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GEOMETRIC CONSTRUCTIONS ON CYCLES IN Rn

BORUT JURČIČ ZLOBEC AND NEŽA MRAMOR KOSTA

ABSTRACT. In Lie sphere geometry, a cycle in Rn is
either a point or an oriented sphere or plane of codimension
1, and it is represented by a point on a projective surface
Ω ⊂ Pn+2. The Lie product, a bilinear form on the space
of homogeneous coordinates Rn+3, provides an algebraic
description of geometric properties of cycles and their mutual
position in Rn. In this paper, we discuss geometric objects
which correspond to the intersection of Ω with projective
subspaces of Pn+2. Examples of such objects are spheres
and planes of codimension 2 or more, cones and tori. The
algebraic framework which Lie geometry provides gives rise
to simple and efficient computation of invariants of these
objects, their properties and their mutual position in Rn.

1. Introduction. In his dissertation [10] published in 1872, Sophus
Lie introduced his Lie geometry of oriented spheres which is based on
a bijective correspondence between oriented geometric cycles, that is,
planes and spheres of codimension 1 and points on a quadric surface Ω
in the projective space Pn+2. Geometric relations like tangency, angle
of intersection, power, etc., are expressed in terms of the Lie product,
a nondegenerate bilinear form on the space Rn+3 of homogeneous
coordinate vectors. Lie geometry is an extension of the perhaps
better known Möbius geometry of nonoriented cycles in Rn. Both Lie
and Möbius geometries provide an algebraic framework for computing
geometric invariants of cycles and expressing their mutual position.
This makes Lie geometry an appropriate language for dealing with
geometric constructions on spheres and planes in Rn. It has been used
to study a variety of geometric problems on circles and lines in the
plane and design algorithms for finding their solutions, for example, in
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[4, 12, 13]. In [6], Lie geometry was used to analyze the existence
and properties of solutions of geometric constructions associated to the
Apollonius construction in Rn. In [9], the special case of the Apollonius
problem in the plane was considered. In [7], simple algorithms for
symbolic solutions of a number of such geometric constructions were
given. A thorough treatment of Lie geometry can be found in [1, 2].

In this paper, we study geometric objects in Rn which are obtained as
intersections of projective subspaces of Pn+2 with the quadric Ω. For
example, the intersection of Ω with a (k + 1)-dimensional projective
subspace of Pn+2 spanned by k cycles and a special element r ∈
Pn+2 determines a k-parametric family of geometric cycles in Rn. If
the spanning cycles correspond to intersecting geometric objects, this
determines a subcycle, that is, a sphere or plane of codimension k in
Rn which is the common intersection of all geometric cycles belonging
to the family. Such a family is known as a Steiner family. Similarly,
the intersection of Ω with a (k + 1)-dimensional projective subspace
spanned by k cycles and a second special element w ∈ Pn+2 determines
a k-parametric cone family. If the spanning cycles have a common
tangent plane, this generates a cone in Rn consisting of all points of
tangency of the cycles of the family to the common tangent planes.

Many geometric properties of these objects can be computed from
simple, easily computable algebraic invariants of the corresponding pro-
jective subspaces. Such an invariant is, for example, the Lie form re-
stricted to the linear subspace of homogeneous coordinate vectors. First
of all, its sign determines which projective subspaces have nonempty in-
tersections with Ω and thus define geometric objects. Second, quotients
of determinants, the so-called discriminants, are algebraic invariants of
the obtained geometric objects which reflect their geometric properties.
Certain projective transformations (that is, linear transformations on
the homogeneous coordinates), in particular Lie projections and Lie
reflections, enable a simple, easily implementable computation of geo-
metric characteristics.

Following is a description of the main results of this paper. In
Section 2, we give a short summary of Lie geometry of oriented
geometric cycles where we refer the reader to [6] or (with minor changes
in notation) to [2] for the missing proofs and details.
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In Section 3, we introduce general s-families, that is, families of
cycles which are obtained as intersections of Ω with a projective sub-
space of Pn+2 containing a distinguished cycle s. We then describe our
main algebraic tools: determinants, Lie projections and Lie reflections.
We focus on hyperbolic families, where the determinant of the corre-
sponding subspace is negative, since these determine geometric objects
of interest to us. Depending on a further cycle s′ we define the s′-
discriminant of a hyperbolic s-family. The Lie projection c of s′ onto
the corresponding projective subspace has a special role in the family:
it generates the cycle of the family with the minimal s′-discriminant.
We show that the w-discriminant of a hyperbolic r-family gives the
radius of the corresponding subcycle, the projection c determines the
cycle in the family with the minimal radius, and the planes of the family
correspond to elements in the projection of the dual subspace ℓ = s′⊥.
In the case of hyperbolic w-families, the r-discriminant gives the angle
at the vertex of the cone, and c determines the plane, orthogonal to
the axis of the cone, while its dual subspace determines the points of
the family, in particular, in the case of a 1-parametric cone family, the
vertex of the cone.

In Section 4, we consider the mutual position of an s-family and a
cycle. We define the s-discriminant of the two objects and show that
its value coincides with the extreme value of the s-discriminant on pairs
consisting of the given cycle and any cycle from the family and that
it is achieved on the Lie projection of the given cycle onto the family.
We prove that the r-discriminant of a cycle and a subcycle corresponds
to the minimal angle of intersection (if it exists) or the maximal angle
under which the given cycle is seen from the cycles of the family (if the
intersection does not exist), and that this extreme value is achieved on
the projection of the given cycle onto the family. On the other hand,
the discriminant also gives the angle of the segment connecting the
center of the given cycle and a point on the subcycle above the plane in
Rn in which the subcycle lies. The w-discriminant of a cycle and a cone
corresponds to the tangential distance of the given cycle to the cone,
which coincides with the minimal tangential distance between cycles of
the cone family and the given cycle and is again achieved on the Lie
projection of the cycle onto the family.

In Section 5, we generalize this to the case of two families of the same
dimension and define their s-discriminant. We show that the value of
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the discriminant coincides with the extreme value of the s-discriminant
on pairs consisting of a cycle from each family, and that it is achieved
at the fixed points of a product of two Lie projections.

Finally, we illustrate these results on the case of two subcycles
and two cones in R3: the sign of the r-discriminant of two subcycles
determines whether they are linked or unlinked, and the fixed point
pairs determine the cycles in the two r-families with the largest and the
smallest angle, while the sign of the w-discriminant of a pair of cones
determines whether their tangential distance exists, and the fixed point
pairs correspond to pairs of cycles from each w-family with minimal
tangential distance.

All constructions which appear in this paper as well as in [6, 7]
have been implemented in a Mathematica package which can be found
at http://matematika.fe.uni-lj.si/html/people/borut/Lie/. The ex-
amples in this paper have all been generated with this package.

2. Cycles. Throughout this paper, we will use the following con-
vention: a lowercase letter will denote an element of a projective space
and the corresponding upper case letter its homogeneous coordinate
vector.

