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ON A WARING-GOLDBACH PROBLEM
FOR MIXED POWERS

YINGJIE LI AND YINGCHUN CAI

ABSTRACT. Let Pr denote an almost-prime with at
most r prime factors, counted according to multiplicity. In
this paper, it is proved, among other results, that, for every
sufficiently large, even integer N satisfying the congruence
condition N ̸≡ 2 (mod 3), the equation

N = x2 + p2 + p31 + p42 + p43 + p44

is solvable with x being a P5 and the other variable
primes. This result constitutes an enhancement upon that
of Vaughan [10] and Mu [7].

1. Introduction. The Waring problem of mixed type concerns the
representation of a natural number N as the form

(1.1) N = xk1
1 + · · ·+ xks

s , k1 ≤ · · · ≤ ks.

Little is known about results of this type. For references, we refer the
reader to the bibliography in [13].

In principle, the Hardy-Littlewood method is applicable to problems
of this type, but various difficulties not experienced in the pure Waring
problem (1.1) with k1 = · · · = ks must be overcome. In particular, the
choice of relevant parameters in the definitions of major and minor arcs
tends to become complicated if a deeper representation problem (1.1)
is under consideration.

Vaughan [9, 10] obtained the asymptotic formula for the number of
representations of the equation

N = x2
1 + x2

2 + y31 + y42 + y43 + y44 .
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Afterwards, motivated by [2, 3, 4], Mu [7] proved that, for every suffi-
ciently large, even integer N satisfying specific congruence conditions,
the equation

N = x2 + p2 + p31 + p42 + p43 + pk4 , k = 4, 5,

is solvable with x an almost-prime Pr and the other variables primes,
where r = 6 for k = 4 and r = 9 for k = 5.

In this paper, Pr denotes an almost-prime with at most r prime fac-
tors, counted according to multiplicity. We obtain the next refinements
of the result of Mu [7].

Theorem 1.1. For every sufficiently large, even integer N with N ̸≡ 2
(mod 3), the number of solutions of the equation

(1.2) N = x2 + p2 + p31 + p42 + p43 + p44,

with x a P5 and the other variables primes, is

≫ N13/12 log−6 N.

Theorem 1.2. For every sufficiently large, even integer N , the number
of solutions of the equation

(1.3) N = x2 + p2 + p31 + p42 + p43 + p54,

with x a P8 and the other variables primes, is

≫ N31/30 log−6 N.

In this paper, we present a detailed proof of Theorem 1.1 only. By
Q1 = N7/15+6ε, Q2 = N1/2 and D = N1/40−7ε, Theorem 1.2 can be
proved using a similar argument.

2. Notation and some preliminary lemmas. In this paper,
ε ∈ (0, 10−10) and N denotes a sufficiently large, even integer in terms
of ε. The constants in O-term and ≪-symbol depend at most on ε.
By A ≍ B, we mean that A ≪ B and B ≪ A. The letter p, with
or without subscript, is reserved for a prime number. We denote by
(m,n) the greatest common divisor of m and n. As usual, φ(n) and
µ(n) denote Euler’s function and the Mőbius function, respectively.
By τ(n), we denote the divisor function, and, by a(n), we denote an
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arithmetical function bounded above by τ(n). We use e(α) to denote
e2πiα and eq(α) = e(α/q). We denote, by

∑
x(q) and

∑
x(q)∗, sums with

x running over a complete system and a reduced system of residues
modulo q, respectively. We always denote by χ a Dirichlet character
(mod q) and by χ0 the principal Dirichlet character (mod q). By∑

χ(q), we denote a sum with χ running over the Dirichlet characters

(mod q). Let A = 1010, Q0 = log20A N , Q1 = N5/12+6ε, Q2 = N1/2,
D = N1/16−7ε, z = D1/3, Uk = 0.5N1/k,

Mr = {m | U2 < m ≤ 2U2, m = p1 · · · pr, z ≤ p1 ≤ · · · ≤ pr},

Nr={n | n = p1 · · · pr−1, z ≤ p1 ≤ · · · ≤ pr−1, p1 · · · pr−2p
2
r−1 ≤ 2U2},

Gk(χ, a) =
∑
r(q)

