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AUGMENTED GENERALIZED HAPPY FUNCTIONS

B. BAKER SWART, K.A. BECK, S. CROOK, C. EUBANKS-TURNER,
H.G. GRUNDMAN, M. MEI AND L. ZACK

ABSTRACT. An augmented generalized happy function,
S[c,b] maps a positive integer to the sum of the squares of
its base b digits and a non-negative integer c. A positive
integer u is in a cycle of S[c,b] if, for some positive integer k,

Sk
[c,b]

(u) = u, and, for positive integers v and w, v is

w-attracted for S[c,b] if, for some non-negative integer ℓ,

Sℓ
[c,b]

(v) = w. In this paper, we prove that, for each c ≥ 0

and b ≥ 2, and for any u in a cycle of S[c,b]: (1) if
b is even, then there exist arbitrarily long sequences of
consecutive u-attracted integers, and (2) if b is odd, then
there exist arbitrarily long sequences of 2-consecutive u-
attracted integers.

1. Introduction. Letting S2 be the function that takes a positive
integer to the sum of the squares of its (base 10) digits, a positive
integer a is said to be a happy number if Sk

2 (a) = 1 for some k ∈ Z+

[5, 6]. These ideas were generalized in [2]: fix an integer b ≥ 2, and let

a =

n∑
i=0

aib
i,

where 0 ≤ ai ≤ b − 1 are integers. For each integer e ≥ 2, define the
function Se,b : Z+ → Z+ by

Se,b(a) = Se,b

( n∑
i=0

aib
i

)
=

n∑
i=0

aei .

If Sk
e,b(a) = 1 for some k ∈ Z+, then a is called an e-power b-happy

number.
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We further generalize these functions by allowing the addition of a
constant after taking the sum of the powers of the digits. (Throughout
this work, all parameters are assumed to be integers.)

Definition 1.1. Fix integers c ≥ 0 and b ≥ 2. Let a =
∑n

i=0 aib
i,

where 0 ≤ ai ≤ b − 1 are integers. For each integer e ≥ 2, define the
augmented generalized happy function Se,b,c : Z+ → Z+, by

Se,b,c(a) = c+ Se,b(a) = c+
n∑

i=0

aei .

In Section 2, we examine various properties of the function S2,b,c,
which, for ease of notation, we denote by S[c,b]. In Section 3, we state
and prove Theorem 3.2, an analogue to the existence of arbitrarily long
sequences of consecutive happy numbers. Although this result is quite
general, it leaves a particular case unresolved, which we make explicit
in Conjecture 3.3. In Section 4, we prove that Conjecture 3.3 holds for
small values of c and b.

2. Properties of S[c,b]. In this section, we consider the function
S[c,b] = S2,b,c. Note that S[0,10] = S2, as defined in Section 1.

Definition 2.1. Fix c ≥ 0, b ≥ 2 and a ≥ 1. We say that a is a
fixed point of S[c,b] if S[c,b](a) = a and that a is in a cycle of S[c,b] if

Sk
[c,b](a) = a for some k ∈ Z+. The smallest such k is called the length

of the cycle.

As is well known, S2 has exactly one fixed point and one nontrivial
cycle. The standard proof uses a lemma similar to the following, which
is a generalization for the function S[c,b].

Lemma 2.2. Given c ≥ 0 and b ≥ 2, there exists a constant m such
that, for each a ≥ bm, S[c,b](a) < a. In particular, this inequality holds

for any m ∈ Z+ such that bm > b2 − 3b+ 3 + c.
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Proof. Let m ∈ Z+ be such that bm > b2−3b+3+c, and let a ≥ bm.
Then

a =
m∑
i=0

aib
i,

for some 0 ≤ ai ≤ b− 1 with am ̸= 0. Thus,

a− S[c,b](a) =
n∑

i=0

aib
i −

(
c+

n∑
i=0

a2i

)

= an(b
n − an) +

n−1∑
i=1

ai(b
i − ai) + a0(1− a0)− c

≥ 1(bm − 1) + 0 + (b− 1)(1− (b− 1))− c

= bm − b2 + 3b− 3− c

> 0.

