<(C(Npm) (@ o= o[l P sty 110 550y

for all n > 2. Then, iterating the last inequality, we obtain

(3.3)
Qnp Qnp )Uan < 2M1p /r 2o 1/
(s e “\CN,7,5,0,9)
n (r—1)/p 1/p
1/9;
<(T1QV2) (1ot ol
1=0
for all n > 2.

Observe that Q,, — 0o as n — oo due to the fact that N/(N — rp)
> 1. Moreover,

00 00 v N N/rpp;.
i=0 Q Tp " 21;[) ° N —=rp

Hence, passing to the limit in (3.3), we deduce

max{|[ul g (), [Vl @)}

< 2M1p NN (N/Tppr)(pl/p)(”up ol? )1/p
B C(Nﬂ"vS,p,Q) N—rp Lr(Q) L () ;

that is, u,v € L ().

Case 2. v = N/p. In this case, W(T ‘S)( Q) — L™(2) x L™(Q) for all
m > 1. Then,

1/2
</ ug\(jw—l)/z}]?pdx) < C(N,r,p,Q)
Q

s 0 (@) — g ()P
X/Rw |z —y| NP

dx dy,
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1/2
</ v%ﬁp_l)/mzpdw) < O(N.1.5.p.9)
Q

x / A ) R vk )]
R2N |z —y|NtrP

dx dy.

Applying the previous reasoning, we obtain

(”u”pr Q) + HU”me(Q))l/Qp

20\ gueye-nim 1/
S(qmspm) (Q7%) (el 25, ) + 11011 50 ()22

Now, taking the sequence

Q=1 and Q7l+1 =20,
the proof follows as in the previous case. |

In order to show that A; , is simple, we will first prove that A, , is the
unique eigenvalue with the following property: any eigenpair associated
to A has a constant sign.

Theorem 3.4. Let (u,v) be an eigenfunction associated to A1, such
that w,v > 0 in Q. If X > 0 is such that there is an eigenpair (w, z)
associated to \ such that w,z > 0, then A = A\ (s,p), and there exist
ki, ko € R such that w = k1u and z = kov almost everywhere in RV,

Proof. Since A1 (s,p) is the first eigenvalue, we have that A;(s,p) <
A. Moreover, by [7, Theorem A.1], u,v > 0 almost everywhere in
since (u,v) is an eigenpair associated to A1, and u,v > 0.

Let k € N, and define wy, := w+1/k and z;, := z+1/k. We begin by
proving that u? /w! ™' € Wrp(Q). Tt is immediate that w? /w?™ =0 in
Q¢ and wy, € LP(Q), due to the fact that u € L>°(2), see Lemma 3.3.

On the other hand, for any =,y € RY,
‘ u(x)  u(y)
wr(z)P~ (@) wi(y)P?

u(@)? —u(y)” | uly)”(wi(y)"~" —wi(z)""?)
wy(x)P~ wie ()P~ Twy (y)P

P=L(2)P — u(y)P ul|? |wi ()P 7! — wi (y)" |
<1l = )P+l oy T

S
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< 2l o K plu(a) = u(y)|
wi ()2 + we(y)? 2
() T (y)P T

< 2l o K plu(a) — u(y)|

oy = DR (s 4 o) - (o)

< Ok, ps [[ull Lo (@) ([u(@) = u(y)] + [w(@) = w(y)]).

Hence, we have that u?/w} ' € W"P(Q) for all k € N since u,w €
WP (). Analogously, Up/zi_l c WHP(Q).
Set

L@w)@y>:W)_@<y>|p_<¢<x>_¢<y>>p—1(

] oy (0 — 1) i () — wi ()

@) e(y)? )
Y(z)P~t Pyt
for all functions ¢ > 0 and ¢ > 0. For [2, Lemma 6.2], for any ¢ > 0
and ¢ > 0,

L, ) (z,y) 20 for all (z,y).