We start with an informal geometric description of the Möbius and
Lie coordinates of cycles in Rn. In Möbius geometry, nonoriented cycles
in Rn are represented as points on or outside a quadric surface Q in the
projective space Pn+1 in the following way. The vector space Rn+2 of
homogeneous coordinate vectors of points in Pn+1 is given the Lorentz
metric or Möbius product, an indefinite bilinear form of index 1 which
we denote by ( , ). The quadric Q consists of points z ∈ Pn+1 such that
(Z,Z) = 0. The quadric Q divides the points of Pn+1 into three types:
a point z on Q is lightlike, a point z such that (Z,Z) > 0 is spacelike,
and a point z such that (Z,Z) < 0 is timelike. The cycles of Rn are
represented by lightlike and spacelike points of Pn+1 by identifying Rn

with {(ζ1, . . . , ζn+1) | ζn+1 = 0} ⊂ Rn+1 ⊂ Pn+1 and Q with the
paraboloid

ζn+1 = −1

2

n∑
i=1

ζ2i

tangent to Rn at the origin.
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Figure 1. In Möbius geometry the 0-dimensional unoriented sphere in R1

consisting of the points a′ and b′ is represented by the point z in the plane
R2. The 0-sphere {a′, b′} is the projection onto R1 of the points {a, b} on the
Möbius quadric Q and z is the polar point to the line through the points a
and b.

Each geometric cycle c in Rn can be obtained by intersecting Q with
an n-plane, l ⊂ Rn+1, and projecting the intersection to Rn. If c is
a point, that is, a sphere with radius 0, then l is tangent to Q and z
is the point of tangency. If c is a sphere or plane, then z is the polar
point of l, that is, the common point of all tangent planes to Q at the
points of intersection Q ∩ l, and z is spacelike. If c is a sphere, then
z ∈ Rn+1 ⊂ Pn+1 and, if c is a plane, then z ∈ Pn+1 \ Rn+1. Figure 1
shows this construction in the case of a 0-dimensional cycle in R1: a 0-
sphere in R1 consisting of two points, denoted by a′ and b′, is obtained
by projecting the intersection {a, b} of the quadric with a line in R2,
and z ∈ R2 ⊂ P2 is the polar point of this line.
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In Lie geometry, an additional dimension is added, that is, Pn+1 is
embedded as a projective subspace into Pn+2. The Möbius product
is extended to the Lie product, an indefinite bilinear form of index 2
on the space of homogeneous coordinate vectors in Rn+3. The Lie
product of vectors X,Y ∈ Rn+3 will be denoted by (X | Y ). Each
oriented geometric cycle in Rn is represented by a point on the Lie
quadric

Ω = {x ∈ Pn+2 | (X | X) = 0}.

The quadric Ω is a branched double cover over the spacelike and
lightlike points of Pn+1 intersecting Pn+1 in the branching locus Q. A
point of Rn is represented by a single point z ∈ Q ⊂ Ω, while a sphere
or a plane is represented by two points z+ and z− on Ω lying above
and below z, one for each orientation. Figure 2 shows the projection
from the Lie quadric to the Möbius space.

In Möbius geometry (X,Y ) = 0 if and only if the two geometric
cycles represented by x and y intersect orthogonally. More precisely,
for any two spacelike points x, y ∈ Pn+1, the Möbius product in suitable
homogeneous coordinates gives the angle of intersection of the two
cycles they represent.

In Lie geometry the equation (X | Y ) = 0 describes oriented contact,
that is, (X | Y ) = 0 if and only if the two oriented geometric cycles
x, y are tangent with compatible orientations in the points of tangency.
Because of this, Lie geometry is particularly suited for dealing with
configurations of geometric cycles with certain tangency requirements,
since such requirements are encoded by the simple linear equation
(X | Y ) = 0.

In order to give a precise description of the correspondence between
oriented geometric cycles and points on Ω which can be used for
specific algorithms and computations, it is necessary to introduce local
coordinate charts on Pn+2.

We will call an element x ∈ Pn+2 (denoted by a lowercase letter)
an algebraic cycle (or, mostly, just a cycle). An algebraic cycle x is
given by a nonzero vector of homogeneous coordinates X ∈ Rn+3,
which is determined up to a scalar factor and which we denote by
the corresponding uppercase letter.
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Figure 2. In Lie geometry, the points on and outside the Möbius quadric
in Pn+1 are covered by the Lie quadric Ω ⊂ Pn+2. A spacelike point z ∈ Pn+1

which represents a nonoriented sphere in Möbius geometry is covered by the
two points z−, z+ ∈ Pn+2 representing the sphere with both orientations.

The Lie product on Rn+3 is a nondegenerate bilinear form of index 2
given by

(X | Y ) = XT AY, A =


0 0 1 0
0 In 0 0
1 0 0 0
0 0 0 −1

 ,
where In denotes the n × n identity matrix. In coordinates, let
X = (ξ0, ξ1, ξ2, ξ3) and Y = (η0,η1, η2, η3), where ξi, ηi ∈ R for
i = 0, 2, 3 and ξ1,η1 ∈ Rn. Then

(X | Y ) = ξ0η2 + ξ1 · η1 + ξ2η0 − ξ3η3.
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The vectors X such that (X | X) = 0 form the Lie quadric

Ω := {x ∈ Pn+2 | (X | X) = 0} ⊂ Pn+2.

Cycles x ∈ Ω will be called proper cycles, while cycles x /∈ Ω will be
called nonproper cycles.

If X = (X1, . . . , Xk) denotes a list of homogeneous coordinate
vectors, the symbol ⟨X⟩ = ⟨X1, . . . , Xk⟩ will stand for the linear
subspace spanned by the vectors (X1, . . . , Xk) ∈ Rn+3, and the symbol
⟨X⟩⊥ = ⟨X1, . . . , Xk⟩⊥ for the orthogonal complement to ⟨X⟩ with
respect to the Lie product, i.e.,

⟨X⟩⊥ = {Y | (Xi | Y ) = 0, i = 1, . . . , k}.

Following our convention on upper and lowercase letters, ⟨x⟩ =
⟨x1, . . . , xk⟩ and ⟨x⟩⊥ = ⟨x1, . . . , xk⟩⊥ will denote the projective sub-
space spanned by x and its dual projective subspace, respectively. For
any nonzero vector S ∈ Rn+3, the open set Us = Pn+2 \ ⟨s⟩⊥ together
with the map

(2.1) φS : Us −→ Rn+3, φS(x) :=
1

(X | S)
X,

where X is any vector of homogeneous coordinates of x, with image
in {X | (X | S) = 1} ∼= Rn+2, is a chart on Pn+2 specifying local
coordinates in Us. The collection

{(Us, φS) | S ̸= 0 ∈ Rn+3}

gives the standard manifold structure on Pn+2.