Therefore, S[c,b](a) < a for all a ≥ bm. �

It follows from Lemma 2.2 that, for any c < 27, for all a ≥ 100,
S[c,10](a) < a. We use this result to determine the fixed points and
cycles of S[c,10] for 0 ≤ c ≤ 9. The results are presented in Table 1.

As Table 1 illustrates, varying the constant greatly affects the
behavior of S[c,b] under iteration. As expected, changing the base also
changes the behavior, but, interestingly, there are patterns that occur
when changing both the constant and the base. For example, we show
that, if c and b are both odd, then S[c,b] has no fixed points. First,
we present a key lemma that will be used repeatedly throughout the
paper.

Lemma 2.3. If b is odd, then Sk
[c,b](a) ≡ kc+ a (mod 2).

Proof. Let b be odd and, as usual, let

a =

n∑
i=0

aib
i.

Since b is odd,

a ≡
n∑

i=0

ai (mod 2);
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Table 1. Fixed points and cycles of S[c,10] for 0 ≤ c ≤ 9.

c Fixed points and cycles of S[c,10]

0 1 → 1
4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4

1 6 → 37 → 59 → 107 → 51 → 27 → 54 → 42 → 21 → 6
35 → 35
75 → 75

2 28 → 70 → 51 → 28
29 → 87 → 115 → 29

3 7 → 52 → 32 → 16 → 40 → 19 → 85 → 92 → 88 → 131 → 14 → 20 → 7
13 → 13
93 → 93

4 6 → 40 → 20 → 8 → 68 → 104 → 21 → 9 → 85 → 93 → 94 → 101 → 6
24 → 24
45 → 45
65 → 65
84 → 84

5 15 → 31 → 15
55 → 55

6 16 → 43 → 31 → 16
19 → 88 → 134 → 32 → 19

7 9 → 88 → 135 → 42 → 27 → 60 → 43 → 32 → 20 → 11 → 9
12 → 12
36 → 52 → 36
66 → 79 → 137 → 66
92 → 92

8 26 → 48 → 88 → 136 → 54 → 49 → 105 → 34 → 33 → 26

9 10 → 10
11 → 11
34 → 34
46 → 61 → 46
74 → 74
90 → 90
91 → 91

therefore,

S[c,b](a) = c+

n∑
i=0

a2i ≡ c+

n∑
i=0

ai ≡ c+ a (mod 2).

A simple induction argument completes the proof. �
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Theorem 2.4. If c and b are both odd, then S[c,b] has no fixed points
and all of its cycles are of even length.

Proof. By Lemma 2.3, since c is odd, Sk
[c,b](a) ≡ kc + a ≡ k + a

(mod 2). Thus, if Sk
[c,b](a) = a, then k is even. The result follows. �

Lemma 2.2 also allows us to compute all fixed points and cycles for
arbitrary values of c and b. Of particular interest in Section 4 is the
case of where both c and b are odd. We provide lists of the fixed points
and cycles of S[c,b] in this case, for small values of c and b, in Table 2.
We label some of the sequences for ease of reference in the proof of
Theorem 4.1.

Recall that a positive integer a is a happy number if Sk
[0,10](a) = 1

for some k ∈ Z+. We now generalize this idea to values of c > 0, noting
that, in these cases, 1 is no longer a fixed point (nor in a cycle).

Definition 2.5. Fix c ≥ 0 and b ≥ 2. Let U[c,b] denote the set of all
fixed points and cycles of S[c,b], that is,

U[c,b] = {a ∈ Z+ | Sm
[c,b](a) = a for some m ∈ Z+}.

For u ∈ U[c,b], a positive integer a is a u-attracted number (for S[c,b]) if

Sk
[c,b](a) = u, for some k ∈ Z≥0.