Then,
L(u, wg)(z,y) L(v, 21.) (7, y)
Og/mid dy +/Q AU 2T Y) g dy

|z —y|NtrP 2 o —y|NFep

L(u, wi)(x,y) L(v, 2t) (@, y)
g/R LN Y) g dy +/R A9 2D Y) g dy

2N |I—y|N+Tp 2N |J)—y|N+3p

uP WP
:)\1,/ \u|a|v|ﬁdx—/\g/ w128 o7 do — 'B wzPt dz
Q PJa wy,

p—1
P Q Zy,

for all k € N, since (u,v), (w, z) are eigenpairs associated to A; , and
A, respectively.

On the other hand, by Young’s inequality,

u®P «@ u? vP
/ wzP 5 dx < —/ w18 — dz + é/ 1(1“,2’6_1—71 dx
Q Wiz, P Ja wy, P Ja zy

for all £ € N. Then,
o< [HEED )y, [ LoDy,
Q

|z — y|N+rp |z — y|NFsp
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vB
<)\1p/|u\ |U|Bdl‘—)\/ @ Bu dx.

wy; Zk

By Fatou’s lemma and the dominated convergence theorem, we obtain

Og/Mdd+/L(7><)ddy

e ulv o=yl
< Oup =) [ fullol? do.
Then, A = A1, and L(u,w) = 0 and L(v,z) = 0 almost everywhere
in Q.

Finally, again by [2, Lemma 6.2], there exist k1, ks € R such that
w = kiu and z = kov almost everywhere in RV, O

Now, we show that Aq, is simple.

Corollary 3.5. Let (u1,v1) be an eigenpair associated to A1, normal-
ized according to |(u1,v1)|a,s = 1. If (u,v) is an eigenpair associated
to A1 p, then there is a constant k such that (u,v) = k(uq, v1).

Proof. By Theorem 3.4, there exist k; and ko such that u = kju
and v = kovy. Without loss of generality, we can assume that k; < ko.
Then, since (u1,v1) and (u,v) are eigenpairs associated to the first
eigenvalue A1 , and |(u, v)|q,g = 1, we obtain

() () o

Taking x = ki /k2, a = [u]f , and b = [v]Z , we get
1—2z°
F—1)+b =0.
a(a® 1)+

Multiplying by z¢ and using that « + 8 = p, we obtain
azx? — (a +b)x® +b=0.

In order to conclude the proof, we only need show that 1 is the unique
zero of the function

f:00,1] — R, f(z)=aa? — (a+b)x* +0.
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Observe that, for any = € (0,1), we have

b b
f(x) = paz®~* (x”"‘ _er a> = paz® ! <x“ o a).
a p a p

On the other hand, since (u1,v1) is an eigenpair associated to Aq
such that |(u,v)]a,s =1, we have

a+b=X, and a=—Xp,.
p

Then,
a+b p
a o
that is,
b
eroe_y
a p
Hence,
f'(x) <0 forall x e (0,1).
that is, f is decreasing. Therefore, z = 1 is the unique zero of f. [

Recall that we made the assumption min{«, 8} > 1. Now, if (u,v)
is an eigenpair associated to A p, then |u|*~2ulv|? and |u|*|v|?~2v €
L>(9Q) due to Lemma 3.3. Thus, by [21, Theorem 1.1], we have the
following result.

Lemma 3.6. If (u,v) is an eigenpair associated to A1 p, then v =
v (N,p,r) € (0,7] and v2 = (N, p,s) € (0, s] exist such that (u,v) €
C () x C2(9Q).

Thus, by Lemma 3.6 and Theorem 2.5, we have that

Corollary 3.7. If (u,v) is an eigenpair associated to A1 p, then u is a
viscous solution of

{<—Ap>ru — A1y ful*2ufol? i Q,

p

u=0 in RV \ Q,
and v is a viscous solution of

(=Ap)*v = Al,p%\u|o‘|v|ﬁ_2v in Q,
v=0 in RN\ Q.
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It follows by Corollary 3.7 and Lemma 2.6 that we obtain

Corollary 3.8. If (u,v) is an eigenpair corresponding to the first
eigenvalue A1 p, then |ul,|v| > 0 in Q.