Two cycles and their corresponding charts have a special role in
Lie geometry: the nonproper cycle r with homogeneous coordinates
R = (0,0, 0, 1) and the proper cycle w with homogeneous coordinates
W = (1,0, 0, 0). The reason for this is that the equation (X | X) = 0
implies that either ξ2 ̸= 0 and X ∈ Uw, or ξ3 ̸= 0 and X ∈ Ur, so

Ω ⊂ Uw ∪ Ur.

An oriented geometric cycle in Rn is represented by a proper alge-
braic cycle x ∈ Ω ⊂ Pn+2 in the following way.

• The positively oriented (i.e., inward normal) and negatively
oriented sphere with center p and radius ρ are represented by
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the cycles x and x′ in Uw ∩ Ur with local coordinates

(2.2) φW (x) = (ν,p, 1, ρ) , φR(x) =

(
− ν

ρ
,−p

ρ
,−1

ρ
,−1

)

(2.3) φW (x′) = (ν,p, 1,−ρ) , φR(x
′) =

(
ν

ρ
,
p

ρ
,
1

ρ
,−1

)
,

respectively, where ν = (ρ2 − ∥p∥2)/2 and ρ > 0.
• A point p ∈ Rn, i.e., a sphere with radius 0, is represented
by the cycle x ∈ ⟨r⟩⊥ ⊂ Uw with local coordinates φW (x) =
(ν,p, 1, 0), where ν = −∥p∥2/2.

• A plane with normal n, where ∥n∥ = 1, containing the point q
is represented by the cycle x ∈ ⟨w⟩⊥∩Ur with local coordinates

φR(x) = (n · q,−n, 0,−1).

In the opposite direction, every proper cycle x ̸= w represents an
oriented geometric cycle in Rn. A proper cycle in ⟨w⟩⊥ ⊂ Ur represents
a plane, while a proper cycle in ⟨r⟩⊥ ⊂ Uw represents a point in Rn.
The only exception is w ∈ ⟨w⟩⊥ ∩ ⟨r⟩⊥, which does not represent any
geometric cycle. A change of sign of the last homogeneous coordinate
of a cycle x ∈ Ω, produces the reoriented cycle x′ ∈ Ω representing
the same geometric cycle and an oriented cycle with the opposite
orientation. Points have no orientation: if x is a point, then x′ = x.

Remark 2.1. Spheres and planes in Rn correspond through the stere-
ographic projection to codimension 1 spheres on the sphere Sn and, in
this setting, the cycle w is the representation of the pole in Sn.

The Lie product computed in different charts reflects different geo-
metric properties of the corresponding pair of cycles. Following are
some specific cases.

(1) Let x1 and x2 be proper cycles representing geometric cycles c1
and c2 such that (X1 | X2) = 0. If one of the cycles, for example
c1, is a point, then it lies on c2. If both are non-point cycles,
then c1 and c2 are tangent with compatible orientation. If c1
and c2 are both planes, then they are parallel with compatible
orientation. The proof of this fact amounts to simple geometric
verifications and can be found for example in [2].
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(2) Let x1, x2 ∈ Ur ∩ Ω be two non-point cycles representing
intersecting geometric cycles c1 and c2. The Lie product is

(2.4) (φR(x1) | φR(x2)) = − cosα− 1,

where α is the angle of intersection (Figure 3, left). If both
cycles are spheres, this follows from the law of cosines since

(φR(x1) | φR(x2)) =
−∥p1 − p2∥2 + ρ21 + ρ22 − 2ρ1ρ2

2ρ1ρ2
= − cosα− 1.

If one cycle is a plane and one is a sphere, then

(φR(x1) | φR(x2)) =

(
φR(x1) |

φW (x2)

ρ2

)
=

n1 · (p2 − q1)− ρ2
ρ2

= − cosα− 1,

where q1 is a point in the intersection. And, finally, if both
cycles are planes, again,

(φR(x1) | φR(x2)) = n1n2 − 1 = − cosα− 1.

If the cycles c1 and c2 do not intersect, the Lie product is
associated with the Lorentz boost χ.

(2.5) (ϕR(x1) | ϕR(x2)) = ± coshχ− 1 and coshχ =

∣∣∣∣ρ′21 + ρ′22
2ρ′1ρ

′
2

∣∣∣∣,
where ρ′1 and ρ′2 are the radii of the corresponding concentric
cycles (see Figure 3 right) with the same product (2.5).

(3) Let x1, x2 ∈ Uw ∩Ω be non-point cycles representing geometric
cycles c1 and c2 with a common tangent plane, i.e., with
(ρ1−ρ2)2−∥p1−p2∥2 ≤ 0 (where ρi can be negative, depending
on the orientation). Then

(2.6) (φW (x1) | φW (x2)) =
(ρ1 − ρ2)

2 − ∥p1 − p2∥2

2
= −d

2

2
,

where d is the tangential distance (Figure 4, left).
If the cycles do not have a common tangent plane, then the
product (2.6) is positive. If c1 is a point, then it lies inside the
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Figure 3. Geometric interpretation of the Lie product in the chart Ur

in the case of intersecting (left, equation (2.4)), and nonintersecting (right,
equation (2.5)) cycles.

C1

C2

d

C1

C2
P1

P2

C1 '

C2 '

Figure 4. Geometric interpretation of the Lie product in the chart Uw. On
the left, the two cycles have a common tangent plane (equation (2.6)) and
have opposite orientations so (ρ1 − ρ2) corresponds to the sum of the two
radii and d is the tangential distance. On the right, the cycles do not have a
common tangent plane (equation (2.7)) and d is the half chord.

sphere c2 and equation (2.6) is

(φW (x1) | φW (x2)) =
ρ22 − ∥p1 − p2∥2

2
=
d2

2
,

where d is the half chord of c2 through c1. If both c1 and c2
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are spheres, then equation (2.6) gives

(2.7) (φW (x1) | φW (x2)) =
(ρ1 − ρ2)

2 − ∥p1 − p2∥2

2
=
d2

2
,

where d is the half chord of the circle concentric to c2 with
radius |ρ1| + |ρ2| through the center of c1. A proof of this
is a nice application of Lie reflections and is given later in
Corollary 3.6.

3. Projective subspaces and families of cycles.

3.1. Families and s-families of cycles. In this section, we will
consider families of proper cycles arising from projective subspaces in
Pn+2 and geometric objects corresponding to them.

Let x = (x1, . . . , xk+1), 2 ≤ k ≤ n, denote a list of cycles spanning
the subspace ⟨x⟩ ⊂ Pn+2. If the intersection ⟨x⟩∩Ω is nonempty, it is a
family of proper cycles. The dual algebraic object ⟨x⟩⊥∩Ω will be called
the cofamily. On the geometric side, the cofamily contains all oriented
geometric cycles which are tangent to geometric cycles corresponding
to all x ∈ x.