For example, referring to Table 1, for S[4,10], we see that 40 is 6-
attracted, as are 20, 8 and the other numbers in that cycle. All of those
numbers are also 40-attracted, etc. Additionally, since S[4,10](2) = 8, 2
is also 6-attracted. Similarly, 42 is 24-attracted, since S[4,10](42) = 24.

3. Consecutive u-attracted numbers. In this and the next sec-
tion, we consider the existence of sequences of consecutive u-attracted
numbers, for u ∈ U[c,b] for some fixed c and b. As seen in Table 1,
for S[3,10], 19 and 20 are consecutive 7-attracted numbers (and direct
calculation shows that 1 and 2 are as well). Does such a consecutive
pair exist for every choice of c ≥ 0, b ≥ 2, and u ∈ U[c,b]? Do there exist
longer consecutive sequences of u-attracted numbers? The analogous
questions were answered for happy numbers in [1] and for many cases
of e-power b-happy numbers in [3, 4].
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Table 2. Cycles of S[c,b] for 1 ≤ c ≤ 9 odd and 2 ≤ b ≤ 9 odd.

[c, b] Cycles of S[c,b]

[1, 3] 12 → 20 → 12

[3, 3] 22 → 102 → 22

[5, 3] 20 → 100 → 20 C1

21 → 101 → 21 C2

22 → 111 → 22 C3

[7, 3] 22 → 120 → 110 → 100 → 22

[9, 3] 112 → 120 → 112

[1, 5] 2 → 10 → 2

[3, 5] 23 → 31 → 23

[5, 5] 11 → 12 → 20 → 14 → 42 → 100 → 11

[7, 5] 23 → 40 → 43 → 112 → 23

[9, 5] 21 → 24 → 104 → 101 → 21

[1, 7] 13 → 14 → 24 → 30 → 13 C1

35 → 50 → 35 C2

[3, 7] 25 → 44 → 50 → 40 → 25 C1

26 → 61 → 55 → 104 → 26 C2

[5, 7] 6 → 56 → 123 → 25 → 46 → 111 → 11 → 10 → 6 C1

13 → 21 → 13 C2

34 → 42 → 34 C3

[7, 7] 26 → 65 → 125 → 52 → 51 → 45 → 66 → 142 → 40 → 32 → 26

[9, 7] 46 → 115 → 51 → 50 → 46

[1, 9] 3 → 11 → 3

[3, 9] 4 → 21 → 8 → 74 → 75 → 85 → 112 → 10 → 4

[5, 9] 25 → 37 → 70 → 60 → 45 → 51 → 34 → 33 → 25 C1

28 → 81 → 77 → 124 → 28 C2

46 → 63 → 55 → 61 → 46 C3

88 → 157 → 88 C4

[7, 9] 8 → 78 → 143 → 36 → 57 → 100 → 8 C1

25 → 40 → 25 C2

45 → 53 → 45 C3

48 → 106 → 48 C4

[9, 9] 12 → 15 → 38 → 101 → 12 C1

24 → 32 → 24 C2

In light of Lemma 2.3, when c is even and b is odd, for each a
and k, Sk

[c,b](a) ≡ a (mod 2). Thus, in these cases, there cannot exist

a consecutive pair of (or longer sequences of consecutive) u-attracted
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numbers. With this in mind, we introduce the next definition, found
in [3].

Definition 3.1. A sequence of positive integers is d-consecutive if it
is an arithmetic sequence with constant difference d.

By [3, Corollary 2], given b ≥ 2, and d = gcd(2, b−1), there exist ar-
bitrarily long finite d-consecutive sequences of 1-attracted numbers for
S[0,b]. Adapting these ideas to augmented generalized happy functions,
we prove the next theorem.

Theorem 3.2. Let c ≥ 0, b ≥ 2 and u ∈ U[c,b] be fixed. Set
d = gcd(2, b − 1). Then, there exist arbitrarily long finite sequences
of d-consecutive u-attracted numbers for S[c,b].