χ(r)eq(ar
k),

S∗
k(q, a) = Gk(χ

0, a), Sk(q, a) =
∑
r(q)

eq(ar
k),

Bd(q,N) =
∑
a(q)∗

S2(q, ad
2)S∗

2 (q, a)S
∗
3 (q, a)S

∗3
4 (q, a)eq(−aN),

Ad(q,N) =
Bd(q,N)

qφ5(q)
, A(q,N) = A1(q,N),

Sd(N) =
∞∑
q=1

Ad(q,N), S(N) = S1(N),

fk(α) =
∑

Uk<p≤2Uk

(log p)e(αpk),

gr(α) =
∑
n∈Nr

U2<np≤2U2

e(α(np)2)
log p

log(U2/n)
,

Fk(α) =
∑

Uk<n≤2Uk

e(αnk),

uk(λ) =

∫ 2Uk

Uk

e(λuk) du,

I(N) =

∫ ∞

−∞
u2
2(λ)u3(λ)u

3
4(λ)e(−λN) dλ.
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Lemma 2.1 ([1]). Let 2 ≤ k1 ≤ k2 ≤ · · · ≤ ks be natural numbers
satisfying

s∑
i=j+1

1

ki
≤ 1

kj
, 1 ≤ j ≤ s− 1.

Then, we have ∫ 1

0

∣∣∣∣ s∏
i=1

Fki(α)

∣∣∣∣2dα ≤ N1/k1+···+1/ks+ε.

Lemma 2.2. We have

(i)

∫ 1

0

|F2(α)F3(α)F
2
4 (α)|2dα ≪ N5/3,

(ii)

∫ 1

0

|f2(α)f3(α)f2
4 (α)|2dα ≪ N5/3 log8 N .

Proof. This is [7, Lemma 3]. �

Lemma 2.3. For α = (a/q) + β, let

W (α) =
∑
d≤D

a(d)

dq
S2(q, ad

2)u2(β),(2.1)

∆k(α) = fk(α)−
S∗
k(q, a)

φ(q)

∑
Uk<n≤2Uk

e(βnk),(2.2)

I(q, a) =
(
a

q
− 1

qQ0
,
a

q
+

1

qQ0

]
.(2.3)

Then, we have∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
I(q,a)

|W 2(α)∆2
k(α)| dα ≪ N2/k log−100A N.

Proof. This is [7, Lemma 4]. �

Lemma 2.4. For α = (a/q) + β ∈ I(q, a), let

(2.4) Uk(α) =
S∗
k(q, a)

φ(q)
uk(β).
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Then, we have∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
I(q,a)

|Uk(α)|2dα ≪ N2/k−1 log21A N,(2.5)

∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
I(q,a)

|W (α)|2dα ≪ log21A N,(2.6)

where W (α) and I(q, a) are defined by (2.1) and (2.3), respectively.

Proof. This is [7, Lemma 5]. �

For (a, q) = 1, 1 ≤ a ≤ q, set

M0(q, a)=

(
a

q
−Q0

N
,
a

q
+
Q0

N

]
, M0 =

∪
1≤q≤Q5

0

q∪
a=1

(a,q)=1

M0(q, a),

M(q, a)=

(
a

q
− 1

qQ2
,
a

q
+

1

qQ2

]
, M =

∪
1≤q≤Q5

0

q∪
a=1

(a,q)=1

M(q, a),

M1(q, a)=

(
a

q
− 1

qN7/12−6ε
,
a

q
+

1

qN7/12−6ε

]
,

m1=
∪

Q5
0<q≤Q1

q∪
a=1

(a,q)=1

M1(q, a), m =
∪

Q5
0<q≤Q1

q∪
a=1

(a,q)=1

M(q, a),

J0 =

(
1

Q2
, 1 +

1

Q2

]
,

m0 = M \M0, m2 = m \m1, m3 = J0 \
(
M

∪
m
)
.

Then, we have the Farey dissection

J0 = M0

∪
m0

∪
m1

∪
m2

∪
m3.(2.7)

Lemma 2.5. For α = (a/q) + β ∈ M0, we have

(i) fk(α) = Uk(α) +O(Uk exp(− log1/3 N)),

(ii) gr(α) = (crU2(α))/(logU2) +O(U2 exp(− log1/3 N)),
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where Uk(α) is defined by (2.4), and

cr = (1 +O(ε))

∫ 23

r−1

dt1
t1

∫ t1−1

r−2

dt2
t2

· · ·
∫ tr−4−1

3

dtr−3

tr−3

∫ tr−3−1

2

log(tr−2 − 1) dtr−2

tr−2
.