Typically, we will consider lists of the type (x, s) = (x1, . . . , xk, s),
where xi are proper cycles and s is r, w or possibly some other special
cycle with with (S | S) ≤ 0. A family ⟨x, s⟩ of this type will be called
an s-family and the corresponding cofamily will be an s-cofamily. For
example, an r-cofamily consists of points, and a w-cofamily consists
of planes. If k = 2, an s-family is usually called a pencil of cycles.
Following the standard terminology for pencils, we will call an r-family
a Steiner family and a w-family a cone family.

Let us take a closer look at geometric pencils in R3 (see also [6, 13]).
A Steiner pencil is determined by two intersecting cycles and consists of
all cycles containing the intersection circle or line of these two cycles, so
the geometric object it represents is the intersecting circle. The cycles
of the copencil are the points of this circle. A cone pencil is determined
by two oriented spheres with a common tangent plane. The cycles of
the copencil are the planes tangent (with compatible orientations) to
both spheres. The envelope of these planes is a double cone tangent
to all the spheres in the pencil with vertex in the common intersection
point of the tangent planes, so the geometric object represented by a
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cone family is an oriented double cone (which collapses to a line if both
spanning cycles are points, or extends to a cylinder if the two spanning
cycles are spheres with equal radii). Another interesting geometric
pencil is obtained if the special cycle s is given by S = ρW +R. Then
an s-pencil spanned by two oriented spheres consists of all spheres with
a common tangent sphere of radius ρ. The cycles of the copencil are
all spheres of radius ρ, tangent to both given spheres. The envelope of
these spheres forms a torus, so the new geometric object represented
by such a pencil is an oriented torus or, if the two spanning cycles are
planes, a cylinder.

3.2. The determinant of a family. Consider the Gram matrix with
elements the Lie products of vectors from a list of linearly independent
vectors X = (X1, . . . , Xk),

(3.1) AX = [X]TA[X] =

 (X1 | X1) · · · (X1 | Xk)
...

. . .
...

(Xk | X1) · · · (Xk | Xk)

 .
Its determinant ∆(X) = detAX can be positive, negative or even
zero, due to the indefiniteness of the Lie product. The sign of the
determinant ∆(X) is an invariant of the projective subspace ⟨x⟩ and,
consequently, an invariant of the underlying family ⟨x⟩∩Ω. It depends
on the index of the Lie form restricted to the subspace ⟨X⟩. The
following proposition is a standard result in linear algebra; for example,
it is an immediate consequence of [2, Theorem 1.2].

Proposition 3.1.

(i) If the Lie form on the subspace ⟨X⟩ is nondegenerate, then it is
nondegenerate also on the Lie orthogonal complement ⟨X⟩⊥, and
Rn+3 = ⟨X⟩ ⊕ ⟨X⟩⊥.

(ii) If ∆(X) < 0, then the index of the Lie form on the subspace ⟨X⟩
is 1.

The sign of ∆(X) determines the position of the projective subspace
⟨x⟩, and its Lie orthogonal complement with respect to the Lie quadric
Ω, as the following theorem shows.

Theorem 3.2. Let X = (X1, . . . Xk), where 2 ≤ k ≤ n+1 are linearly
independent vectors from Rn+3.
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Figure 5. A Steiner and a cone pencil in three dimensions.
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(i) If ∆(X) < 0, then both ⟨x⟩ and its Lie orthogonal complement
⟨x⟩⊥ intersect Ω.

(ii) If ∆(X) = 0, then ⟨x⟩ ∩ ⟨x⟩⊥ ̸= ∅ ⊂ Ω.
(iii) If ∆(X) > 0, then exactly one of ⟨x⟩ and ⟨x⟩⊥ does not intersect

Ω.

Proof.

(i) If ∆(X) < 0, the restriction of the Lie form to ⟨X⟩, is nondegen-
erate and has index 1, so there exists a Lie orthogonal basis of
⟨X⟩ formed by vectors Yi such that (Yi | Yi) > 0, i = 1, . . . , k − 1
and (Yk | Yk) < 0, (compare [2, Theorem 1.2]). So the projective
line ⟨yi, yk⟩, 1 ≤ i < k, intersects the quadric Ω. The same is true
for Lie orthogonal complement ⟨X⟩⊥.

(ii) If ∆(X) = 0, the Lie form is degenerate on the subspace ⟨X⟩,
and there exists a vector X Lie orthogonal to all vectors of the
subspace including itself, so x ∈ ⟨x⟩⊥ ∩ ⟨x⟩ ⊂ Ω.

(iii) Finally, in the case ∆(X) > 0, we have two possibilities. Either
the index of the Lie form is 2 on ⟨X⟩ and 0 on ⟨X⟩⊥ and ⟨X⟩
intersects Ω while ⟨X⟩⊥ does not, or the other way around. �

An immediate application of Theorem 3.2 is a necessary and suf-
ficient condition for the existence of solutions of the oriented Apollo-
nius problem in Rn which asks for an oriented geometric cycle tan-
gent (with compatible orientations) to n + 1 given oriented cycles
c = (c1, . . . , cn+1).

Corollary 3.3. The oriented Apollonius problem on a configuration of
n+1 oriented cycles c with corresponding algebraic cycles x, which are
represented by the linearly independent set of homogeneous coordinate
vectors X, has exactly two solutions if ∆(X) < 0, no solution if
∆(X) > 0, and one solution if ∆(X) = 0.

Proof. A solution of the Apollonius problem is given by an inter-
section of ⟨x⟩⊥ with the Lie quadric. If ∆(X) < 0, then ⟨x⟩⊥ is a
projective line which intersects the Lie quadric in two cycles corre-
sponding to the two solutions. If ∆(X) > 0, then, since ⟨x⟩ intersects
the quadric its dual ⟨x⟩⊥ does not, and the problem has no solutions.
Finally, if ∆(X) = 0, then the projective line ⟨x⟩⊥ is tangent to Ω, so it
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contains exactly one point from Ω; therefore, the problem has exactly
one solution. �

3.3. Lie projections and Lie reflections. Let X = (X1, . . . , Xk) ∈
Rn+3 be a k-tuple of linearly independent vectors such that ∆(X) ̸= 0
(that is, with AX nonsingular). The Lie orthogonal projection onto the
subspace ⟨X⟩ is given by

(3.2) P⟨X⟩Y = [X]A−1
X [X]TAY.

The Lie orthogonal projection onto ⟨X⟩ determines a projective map

P⟨x⟩ : Pn+2 \ ⟨x⟩⊥ → x ⊂ Pn+2.

Proposition 3.4. The Lie orthogonal projection has the following
properties:

(i) P⟨X⟩⊥ = Id− P⟨X⟩.

(ii) For any Y1, Y2, Y ∈ Rn+3,

(Y1 | P⟨X⟩Y2) = (P⟨X⟩Y1 | Y2)

and

(Y | P⟨X⟩Y ) = (P⟨X⟩Y | P⟨X⟩Y ).

Proof.