As noted earlier, Lemma 2.3 shows that, if c is even and b is odd,
then there do not exist any consecutive u-attracted numbers for S[c,b].
However, for c and b both odd, we conjecture that there are arbitrarily
long finite sequences of consecutive u-attracted numbers for S[c,b].

Conjecture 3.3. Let c > 0 and b > 2 both be odd. Then, for each
u ∈ U[c,b], there exist arbitrarily long finite sequences of consecutive
u-attracted numbers for S[c,b].

We now prove Theorem 3.2. In Section 4, we prove special cases of
Conjecture 3.3, specifically, the cases with c, b < 10.

Our proof of Theorem 3.2 follows the general outline of the proofs
in [3]. We note that, similar to the proofs in [3], our proofs lead to
the somewhat stronger result in which u ∈ U[c,b] is replaced by u in the
image of S[c,b].

We begin with a definition and two important lemmas.

Definition 3.4. A finite set, T ⊂ Z+, is [c, b]-good if, for each u ∈ U[c,b],

there exists n, k ∈ Z≥0 such that, for all t ∈ T , Sk
[c,b](t+ n) = u.
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Lemma 3.5. Let F : Z+ → Z+ be the composition of a finite sequence
of the functions S[c,b] and I, where I : Z+ → Z+ is defined by
I(t) = t+ 1. If F (T ) is [c, b]-good, then T is [c, b]-good.

Proof. It suffices to show that, if I(T ) is [c, b]-good, then T is [c, b]-
good, and if S[c,b](T ) is [c, b]-good, then T is [c, b]-good. First, suppose
that I(T ) is [c, b]-good. Then, for each u ∈ U[c,b], there exist n

′, k ∈ Z≥0

such that Sk
[c,b](t + 1 + n′) = u for all t ∈ T . Letting n = n′ + 1, it

follows that T is [c, b]-good.

Now, suppose that S[c,b](T ) is [c, b]-good. Then, for each u ∈ U[c,b],

there exist n′, k′ ∈ Z≥0 such that Sk′

[c,b](S[c,b](t) + n′) = u for all t ∈ T .

Let r ∈ Z be the number of base b digits of the largest element of T ,
and set

n = 11 . . . 11︸ ︷︷ ︸
n′

00 . . . 00︸ ︷︷ ︸
r

,

in base b. Letting k = k′ + 1, we have

Sk
[c,b](t+ n) = Sk′

[c,b](S[c,b](t+ n)) = Sk′

[c,b](S[c,b](t) + n′) = u.

Hence, T is [c, b]-good. �

Lemma 3.6. If T = {t}, then T is [c, b]-good.

Proof. Let u ∈ U[c,b]. Then, there exists some v ∈ Z+ such that
S[c,b](v) = u. Let r ∈ Z≥0 be such that t ≤ brv, and define n = brv − t

and k = 1. This yields Sk
[c,b](t + n) = S[c,b](v) = u. Hence, T is

[c, b]-good. �

Theorem 3.7. Given c ≥ 0 and b ≥ 2, let d = gcd(2, b − 1). A finite
set T of positive integers is [c, b]-good if and only if all elements of T
are congruent modulo d.

Proof. Fix b, c, d, and nonempty T as in Theorem 3.7.

First, suppose that T is [c, b]-good, and let t1, t2 ∈ T . If b is even,
then d = 1, and so, t1 ≡ t2 (mod d), trivially. If b is odd, fix u ∈ U[c,b],

and let n, k ∈ Z≥0 be such that Sk
[c,b](ti + n) = u for i = 1, 2. Thus,

Sk
[c,b](t1 + n) = Sk

[c,b](t2 + n).
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Applying Lemma 2.3, we obtain

kc+ t1 + n ≡ kc+ t2 + n (mod 2),

so that t1 ≡ t2 (mod 2). Thus, all of the elements of T must be
congruent modulo 2 = gcd(2, b− 1) = d.

Conversely, assume that all of the elements of T are congruent
modulo d. Note that, if T has exactly one element, then, by Lemma 3.6,
T is [c, b]-good. Therefore, we may assume that |T | > 1.