Proof. This is [7, Lemma 6]. �

Lemma 2.6. Let

h(α) =
∑

m≤D2/3

n≤D1/3

u(m)v(n)
∑

U2/mn<l≤2U2/mn

e(α(mnl)2),

where |u(m)| ≤ 1, |v(n)| ≤ 1. Then, for α = (a/q) + β, (a, q) = 1,
q ≤ N1/2, |β| ≤ 1/qN1/2, we have

h(α) ≪ N1/2+ε

q1/2(1 +N |β|)1/2
+N (1/4)+εD2/3.

Proof. This is [4, (4.6)]. �

3. Mean value theorems. In this section, we prove two mean value
theorems for the proof of Theorem 1.1.

Proposition 3.1. Let

Jd(N) =
∑

(dl)2+p2+p3
1+p4

2+p4
3+p4

4=N

U2<dl, p≤2U2

U3<p1≤2U3
U4<p2, p3, p4≤2U4

(log p)(log p1) · · · (log p4).

Then, for |u(m)| ≤ 1, |v(n)| ≤ 1, we have∑
m≤D2/3

n≤D1/3

u(m)v(n)

(
Jmn(N)− Smn(N)

mn
I(N)

)
≪ N13/12 log−A N.
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Proof. Let

K(α) = h(α)f2(α)f3(α)f
3
4 (α)e(−αN).

Then, by Farey dissection (2.7), we have

∑
m≤D2/3

n≤D1/3

u(m)v(n)Jmn(N) =

∫
J0

K(α) dα

(3.1)

=

(∫
M0

+

∫
m0

+

∫
m1

+

∫
m2

+

∫
m3

)
K(α) dα.

From Schwartz’s inequality and Lemma 2.1, we obtain

(3.2)

∫ 1

0

|f2(α)f3(α)f3
4 (α)| dα ≪

(∫ 1

0

|f2(α)f2
4 (α)|2dα

)1/2

(∫ 1

0

|f3(α)f4(α)|2dα
)1/2

≪ N (19/24)+ε.

By (3.2), we obtain

(3.3)

∫
m3

K(α) dα ≪ max
α∈m3

|h(α)|
(∫ 1

0

|f2(α)f3(α)f3
4 (α)| dα

)
≪ N13/12−ε,

where the bound h(α) ≪ N7/24−2ε for α ∈ m3 is used, which follows
from Lemma 2.6.

Similarly, applying Lemma 2.6 and (3.2) again, we obtain

(3.4)

∫
m2

K(α) dα ≪ N13/12−ε.

Write

a(d) =
∑

m≤D2/3

n≤D1/3

mn=d

u(m)v(n), h(α) =
∑
d≤D

a(d)
∑

U2/d≤l≤2U2/d

e(α(dl)2).

Then, from [11, Theorem 4.1], for α ∈ m1, we obtain

(3.5) h(α) = W (α) +O(DN5/24+4ε) = W (α) +O(N13/48−2ε),
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where W (α) is defined by (2.1). Let

K1(α) = W (α)f2(α)f3(α)f
3
4 (α)e(−αN).

Then, by (3.2) and (3.5), we have∫
m1

K(α) dα =

∫
m1

K1(α) dα+O(N13/12−ε).(3.6)

Let

I0(q, a) =
(
a

q
− 1

N37/48
,
a

q
+

1

N37/48

]
,

I1(q, a) = I(q, a) \ I0(q, a),

where I(q, a) is defined by (2.3). Then, we have∫
m1

K1(α) dα ≤
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m1

∩
I0(q,a)

| K1(α) | dα(3.7)

+
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m1

∩
I1(q,a)

| K1(α) | dα.

From (3.2), we have

∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m1

∩
I1(q,a)

|K1(α)| dα(3.8)

≪ N (7/24)−2ε

∫ 1

0

|f2(α)f3(α)f3
4 (α)| dα ≪ N (13/12)−ε,

where the bound W (α) ≪ N (7/24)−2ε for α ∈ I1(q, a) is used, which
follows from [7, (3.6), (3.7)].

By [8, Lemma 4.8], we obtain

∫
m1

∩
I0(q,a)

|K1(α)| dα =

∫
m1

∩
I0(q,a)

|W (α)U4(α)f2(α)f3(α)f
2
4 (α)| dα

(3.9)

+

∫
m1

∩
I0(q,a)

|W (α)∆4(α)f2(α)f3(α)f
2
4 (α)| dα
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+O

(∫
m1

∩
I0(q,a)

|W (α)f2(α)f3(α)f
2
4 (α)| dα

)
,

where ∆4(α) and U4(α) are defined by (2.2) and (2.4), respectively.