(i) Since ∆(X) ̸= 0, the Lie form is nondegenerate on X and, by
Lemma 3.1, each vector Y ∈ Rn+3 has a unique decomposition
into Y = Y1+Y2, with Y1 ∈ ⟨X⟩ and Y2 ∈ ⟨X⟩⊥. Then P⟨X⟩(Y ) =
Y1 and P⟨X⟩⊥(Y ) = Y2; and so, P⟨X⟩⊥(Y ) = Y − P⟨X⟩(Y ).

(ii) Since A, as well as AX = ([X]TA[X]), is symmetric

(Y1 | P⟨X⟩Y2) = ([X]A−1
X [X]TAY2)

TAY1

= Y T
2 A([X]A−1

X [X]T )AY1

= Y T
2 AP⟨X⟩Y1 =

(
P⟨X⟩Y1 | Y2

)
,

the second statement follows from the first, since P 2
⟨X⟩ = P⟨X⟩. �
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Proposition 3.5. Let X = (X1, . . . , Xk), Y = (Y1, . . . , Ym) and Z =
(X1, . . . , Xk, Y1, . . . , Ym) be linearly independent vectors and ∆(X) ̸= 0.
Then

(3.3) ∆(Z) = ∆(X)∆(P⟨X⟩⊥Y).

Proof. The determinant of a block matrix is

det

[
A C
D B

]
= detAdet

(
B−DA−1C

)
,

and so

∆(Z) = det

[
[X]TA[X] [X]TA[Y]
[Y]TA[X] [Y]TA[Y]

]
= det ([X]TA[X])) · det ([Y]TA[Y]

− [Y]TA[X]([X]TA[X])−1[X]TA[Y])

= ∆(X) · det ([Y]TA([Y]− P⟨X⟩[Y]))

= ∆(X) · det ([Y]TAP⟨X⟩⊥ [Y])

= ∆(X) · det ([PX⊥(Y)]TA[P⟨X⟩⊥(Y)])

= ∆(X)∆(P⟨X⟩⊥(Y)). �

The Lie reflection with respect to the subspace ⟨X⟩ is given by

L⟨X⟩Y = Y − 2P⟨X⟩⊥Y = P⟨X⟩Y − P⟨X⟩⊥Y.

If ∆(X) ̸= 0, the reflection L⟨X⟩ is an isomorphism and determines the
projective map

L⟨x⟩ : Pn+2 → Pn+2,

which is the identity on ⟨x⟩ and on ⟨x⟩⊥. It has the following obvious
properties:

(i) L⟨X⟩ = −L⟨X⟩⊥ ,

(ii) if Y ∈ ⟨X⟩, then L⟨X⟩Y = Y and if Y ∈ ⟨X⟩⊥, then L⟨X⟩Y = −Y ,
(iii) (L⟨X⟩Y | L⟨X⟩Z) = (Y | Z),
(iv) if S ∈ ⟨X⟩, then

(S | Y ) = −(L⟨X⟩S | Y ) = −(S | L⟨X⟩Y ),
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(v) if S ∈ ⟨X⟩, then

(S | Y ) = (L⟨X⟩S | Y ) = (S | L⟨X⟩Y ),

and the reflection L⟨X⟩ preserves the chart Us and local coordi-
nates in it, since

L⟨X⟩φS(y) = L⟨X⟩

(
1

(S | Y )
Y

)
=

1

(Y | S)
L⟨X⟩ Y

=
1

(L⟨X⟩ Y | S)
L⟨X⟩ Y = φS(L⟨x⟩y).

Here are some interesting particular cases:

(i) If either r ∈ ⟨x⟩ or r ∈ ⟨x⟩⊥, the reflection L⟨x⟩ preserves angles.

(ii) If either w ∈ ⟨x⟩ or w ∈ ⟨x⟩⊥, the reflection L⟨x⟩ preserves
tangential distance.

(iii) If x ∈ ⟨r⟩⊥ \ Ω is a nonproper cycle, then Lx represents the
geometric inversion across the proper cycle ⟨x, r⟩∩Ω (if it exists).

(iv) The reflection L⟨r⟩ reverses orientation of cycles.
(v) If the special cycle s is of the form S = ρW + R, ρ ∈ R, then Ls

reverses orientation of spheres and changes the radius by 1/2ρ.
Since s ∈ ⟨w⟩⊥, it also preserves tangential distances. Points are
thus mapped to spheres of radius 1/2ρ, while spheres of radius
1/2ρ are mapped to points. On planes Ls represents a parallel
shift and reverses orientation.

The reflection Ls from the last example above can be used to give
a nice proof of what is the Lie product of two spheres in the case
(φW (x) | φW (y)) > 0 (Figure 4):

Corollary 3.6. In the case when x and y represent spheres cx and
cy with radii ρx and ρy with no common tangent plane, the product
(φW (x) | φW (y)) is d2/2, where d is the half chord of a sphere
concentric to cy with radius ρx + ρy through the center of cy.

Proof. The reflection Ls, where S = 1/ρxW +R, preserves the chart
Uw and local coordinates in it, so

(φW (x) | φW (y)) = (φW (Lsx) | φW (Lsy)) =
d2

2
,
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where Ls(x) is a point cycle representing the center of cx, and z = Ls(y)
represents the concentric sphere cz to cy with radius ρx + ρy, so d is
the half chord of cz through the center of cx. �

3.4. Hyperbolic s-families. Let ⟨x, s⟩ ∩ Ω be an s-family given by
linearly independent vectors X = (X1, . . . , Xk), 2 ≤ k ≤ n and S.
Depending on the sign of determinant ∆(X, S) we distinguish three
types of s-families ⟨x, s⟩ ∩ Ω.

(i) If ∆(X, S) > 0, the family is elliptic,
(ii) if ∆(X, S) < 0 the family is hyperbolic and
(iii) if ∆(X, S) = 0 the family is parabolic.

We will be interested only in hyperbolic families since, according to
Theorem 3.2, a hyperbolic family as well as its cofamily are both
nonempty and thus determine geometric objects.

Definition 3.7. Let x be a nonproper cycle. An intersection of the
projective line ⟨x, s⟩ with Ω will be called a projection of x onto Ω along
s.

Lemma 3.8. If (S | S) ̸= 0, then a nonproper cycle x has two
different projections onto Ω along s if ∆(X,S) < 0, one projection
if ∆(X,S) = 0 and no projections if ∆(X,S) > 0. If (S | S) = 0, then
one of the projections is equal to s, and a second one exists if and only
if ∆(X,S) ̸= 0.

Proof. If (S | S) ̸= 0, then the equation

(3.4) (X + λS | X + λS) = (X | X) + 2λ(X | S) + λ2(S | S) = 0

is quadratic with discriminant −∆(X,S), so the claim follows. If
(S | S) = 0, then s is automatically the projection of an arbitrary
x onto Ω along s. A second projection exists if (X | S) ̸= 0; it is the
solution of equation (3.4) which is linear in this case. If (X | S) = 0,
equation (3.4) has no solutions. �

Theorem 3.9. Let ⟨x, s⟩ ∩ Ω be a hyperbolic s-family.