Finally, we show a sequence of eigenvalues.

Lemma 3.9. There is a sequence of eigenvalues \,, such that A\, — oo
asn — 0o.

Proof. We follow ideas from [20], and hence, we omit the details.
Let us consider

My = {(u,0) € W) [, + IE,, = w7}

™p
and .
plu0) = [ ful ol
P Ja

We look for critical points of ¢ restricted to the manifold M, using a
minimax technique. We consider the class ¥ = {A C W,S"S)(Q)\{o} c A
is closed, A = —A}. Over this class, we define the genus v: ¥ — N
U {oo} as y(A) = min{k € N: there exists a ¢ € C(A,R¥ — {0}),
¢(x) = —¢(—z)}. Now, we let C = {C C M,: C is compact,
symmetric and v(C) < k}, and
Br = sup min ¢(u,v).
cecy, (u,v)eC

Then, B > 0, and there is a (ug,vy) € M, such that p(ug,vy) = Bk,
and (ug,vg) is a weak eigenpair with A\, = 7/0p. O

4. The limit as p — oco. From now on, we assume that (1.3) and
(1.4) hold. Recall that A; o is defined by

. max{[u]r o) [U]s oc} (r,s)
Ay :mf{ = == (u,v) € Wao () 5.
-~ Tl o=l ) "

First, we show the geometric characterization of A; ... Then, we prove
that there exists a sequence of eigenpairs (uy,v,) associated to Aj,
such that (up,vp) = (Uso, Voo) a8 p — 00 and (Ueo, Uso) 1S & minimizer
for Ay 0. Finally, we will show that (¢, Vso) is a viscous solution of
(4.3).
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4.1. Geometric characterization. Observe that, from the Arzela-
Ascoli theorem, there exists a minimizer for Ay . Moreover, if (u,v) is
a minimizer for A; o, then so is (|ul,|v]). Now, we show the geometric
characterization of Ay .

Lemma 4.1. The following equality holds:
o 1 10-Ds+rr
b LR©)

Proof. We take (u,v) as a minimizer for A; o with u,v > 0 nor-
malized according to [[u"v' ™| (o) = 1. Therefore, there is a point
xg € Q such that ul' (x9)v?~F(z) = 1. We call a = u(xg) and b = v(zg).
Then, since u,v = 0 in Q°,

lu(y) — u(x)]| a
[U]r.0o = sup = > — ,,
@yea  |[T—yl" [dist(z0, 09)]"
and
[v(y) — v(z)| b
v 5,00 — sup . 2 . -
. @yea Tyl [dist (2o, 0Q2)]

Therefore, this yields

A > inf ma; a4 ; b
1o = oy | [dist(zo, 0] [dist(xo, 0Q)]° J

where
A= {(0,00) x (0,00) x Q: a*'b* T =1}.

In order to compute the infimum, we observe that we must have

a b

[dist(z0, 0Q)]"  [dist(z0, 9]’

that is,
a = b[dist(zo, 0Q)]"°.

Then, using a1 = 1, we obtain

b[dist(zo, O] = 1.
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Hence,
b = [dist(zo, Q)" ")
and

a = [dist(zo, 90)] "= A=),

This yields
inf[dist(zo, 89)]—[(1—1")54-1“7“]’
Zo

which is attained at a point zg € ) that maximizes the distance to the
boundary, that is, letting

R(Q) = dist(zo, OQ),

we obtain that
1 :| (1-T)s+I'r

A > | —
T [R(Q)

In order to conclude the proof, we need to show the reverse inequal-
ity. As before, let xg € £ be the point where the maximum distance to
the boundary is attained. Set

uo(x) = R(Q)(T'—S)(I—F) (1 _ |33R—((;C>0|>+7

vo(x) = R(Q)~ (=T (1 _ xRES;v)ol ) E

We observe that (ug, vg) € CT(RY) x C*(RN), [[ufvg ™" || =) = 1 and
1 :|(1F)S+F’l"

max{[uo]r,c0} [Vo]s,00} < {R(Q)

Therefore,

1 :| (1-T)s+Ir

—in max{[u]r,oo; [U]S,oo} (u. v (r,s) -
Ao f{ Tl ol gy (&) Mo (“)}5 [R(Q)

O

Remark 4.2. Observe that (ug,vo) is a minimizer of Aj .
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4.2. Convergence. Now, we prove that there exists a sequence of
eigenpairs (u,, v,) associated to A1 , such that (up,v,) = (u,v) as p —
oo and (u,v) is a minimizer for Ay .