Letting N = |T |, assume by induction that any set of fewer than
N elements, all of which are congruent modulo d, is [c, b]-good. Let
t1, t2 ∈ T be distinct, and assume, without loss of generality, that
t1 > t2. We will construct a function F , a finite composition of the
functions I and S[c,b], so that F (t1) = F (t2).

Consider the cases:

1. If t1 and t2 have the same nonzero digits, we construct F1 so that
F1(t1) = F2(t2).

2. If t1 ≡ t2 (mod b − 1), then we construct F2 so that F2(t1) and
F2(t2) have the same nonzero digits.

3. If it is neither the case that t1 and t2 have the same nonzero digits
nor t1 ≡ t2 (mod b − 1), we construct F3 so that F3(t1) ≡ F3(t2)
(mod b− 1).

Composing some or all of these functions will yield the desired func-
tion F .

Case 1. If t1 and t2 have the same nonzero digits, it follows from
the definition of S[c,b] that S[c,b](t1) = S[c,b](t2). In this case, let
F = F1 = S[c,b].

Case 2. If t1 ≡ t2 (mod b − 1), then there is v ∈ Z+ so that
t1 − t2 = (b − 1)v. Let r ∈ Z+ be such that br > bv + t2 − v so
that br > bv and br > t2−v. Let m = br+v− t2, and note that m > 0.
Then,

Im(t1) = t1 + br + v − t2 = br + v + (b− 1)v = br + bv

and
Im(t2) = t2 + br + v − t2 = br + v.
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Since r was chosen so that br > bv, Im(t1) and Im(t2) must have the
same nonzero digits, as in Case 1. In this case, let F1 = S[c,b] and
F2 = Im. Then let F = F1 ◦ F2.

Case 3. If neither of the above holds, let w = t1 − t2. We first show
that there exists 0 ≤ j < b− 1 such that

(3.1) 2j ≡ −S[c,b](w − 1) + c− 1 (mod b− 1),

where, for convenience, we define S[c,b](0) = 0. If b is even, then 2 and
b−1 are relatively prime; thus, 2 is invertible modulo b−1 and such a j
clearly exists. If b is odd, then d = 2 and so w is even. By Lemma 2.3,

S[c,b](w − 1) ≡ c+ w − 1 ≡ c− 1 (mod 2),

and so −S[c,b](w − 1) + c− 1 is even. Thus, there exists a j′ ∈ Z such
that 2j′ = −S[c,b](w− 1)+ c− 1. Hence, there is a 0 ≤ j < b satisfying
equation (3.1).

Now choose r′ ∈ Z+ such that (j + 1)br
′
> t1, and let m′ =

(j + 1)br
′ − t2 − 1. Note that m′ ≥ 0. Then,

S[c,b](t1 +m′) = S[c,b]((j + 1)br
′
+ w − 1)

= (j + 1)2 + S[c,b](w − 1)

= (j2 + 2j + 1) + S[c,b](w − 1)

≡ j2 + c (mod b− 1)

and

S[c,b](t2 +m′) = S[c,b]((j + 1)br
′
− 1)

= j2 + (b− 1)2r′ + c

≡ j2 + c (mod b− 1).

Therefore, S[c,b]I
m′

(t1) ≡ S[c,b]I
m′

(t2) (mod b − 1), as in Case 2. In

this case, let F1 = S[c,b], F2 = Im, and F3 = S[c,b]I
m′

(with m chosen
as in Case 2). Further, let F = F1 ◦ F2 ◦ F3.

Thus, there exists a function F , a composition of a finite sequence
of S[c,b] and I, such that F (t1) = F (t2), and so, |F (T )| < |T |. By
the induction hypothesis, it follows that F (T ) is [c, b]-good. Finally, by
Lemma 3.5, T is [c, b]-good. �
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We are now ready to prove the main theorem of this paper.

Proof of Theorem 3.2. Let c, b, and u be given, and let N ∈ Z+ be
arbitrary.

If b is even, set
T = {t ∈ Z | 1 ≤ t ≤ N}.