(i) If (S | S) < 0, then each nonproper cycle x ∈ ⟨x, s⟩ different from
s has two projections onto Ω along s. Each cycle x ∈ ⟨x, s⟩∩⟨s⟩⊥
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is nonproper with (X | X) > 0. The subspace ⟨X, S⟩ is a direct
sum

(3.5) ⟨X, S⟩ = ⟨X, S⟩ ∩ ⟨S⟩⊥ ⊕ ⟨S⟩.

(ii) If (S | S) = 0, then a cycle x ∈ ⟨x, s⟩ ∩ ⟨s⟩⊥ different from s has
no projection onto Ω along s different from s, and is nonproper
with (X | X) > 0. The subspace ⟨X, S⟩ is a direct sum

(3.6) ⟨X, S⟩ = ⟨X, S⟩ ∩ ⟨S⟩⊥ ⊕ ⟨Y ⟩,

where y is any proper cycle in ⟨x, s⟩ not in ⟨s⟩⊥.

Proof.

(i) Let (S | S) < 0. The restriction of the Lie form to ⟨x, s⟩
has index 1. For any x ∈ ⟨x, s⟩ where x is nonproper and
different from s, the same is true also for the subspace ⟨x, s⟩,
so ∆(X,S) < 0, and by the lemma, x has two projections onto Ω
along s. If x ∈ ⟨x, s⟩ ∩ ⟨s⟩⊥, the projection of x onto Ω along s
has homogeneous coordinates X + λS satisfying the equation

(X + λS | X + λS) = (X | X) + λ2(S | S),

so (X | X) = −λ2(S | S) > 0 and x is nonproper. Clearly,
equation (3.5) holds in this case.

(ii) Let (S | S) = 0. In this case, s ∈ ⟨x, s⟩ ∩ ⟨s⟩⊥. For each cycle
x ∈ ⟨x, s⟩ ∩ ⟨s⟩⊥,

∆(X,S) = (X | X)(S | S)− (X | S)2 = 0,

so, by the lemma, there is no projection of x onto Ω along s
different from s. Let y ∈ ⟨x, s⟩ be any fixed proper cycles different
from s. For any y′ ̸= y, s, the difference X = φS(y) − φS(y

′) is
in ⟨S⟩⊥, so Y ′ = X + Y and equation (3.6) is valid. Finally,
for any x ∈ ⟨x, s⟩ ∩ ⟨s⟩⊥ different from s, let y′ = Lxy, and let
X = φS(y)− φS(y

′). Then

(X | X) = (φS(y)− φS(y
′) | φS(y)− φS(y

′))

= −2(φS(y) | φS(y
′)) > 0. �

3.5. Determinants and geometry. Recall the following well-known
determinant from geometry in Rn. Let a0, a1, . . . , ak be the vertices of
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a k-dimensional simplex in Rn. Then the volume of the simplex is given
by the Cayley-Menger determinant

(3.7) vol(a0, . . . , ak)
2 =

(−1)k−1

2k k!2

∣∣∣∣∣∣∣∣∣∣∣

0 d201 d202 · · · d20k 1
d210 0 d212 · · · d21k 1
...

...
...

. . .
...

...
d2k0 d2k1 d2k2 · · · 0 1
1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣
,

where dij = |ai − aj |. The polar sine of the angle at the vertex a0 of
the simplex (a0, a1, . . . , ak) is defined as:

(3.8) psina0
(a0, a1, . . . , ak) = k!

vol(a0, a1, . . . , ak)

|a1 − a0| . . . |ak − a0|
.

It is the ratio of the volume of the given simplex by the volume of the
cube with edges from the vertex a0 of the same lengths.

Determinants of r-families and w-families computed in different
charts have several interesting geometric interpretations. Following are
some examples:

(i) Let x = (x1, . . . , xk) be independent proper cycles, where 2 ≤ k ≤
n − 1 and Xi = φW (xi) are the homogeneous coordinates in the
chart Uw.

(ii) The determinant ∆(X,W ) equals

(3.9) ∆(X,W ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −d2
12

2 −d2
13

2 · · · −d2
1k

2 1

−d2
21

2 0 −d2
23

2 · · · −d2
2k

2 1
...

...
...

. . .
...

...

−d2
k1

2 −d2
k2

2 −d2
k3

2 · · · 0 1

1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where dij is the tangential distance between the cycle xi and xj .
If ∆(X,W ) < 0, then by (3.7),

∆(X,W ) = −(k − 1)!2 vol(q1, . . . , qk)
2,

where q1, . . . , qk are the vertices of the contact simplex, that
is, the points of tangency of the cycles of x to their common
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Figure 6. The contact simplex (left) and the simplex with vertices in the
centers of the cycles (right).

tangent plane. The sides of this simplex have lengths equal to the
tangential distances between the cycles of x (Figure 6, left).

(iii) The determinant ∆(X, R,W ) equals by Proposition 3.5

(3.10) ∆(X, R,W ) = (R | R)∆(P⟨R⟩⊥X,W ) = −∆(P⟨R⟩⊥X,W ),

where P⟨R⟩⊥X is formed by the coordinate vectors in theW -chart
of the point cycles pi corresponding to the centers of xi, so

(3.11) ∆(X, R,W ) = (k − 1)!2 vol(p1, . . . , pk)
2,

gives the squared volume of the simplex with vertices in the
centers pi of the cycles xi (Figure 6, right).

(iv) Finally, let (x1, . . . , xk) be a k-tuple of intersecting proper cycles,
p a point in the common intersection, and P its coordinate vector
in the W -chart. Then

∆(X, P,R,W )

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 (X1 | X2) · · · 0 (X1 | R) 1
(X2 | X1) 0 · · · 0 (X2 | R) 1

...
...

. . .
...

...
...

0 0 0 · · · 0 1
(R | X1) (R | X2) · · · 0 −1 0

1 1 · · · 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= ∆(X, R)
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and

∆(X, P,R,W ) = (R | R)∆(P⟨r⟩⊥(X, P )),W )(3.12)

= −∆(P⟨r⟩⊥X, P,W ),

where P⟨r⟩⊥X represents the point cycles (p1, . . . , pk) of the cen-
ters of xi expressed in the W -chart. By (3.11),

(3.13) ∆(X, P,R,W ) = ∆(X, R) = −k!2 vol(p1, . . . , pk, p)2,

where vol(p1, . . . , pk, p) is the volume of the simplex with vertices
in the centers pi of the cycles xi and a point p in the intersection.

(v) Let x = (x1, . . . , xk), 2 ≤ k ≤ n − 1, be independent proper
cycles representing spheres, and let Xi = φR(xi) be homogeneous
coordinates in the chart Ur. Then Xi = φR(xi) = φW (xi)/ρi
where ρi is the radius of the sphere xi and, by (3.8) and (3.13),

∆(X, R) = −∆(φW (x), R)

ρ21 . . . ρ
2
k

= −k!
2 vol(p, p1, . . . , pk)

2

ρ21 · · · ρ2k
(3.14)

= − psinp(p, p1, . . . , pk)
2.