Lemma 4.3. Let (up,vp) be an eigenpair for A1 , such that u, and vy
are positive and |(u,v)|a,3 = 1. Then, there ezists a sequence p; — 00
such that

(upjvvpj) — (Uoo, Vo)

uniformly in RN, The limit (Uso,Voo) belongs to the space Wég’s)(ﬂ)
and is a minimizer of A1 . In addition, the following holds:

A )P — Al o

Proof. We begin by showing that

(4.1) lim sup[A; )7 < Aj oo
pP—o0
Let v > 1 be such that ymax{r,s} < 1. Then, (uy,vy) = (ul,,v%) €
ngr’s)(ﬂ) N W&’S)(Q) for all p > 1. Thus,
([u’)’]g,p + [U’Y]Is)p)l/p

A 1/p < )
Al |(ty, 03)a,8

for all p > 1. In addition, we observe that ||uv! =" gy = 1. Then,

lim sup[Ay ]/ <max{[ts ]r,00; [U]s,00}
p—0o0

< max2rO-DR(Q) 9T gs(-DR(0) =T,

Therefore, passing to the limit as v — 1 in the previous inequality and
using Lemma 4.1, we obtain (4.1).

Our next step is to show that
A1 oo <lim inf[)\l’p]l/p.
p—o0
Let p; > 1 be such that

it = Ji )
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where A\; = A;,,. From (4.1), without of loss of generality, we can
assume that
2maX{N/TaN/S}<p17 bj Spj+17

and

(4.2) Y7 = ([, + o120, )P < Ao +

™DPj 5,Pj

for all j € N, where € is any positive number and (u;, v;) is an eigenpair
corresponding to \; normalized according to |(uj,vj)|a;5, = 1 (a; =
ap;, Bj = Bp,) and such that u;,v; > 0 in Q.

Let ¢ € (2max{N/r,N/s},p1), t1 = r — N/q and t2 = s — N/q.
It follows from (4.2) and Lemmas 2.1 and 2.2 that {u;} and {v;} are
bounded in W':4(Q) and W'2:9(Q), respectively. Since gmin{ty,ta} >
N, taking a subsequence, if necessary, we get

Uj — Uso strongly in co(Q),
v; — Voo strongly in C*72(Q),
due to the compact Sobolev embedding theorem. Here, 0 < v <

t1 — N/g=r—2N/qand 0 < 71 < ta — N/q = s — 2N/q. Therefore,
Uso = Voo = 0 on O2.

On the other hand, by Lemma 2.2,

|ujltr.q < diam(Q)N/pj |Q|2/q_2/pj | |rp;

< diam(Q)N/pJ‘ |Q|2/f1*2/l’j [)\j]l/pj7
( )N/pj|Q|2/q—2/pj|Uj|8
(€)

[Vj]t,,q < diam(Q2 r

< diam(Q)N/Pi Q[ 92/ [\ )1/

Then, passing to the limit as j — oo and using Fatou’s lemma, we
obtain (e, Vo) € W9(Q) x Wt2:4(Q) and

|u<>0‘t1,q < |Q|2/q hplgglf[)‘l,p]l/p,

|U00‘tz,q < |Q|2/q hprgg}f[)\lm]l/p-
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Now, passing to the limit as ¢ — co, we obtain