By Theorem 3.7, since d = 1, T is [c, b]-good. Thus, there exist
k, n ∈ Z≥0 such that, for each t ∈ T , Sk

[c,b](t + n) = u. Hence, the
set

{t+ n ∈ Z | 1 ≤ t ≤ N}

is a sequence of N consecutive u-attracted numbers.

If b is odd, then let

T = {2t ∈ Z | 1 ≤ t ≤ N}.

Then, by Theorem 3.7, since d = 2, T is [c, b]-good and, as above, the
set

{2t+ n ∈ Z | 1 ≤ t ≤ N}

is a sequence of N 2-consecutive u-attracted numbers. �

4. Special cases of Conjecture 3.3. By Theorem 3.2, if b is odd,
then there are arbitrarily long finite 2-consecutive sequences of u-
attracted numbers. By Lemma 2.3, if, in addition, c is even, then
there cannot exist any nontrivial consecutive sequences of u-attracted
numbers. This leaves the existence of such sequences undetermined in
the case of both c and b odd.

In this section, we prove that Conjecture 3.3 holds for values of b
and c both less than 10.

Theorem 4.1. Let both 1 ≤ c ≤ 9 and 3 ≤ b ≤ 9 be odd, and
let u ∈ U[c,b]. Then, there exist arbitrarily long finite sequences of
consecutive u-attracted numbers for S[c,b].

By Theorem 3.7, no set containing even two consecutive integers can
be [c, b]-good. Hence, in order to prove Theorem 4.1, we need a new,
similar property, which we define next.
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Definition 4.2. A finite set, T , is [c, b]-cycle-good if, for each cycle C
of S[c,b], there exist k, n ∈ Z+ such that, for all t ∈ T , Sk

[c,b](t+n) ∈ C.

Note that any [c, b]-good set is necessarily [c, b]-cycle-good, but not
the converse. We need the next analog of Lemma 3.5, with [c, b]-
cycle-good in place of [c, b]-good. Its proof completely parallels that
of Lemma 3.5 and so is omitted.

Lemma 4.3. Let F : Z+ → Z+ be the composition of a finite sequence
of the functions, S[c,b] and I, where I : Z+ → Z+ is defined by
I(t) = t+ 1. If F (T ) is [c, b]-cycle-good, then T is [c, b]-cycle-good.

Proof of Theorem 4.1. First note that, if S[c,b] has only one cycle,
then for each u ∈ U[c,b], every positive integer is u-attracted. Hence,
the theorem holds in these cases. Thus, using Table 2, it remains to
prove the conjecture for each [c, b] in the set

A = {[5, 3], [1, 7], [3, 7], [5, 7], [5, 9], [7, 9], [9, 9]}.

Fix [c, b] ∈ A, and let T be a nonempty finite set of positive integers.
We now prove that T is [c, b]-cycle-good.

Table 3. Values for the proof of Theorem 4.1.

[c, b] v Vj

[5, 3] 20 V1 = {20, 100}, V2 = {20, 21}, V3 = {20, 111}
[1, 7] 13 V1 = {13, 14}, V2 = {13, 30}, V3 = {13, 50}
[3, 7] 44 V1 = {44, 25}, V2 = {44, 50}, V3 = {44, 61},

V4 = {44, 104}
[5, 7] 6 V1 = {6, 10}, V2 = {6, 21}, V3 = {6, 25},

V4 = {6, 34}, V5 = {6, 56}, V6 = {6, 111}
[5, 9] 37 V1 = {37, 25}, V2 = {37, 34}, V3 = {37, 45},

V4 = {37, 61}, V5 = {37, 63}, V6 = {37, 70}
V7 = {37, 81}, V8 = {37, 124}, V9 = {37, 157}

[7, 9] 8 V1 = {8, 25}, V2 = {8, 36}, V3 = {8, 45},
V4 = {8, 78}, V5 = {8, 100}, V6 = {8, 106}

[9, 9] 15 V1 = {15, 12}, V2 = {15, 32}, V3 = {15, 38}
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Table 4. Ski
[c,b](V1 + ni) ⊆ Ci.