On the other hand,

(P⟨R⟩⊥Xi | P⟨R⟩⊥Xj) = (Xi | Xj) + 1 = − cosψij

∆(X, R) = (R | R)∆(P⟨R⟩⊥X) = −∆(P⟨R⟩⊥X),

and it follows that

∆(X, R) = − psin(p, p1, . . . , pk)
2(3.15)

= −

∣∣∣∣∣∣∣∣∣
1 − cosψ12 · · · − cosψ1k

− cosψ21 1 · · · − cosψ2,k

...
...

. . .
...

− cosψk1 − cosψk2 · · · 1

∣∣∣∣∣∣∣∣∣ ,
where ψij is the intersection angle of the spheres xi and xj .

3.6. Discriminants. Since the value of the determinant of a family
depends on the choice of coordinate vectors, it cannot, by itself, reflect
geometric properties of the underlying geometric objects like the radius,
center and orientation of a circle given by a Steiner pencil or the vertex,
axis and angle at the vertex of a cone given by a cone pencil. These
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are, however, reflected by quotients of determinants. For example, the
square of the radius of a sphere given by x is equal to

ρ2 = − ∆(X,R)

∆(X,R,W )
.

Definition 3.10. Let S′ be such that (X, S, S′) are linearly indepen-
dent, ∆(X, S) ̸= 0 and (S′ | S) = 0. The S′-discriminant of ⟨x, s⟩ is
given by

(3.16) δS′(x, s) =
∆(X, S, S′)

∆(X, S)
.

Note that the value of δS′(x, s) depends not only on the cycle s′ but
also on the choice of the vector S′.

For example, if x = x is a single cycle, the S′-discriminant of (x, s)
is

δS′(x, s) =
∆(X,S, S′)

∆(X,S)

= − 1

(X |X)(S |S)−(X |S)2

∣∣∣∣∣∣
(X |X) (X |S) (X |S′)
(S |X) (S |S) 0
(S′ |X) 0 (S′ |S′)

∣∣∣∣∣∣
= (S′ | S′)− (S | S)(X | S′)2

(S | S)(X | X)− (X | S)2
.

For a fixed subspace ⟨x, s⟩, let C = P⟨X,S⟩S
′ denote the Lie projec-

tion of the vector S′ onto the subspace ⟨X, S⟩, and L = P⟨x,s⟩⟨C⟩⊥ the
Lie projection of the orthogonal subspace to ⟨C⟩ onto ⟨X, S⟩.

Proposition 3.11. If ∆(X, S) < 0,

(i) δS′(x, s) = (S′ − C | S′ − C) = (S′ | S′)− (C | C),
(ii) c ∈ ⟨s⟩⊥ and l ⊂ ⟨s′⟩⊥,
(iii) δS′(ℓ, s) = (S′ | S′) for any ℓ ∈ l.
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Proof.

(i) By Proposition 3.5,

δS′(x, s) =
∆(X, S, S′)

∆(X, S)
= ∆(P⟨X,S⟩⊥S

′)

= ∆(S′ − P⟨X,S⟩(S
′)) = (S′ − C | S′ − C)

= (S′ | S′)− (C | C).

The last equality follows from Proposition 3.4, since (C | C) =
(C | S′).

(ii) (C | S) = (P⟨X,S⟩S
′ | S) = (S′ | P⟨X,S⟩S) = (S′ | S) = 0. For any

L = P⟨X,S⟩Y where Y ∈ ⟨C⟩⊥, (L | S′) = (P⟨X,S⟩Y | S′) = (Y |
P⟨X,S⟩S

′) = (Y ′ | C) = 0.
(iii) By the definition, ∆(L, S, S′) = (S′ | S′)∆(L, S). �

Theorem 3.12. Let ⟨x, s⟩∩Ω be a hyperbolic s-family and (S | S) < 0.
The function

h(x) := δS′(x, s)

is defined on all ⟨x, s⟩ ∩ Ω and achieves its extreme values on the
compact set ⟨x, s⟩ at c and on the subspace l.

Proof. The function h is constant on projective lines through s, so
h(x) = h(y) for any x ∈ ⟨x, s⟩ ∩ Ω and y ∈ ⟨x, s⟩. According to
Theorem 3.9,

⟨x, s⟩ = ⟨x, s⟩ ∩ ⟨s⟩⊥ ⊕ ⟨s⟩,

so it suffices to consider values h(x) for x ∈ ⟨s⟩⊥. Then (X | X) ̸= 0
and

h(x) = (S′ | S′)− (X | S′)2

(X | X)

is well defined. The differential

dh = −2(X | S′)(dX | S′)(X | X)− 2(dX | X)(X | S′)2

(X | X)2

= −2(X | S) (dX | (X | X)S′ − (X | S′)X)

(X | X)2
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is equal to 0 in two cases: if (X | S′) = 0 so x ∈ l, and h(x) = (S′ | S′)
and if

(dX | (X | X)S′ − (X | S′)X) = 0

for all dX ∈ ⟨X,S⟩. In this case, dX = P⟨X,S⟩dX,(
P⟨X,S⟩ dX | (X | X)S′ − (X | S′)X

)
=

(
dX | (X | X)P⟨X,S⟩S

′ − (X | P⟨X,S⟩S
′)Y

)
= (dX | (X | X)C − (X | C)X) = 0,

which implies that X is a multiple of C. �
3.7. Subcycles and cones. Let us take a closer look at the two cases
where (s, S′) is equal to (r,W ) and (w,R).

First, let ⟨x, r⟩∩Ω be a hyperbolic r-family, that is, a subcycle, and
let S′ =W . Let x be a cycle from the family. Then

h(x) = δW (x, r) =
∆(X,R,W )

∆(X,R)
= − 1

ρ2
,

where ρ is the radius of the corresponding subcycle. ItsW -discriminant
equals

δW (x, r) = −(C | C), C = P⟨X,R⟩W.

If c is a nonproper cycle and δW (x, r) ̸= 0, it can be projected onto Ω
along r. We will give a geometric meaning to the discriminant δW (x, r),
the cycle c and the subspace l.

Assume first that δW (x, r) ̸= 0. The cycle c = P⟨x,r⟩(w) is a
nonproper cycle and, according to Proposition 3.11, belongs to the
subspace ⟨r⟩⊥. According to Theorem 3.9, it can be projected onto
Ω along r, and the projection consists of two cycles c1,2 = ⟨c, s⟩ ∩ Ω
which represent one nonoriented sphere with both orientations. By
Proposition 3.11,

(3.17) δW (x, r) = − (C |W )2

(C | C)
=

∆(Ci, R,W )

∆(Ci, R)
= − 1

ρ2
,

where ρ is the radius of the cycles c1,2 (see Figure 7 on the bottom).
By Theorem 3.12, the spheres c1,2 have the smallest absolute radius in
the family. Also, cycles ℓ ∈ l can be projected onto the Lie quadric
along r. Since (L | W ) = 0 holds for all L ∈ L, the projected cycles
represent the planes of the family. The family has no point cycles,
(⟨x, r⟩ ∩ Ω) ∩ ⟨r⟩⊥ = (⟨x, r⟩ ∩ Ω) ∩ (⟨x, r⟩⊥ ∩ Ω) = ∅.
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If δW (x, r) = 0, the family consists of planes. In this case, the
projection c does not exist.