[Uoo]r 00 < hprgggf[/\l p]l/P

[Voo]s,00 < liminf[Ay ]1/p,
p—00

that is, (tise, vse) € WL () and

Max{ [thoo ] r.00; [Voo)r.0e } < liminf[A; /7.
pA)OO

In order to conclude the proof, we need only show that

”ugoU;FHLN(Q) =1

For all ¢ > 1, there exists a jo € N such that p; > ¢q if 7 > jo, and
therefore, by Fatou’s lemma and Holder’s inequality, we get

||uF ||Lq(Q <hm1nf/{zu§-aj/pj)qv§-ﬁj/pj)qdmglijrggf \Q|1_(q/p-7'):1

— 00
due to |(uj,vj)la;,8;, = 1. Then, passing to the limit as ¢ — oo, we
have
||U£ovio_r|\mo(sz) <L

On the other hand,

1/p.s . . . . X _
1= [(ug, 0[5, < s/ P 0] 7 || oo |75 — ool e -

Therefore, [[ul vl "L~ @) = 1. O

4.3. Viscous solution. Finally, we show that (ueo,vs0) is a viscous

solution of

(4.3)
min{ L, sou(a); L u(z) — A sou” ()0 "F(2)} =0 in Q,
min{ L, sou(x); LT Ju(x) — Ay soul (2)o' T (2)} =0 in Q,
u=v=0 in RV \ Q,

where
Lisow(x) = E;foow(:z:) + E;mw(x)

— sup w(w)—wt(y) ©inf w(x)—wt(y)
yerN | =Y yeRN |z —y|
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Next, we the introduce the precise definition of the viscous solution
of (4.3).

Definition 4.4. Let (u,v) € C(RY) x C(RY) be such that u,v > 0
in Q and v = v = 0 in Q°. We say that (u,v) is a wviscous sub-
solution of (4.3) at a point xg € Q if and only if, for any test pair
(¢,1) € CRRN) x C3(RN) such that u(zg) = p(z0), v(zo) = (xo),
u(z) < p(z) and v(z) < () for all z € RV, we have that

min{ Ly, 00 0(0); £ oo p(20) = A1,octi’ (o)v " (20)} <0,
min{ L ooth(20); L oth(x0) — A1 sct’ (zo)v' ™" (20)} < 0.
We say that (u,v) is a viscous subsolution of (4.3) at a point z¢ €

if and only if, for any test pair (¢,?) € C2(RY) x C2(RY) such that
u(zo) = ¢(xo0), v(zo) = th(x0), u(x) = ¢(x) and v(z) > ¢(z) for all
x € RY, we have that

min{[’r,OOSO($O)§£::oo<P($O) - Al,qu(xO)Ul_F(l'O)} >0,

min{ L, 0ot (20); £, oo ¥ (x0) — A1 oott” (20)0" " (w0)} >0

Finally, u is a wviscous solution of (4.3) at a point z¢ € £ viscous
solution if it is both a viscous super and subsolution at every xg.

Lemma 4.5. (Uoo,Voo) @S a viscous solution of (4.3).

Proof. The proof follows as in [24, Section 8]; we include a sketch
here for completeness. We show that u, is a viscous supersolution of
the first equation in (4.3) (the fact that it is a viscous subsolution is
similar). Assume that ¢ is a test function touching wus, strictly from
below at a point zg € 2. We have that u; — ¢ has a minimum at points
xj — xo. Since u; is a weak solution (and hence, a viscous solution) to
the first equation in our system, we have the inequality

, 0 o ;
—(=Ayp;) @(xj)+/\1,pjp%|<pl 12 lv|% (z;) < 0.
J

Writing, as in [24],

i1 _ le(x;) — WP 2(e(z;) — )"
4= 2/]RN |j — y|Neps w
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B | lolay) — o)l (ola) — o)~
]RN

7 |25 —y|Ntops
and ) o
O = Ay Lol 2lv]% (g),
pj
we obtain ) . .
pi— P pi—
Ajj + Cj’ < Bjj .
Using that
Bj — _‘C;oo@(x())
and
Cj — Al,wur(xo)vl_r(mo),
we obtain
min{ L, ¢ (xo); Lj:oogo(xo) - ALoouF(zo)vl*F(xo)} <0. O
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