From Schwartz’s inequality and Lemmas 2.2 and 2.3, we obtain

∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m1

∩
I0(q,a)

|W (α)∆4(α)f2(α)f3(α)f
2
4 (α)| dα

≪
( ∑

q≤Q0

2q∑
a=−q
(a,q)=1

∫
I(q,a)

|W (α)∆4(α)|2dα
)1/2

(3.10)

×
(∫ 1

0

|f2(α)f3(α)f2
4 (α)|2dα

)1/2

≪ N13/12 log−10A N.

It follows from Schwartz’s inequality and Lemmas 2.2 and 2.4 (i) that

∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m1

∩
I0(q,a)

|W (α)U4(α)f2(α)f3(α)f
2
4 (α)| dα

≪ N1/2 log−49A N

( ∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
I0(q,a)

|U4(α)|2dα
)1/2

(3.11)

×
(∫ 1

0

|f2(α)f3(α)f2
4 (α)|2dα

)1/2

≪ N13/12 log−10A N,

where the bound W (α) ≪ N1/2 log−49A N is used for α ∈ m1, which
follows from [7, (3.6), (3.7)].

By Schwartz’s inequality and Lemmas 2.2 and 2.4 (ii), we have

∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m1

∩
I0(q,a)

|W (α)f2(α)f3(α)f
2
4 (α)| dα

≪
( ∑

q≤Q0

2q∑
a=−q
(a,q)=1

∫
I0(q,a)

|W (α)|2dα
)1/2

(3.12)
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×
(∫ 1

0

|f2(α)f3(α)f2
4 (α)|2dα

)1/2

≪ N13/12 log−10A N.

It follows from (3.9)–(3.12) that

(3.13)
∑
q≤Q0

2q∑
a=−q
(a,q)=1

∫
m1

∩
I0(q,a)

K1(α) dα ≪ N13/12 log−10A N.

From (3.6)–(3.8) and (3.13), we obtain

(3.14)

∫
m1

K(α) dα ≪ N13/12 log−10A N.

By arguments similar to, but simpler than, those leading to (3.14), we
obtain

(3.15)

∫
m0

K(α) dα ≪ N13/12 log−10A N.

For α ∈ M0, let

(3.16) K0(α) = W (α)U2(α)U3(α)U
3
4 (α)e(−αN).

Then, it follows from Lemma 2.5 and (3.5), which holds for α ∈ M0,
that we have

(3.17) K(α)−K0(α) ≪ N25/12 exp(− log1/4 N).

By (3.17), we obtain

(3.18)

∫
M0

K(α) dα =

∫
M0

K0(α) dα+O(N13/12 log−A N).

Now, the well-known standard endgame technique in the Hardy-
Littlewood method establishes that
(3.19)∫
M0

K0(α) dα =
∑

m≤D2/3

n≤D1/3

u(m)v(n)
Smn(N)

mn
I(N)+O(N13/12 log−A N),

(3.20) I(N) ≍ N13/12.

Now, upon combining (3.1), (3.3), (3.4), (3.14), (3.15), (3.18) and
(3.19), the proof of Proposition 3.1 is complete. �
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By the same method, we have:

Proposition 3.2. For 6 ≤ r ≤ 23, let

J
(r)
d (N) =

∑
(dl)2+(np)2+p3

1+p4
2+p4

3+p4
4=N

U2<dl, np≤2U2

U3<p1≤2U3, n∈Nr
U4<p2,p3,p4≤2U4

(log p1) · · · (log p4)
(

log p

log(U2/n)

)
.

Then, for |u(m)| ≤ 1, |v(n)| ≤ 1, we have∑
m≤D2/3

n≤D1/3

u(m)v(n)

(
J (r)
mn(N)− cr

Smn(N)

mn logU2
I(N)

)
≪ N13/12 log−A N,

where cr is defined in Lemma 2.5.

4. On the function ω(d). In this section, we investigate the func-
tion ω(d) which is defined in (4.1) and is required in the proof of The-
orem 1.1.

Lemma 4.1. The series S(N) is convergent, and S(N) > 0.

Proof. This is [7, Lemma 9]. �

In view of Lemma 4.1, for square-free natural number d, we define

(4.1) ω(d) =
Sd(N)

S(N)
.