[c, b] k1, n1 k2, n2 k3, n3 k4, n4

[5, 3] 0, 0 0, 1 2, 11120200 -

[1, 7] 0, 0 1, 1111111 - -

[3, 7] 0, 0 0, 30 - -

[5, 7] 0, 0 1, 3 1, 121303 -

[5, 9] 0, 0 2, 81 5, 11 1, 156155

[7, 9] 3, 2 6, 131 4, 135 3, 13

[9, 9] 0, 0 3, 218 - -

To fix notation, let Te be the set of all even elements of T , and let
To be the set of all odd elements of T . We assume that neither Te

nor To is empty since, otherwise, by Theorem 3.7, T is [c, b]-good and
thus [c, b]-cycle-good. Let the constant v and the sets Vj be as given in
Table 3, and let ℓ be the length of C1, the cycle of S[c,b] containing v,
as seen in Table 2.

By Theorem 3.7, the set Te is [c, b]-good. Thus, there exist positive

integers k1 and n1 such that, for each t ∈ Te, S
k1

[c,b](t+ n1) = v. Let

T ′ = {Sk1

[c,b](t+ n1) | t ∈ To}.

It follows from Lemma 2.3 that the elements of T ′ are all congruent
modulo 2. Hence, by Theorem 3.7, the set T ′ is also [c, b]-good. Thus,
there exist positive integers k2 and n2 such that, for each t ∈ T ′,
Sk2

[c,b](t+ n2) = v. Combining these results, we find that

Sk2

[c,b]

(
Sk1

[c,b](T + n1) + n2

)
=

{
v, Sk2

[c,b](v + n2)
}
,

where, again using Lemma 2.3, since v is even, Sk2

[c,b](v+n2) is odd. Let

k3 be a multiple of ℓ, sufficiently large so that Sk2+k3

[c,b] (v + n2) ∈ U[c,b].

Then,

Sk2+k3

[c,b]

(
Sk1

[c,b](T + n1) + n2

)
=

{
v, Sk2+k3

[c,b] (v + n2)
}
= Vj ,

for some j.

By Lemma 4.3, to prove that T is [c, b]-cycle-good, it suffices to prove
that each of the Vj is [c, b]-cycle-good. To each Ci, we associate a pair
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Table 5. S
k′
j

[c,b](Vj + n′
j) ⊆ V1.

[c, b] k′
2, n

′
2 k′

3, n
′
3 k′

4, n
′
4 k′

5, n
′
5 k′

6, n
′
6 k′

7, n
′
7 k′

8, n
′
8 k′

9, n
′
9

[5, 3] 2, 1202 2, 12112

[1, 7] 1, 0 5, 14

[3, 7] 3, 0 5, 131 3, 3

[5, 7] 9, 1 5, 16 6, 114 7, 0 6, 114

[5, 9] 9, 212 4, 7 6, 22 5, 147 7, 0 1, 212 6, 147 7, 32

[7, 9] 9, 3 6, 150 4, 16 11, 31 9, 31

[9, 9] 7, 6 3, 0

(ki, ni), as given in Table 4, and to each Vj , we associate a pair (k′j , n
′
j),

as in Table 5.

To show that V1 is [c, b]-cycle-good, fix a cycle Ci of S[c,b], and note

that, for each t ∈ V1, S
ki

[c,b](t + ni) ∈ Ci. Thus, V1 is [c, b]-cycle-good.

Now, fix j such that Vj ̸= V1. Direct calculation shows that, for each

t ∈ Vj , S
k′
j

[c,b](t+ n′
j) ∈ V1. Since V1 is [c, b]-cycle-good, so is Vj . Thus,

by Lemma 4.3, T is [c, b]-cycle-good.

Hence, for each c and b as in the theorem, every finite set is [c, b]-
cycle-good. Considering the specific sets TN = {1, 2, . . . , N} completes
the proof. �
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