Lemma 4.2. For every sufficiently large, even integer N with N ̸≡ 2
(mod 3), the function ω(d) is multiplicative, and

0 ≤ ω(p) < p, ω(p) = 1 +O(p−1),

for each prime p.

Proof. This is [7, Lemma 10]. �
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5. Proof of Theorem 1.1. In this section, f(s) and F (s) denote
the classical functions in linear sieve theory, and γ = 0.577 . . . denotes
Euler’s constant. It is well known that

f(s) =
2eγ log(s− 1)

s
, 2 ≤ s ≤ 4;

F (s) =
2eγ

s
, 1 ≤ s ≤ 3.

In the proof of Theorem 1.1 we adopt the following notation:

P =
∏

2<p<z

p, log 2U = (log 2U2)(log 2U3)(log
3 2U4),

logU = (logU2)(logU3)(log
3 U4).

Let

N(z) =
∏

2<p<z

(
1− ω(p)

p

)
.

Then, by Lemma 4.2 and Merten’s prime number theorem, we obtain

N(z) ≍ 1

logN
.(5.1)

Let R(N) denote the number of solutions of equation (1.2) with x a P5

and the other variables primes. Then, we have

R(N) ≥
∑

l2+p2+p3
1+p4

2+p4
3+p4

4=N

U2<l, p≤2U2

U3<p1≤2U3

(l,P)=1

U4<p2,p3,p4≤2U4

1−
23∑
r=6

∑
h2+p2

1+p3
2+p4

3+p4
4+p4

5=N

U2<p1≤2U2

U3<p2≤2U3

h∈Mr
U4<p3,p4,p5≤2U4

1

(5.2)

≥
∑

l2+p2+p3
1+p4

2+p4
3+p4

4=N

U2<l, p≤2U2

U3<p1≤2U3

(l,P)=1
U4<p2,p3,p4≤2U4

1−
23∑
r=6

∑
(np)2+p2

1+p3
2+p4

3+p4
4+p4

5=N

U2<np, p1≤2U2

U3<p2≤2U3

n∈Nr
U4<p3,p4,p5≤2U4

1
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= R(N)−
23∑
r=6

Rr(N).

Next, we shall give a non-trivial lower bound for R(N) by the linear
sieve theory with the assistance of the bilinear error term in [5].

(1) The lower bound for R(N). Let

N (l) =
∑

l2+p2+p3
1+p4

2+p4
3+p4

4=N
U2<p≤2U2

U3<p1≤2U3
U4<p2,p3,p4≤2U4

(log p)(log p1) · · · (log p4),

E(d) =
∑

U2<l≤2U2

l≡0 (mod d)

N (l)− ω(d)

d
S(N)I(N).

Then, by [5, Theorem 1] (see also [6, Lemma 9.1]) and Proposition 3.1,
we obtain

R(N) ≥ 1

log 2U

∑
U2<l≤2U2

(l,P)=1

N (l)

(5.3)

≥ (1+O(log−1/3 D))
f(3)S(N)I(N)N(z)

logU
+O(N13/12 log−100 N).

(2) The upper bound for Rr(N). Let

Nr(l) =
∑

(np)2+l2+p3
1+p4

2+p4
3+p4

4=N

n∈Nr

U3<p1≤2U3

U2<np≤2U2

U4<p2,p3,p4≤2U4

(log p1) · · · (log p4)
(

log p

logU2/n

)

Er(d) =
∑

U2<l≤2U2

l≡0 (mod d)

Nr(l)−
crω(d)

d logU2
S(N)I(N),

where cr is defined in Lemma 2.5. Then, by [5, Theorem 1] (see also,
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[6, Lemma 9.1]) and Proposition 3.2, we have

Rr(N) ≤ logU2

logU

∑
U2<l≤2U2

(l,P)=1

Nr(l)

(5.4)

≤(1+O(log−1/3D))
F(3)crS(N)I(N)N(z)

logU
+O(N13/12log−100N).

Proof of Theorem 1.1. By numerical integration, we obtain

c6 < 0.487, c7 < 0.1134, c8 < 0.02, cr < 0.0024 for 9 ≤ r ≤ 23,
(5.5)

23∑
r=6

cr < 0.6564, log 2 > 0.6931.

From (5.1)–(5.5), we have

R(N) > 0.0367
2eγ

3

S(N)I(N)N(z)

logU
+O(N13/12 log−100 N) ≫ N13/12

log6 N
,

where (3.20) and Lemma 4.1 are employed. The proof of Theorem 1.1
is complete. �
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