L

C

P1P2

Θ

Α

Ρ

P1

P2
C

L

Figure 7. In an r-family (top) the cycle c projected onto Ω along r represents

the two oriented spheres with the smallest radius, and the subspace l

projected onto Ω along r contains the planes of the family. In a cone family

(bottom) c represents the plane orthogonal to the axis of the cone and l

contains the point cycles of the cone, in particular in R2, it is the vertex.

3.7.1. Cones: s = w and s′ = r. The cycles of a hyperbolic w-family
⟨x, w⟩ ∩ Ω correspond to a family of geometric cycles with common
tangent planes. The points of tangency form a cone in Rn, so we will
call such a family simply a cone. The R-discriminant δR(X,W ) of such
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a family is always nonzero since, if ∆(X,W,R) = 0 also ∆(X,W ) = 0,
which contradicts the hyperbolicity of the family. Using the fact that
(C | C) = (R | C), it is equal to

δR(x, w) = (P⟨X,W ⟩⊥R | P⟨X,W ⟩⊥R)(3.18)

= (R− C | R− C) = −1− (C | C).

The cycle c cannot be projected onto Ω along w since (C |W ) = 0. Its
projection along r is a nonoriented plane with both orientations, c1,2.
Using coordinates in the chart Ur we write C = (µ,n, 0,−ρ). From
(C | C) = (R | C) = ρ, we obtain

∥n∥2 − ρ2 = ρ, ∥n∥2 = ρ2 + ρ.

Let C0 = (µ0,n0, 0, ρ0) = C/∥n∥. Then

ρ0 = ±
√

ρ

1 + ρ
= ± cos θ,

so |ρ0| ≤ 1 and ρ ≥ 0. For an arbitrary cycle p from the cofamily,

P = φR(p) = (µ,n, 0, 1), (C0 | P ) = n0 · n− ρ0 = 0,

n0 · n = ± cos θ

The planes forming the cofamily intersect the two planes c1,2 under the
angle θ (see Figure 7), which is complementary to α/2, where α is the
vertex angle so

cos2 θ = sin2
α

2
=

ρ

ρ+ 1
and ρ = tan2

α

2
.

The discriminant is then

(3.19) δR(x, w) = −1−(C | C) = −1−ρ = −1−tan2
α

2
= − 1

cos2 α/2
.

All points of the subspace l can be projected onto Ω along w and the
projections represent the point cycles (see 3.11). In the case of a cone
pencil, the subspace l has only one cycle representing the vertex of the
cone. In the case of a cone family generated by three independent cycles
the cofamily has two elements which represent two tangent planes. The
proper cycles in l are points on the line of intersection of these two
planes.
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The family has no planes, since

(⟨x, w⟩ ∩ Ω) ∩ ⟨w⟩⊥ ⊂ (⟨x, w⟩ ∩ Ω) ∩ (⟨x, w⟩⊥ ∩ Ω) = ∅.

4. A family and a cycle. In this section, we focus on the rela-
tionship between a cycle and an s-family. Throughout this section, we
assume that (S | S) ≤ 0, x = (x1, . . . , xk), 2 ≤ k ≤ n − 1, is a list of
proper cycles such that ⟨x, s⟩∩Ω is a hyperbolic s-family, and y /∈ ⟨x, s⟩
is a proper cycle with (Y | S) ̸= 0. We define the discriminant of the
triple (x, y, s) and describe it in the cases s = r and s = w in terms of
the special determinants of subsection 3.5. We next consider the dis-
criminant of a triple ⟨x, y, s⟩ with x ∈ x as a function h(x) and study
its critical points.

Definition 4.1. The discriminant of the triple (x, y, s) is the quotient

δ(x, y, s) =
∆(X, Y, S)

∆(X, S)∆(Y, S)
.

Theorem 4.2. The cofamily ⟨x, s⟩⊥ ∩ Ω contains cycles tangent to y
if and only if δ(x, y, s) ≤ 0.

Proof. Since ∆(X, S) < 0 and ∆(Y, S) = (S | S) − (Y | S)2 < 0,
it follows that δ(x, y, s) ≤ 0 precisely when ∆(X, Y, S) ≤ 0. By
Theorem 3.2, this is equivalent to ⟨x, y, s⟩⊥ ∩ Ω ̸= ∅, which is true
if and only if ⟨x, s⟩⊥ ∩ Ω intersects ⟨y⟩⊥. But this means that there
exists a Z ∈ ⟨X, S⟩⊥ such that (Z | Z) = 0 and (Z | Y ) = 0, so z is a
proper cycle in ⟨x, s⟩⊥ which is tangent to y. �

Assume that y /∈ ⟨s⟩⊥. Since y is proper ∆(Y, S) = (Y | S) ̸= 0, and
the discriminant δ(x, y, s) determines a function

h : Pn+1 \ {x | ∆(X,S) = 0} → R, h(x) = δ(x, y, s).

The function h is constant on projective lines ⟨x, s⟩. If (S | S) < 0,
then by Theorem 3.9, any x ∈ ⟨x, s⟩ has two projections onto Ω along s
and ∆(X,S) < 0. So h(x) is defined for all x ∈ ⟨x, s⟩, and h achieves its
maximum and minimum on the compact set ⟨x, s⟩ ∩ Ω. If (S | S) = 0,
the situation is different since ∆(X,S) = 0 for all x ∈ ⟨s⟩⊥∩⟨x, s⟩ ̸= ∅,
and so h(x) is not bounded on ⟨x, s⟩ ∩ Ω.
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Theorem 4.3. The discriminant δ(x, y, s) is equal to the value of h
at the Lie projection P⟨x,s⟩y of y onto ⟨x, s⟩. The cycle P⟨x,s⟩y is a
critical point of h. If (S | S) < 0, then h(x) has a second critical point
at a cycle x0 ∈ ⟨x, s⟩, where its value is

h(x0) =
1

(S | S)
.

Proof. Let (Y | S) = 1, that is, Y = φS(y). Then

h(x) =
(X | X) + (−2(X | S) + (S | S)(X | Y )) (X | Y )

−(X | S)2 + (X | X)(S | S)
.

By Propositions 3.4 and 3.5,

δ(x, y, s) = −∆(X, Y, S)

∆(X, S)
= −∆(P⟨X,S⟩⊥Y )

= −∆(Y − P⟨X,S⟩Y ) = (P⟨X,S⟩Y | Y ).

On the other hand,

∆(P⟨X,S⟩Y, Y, S) = ∆(P⟨X,S⟩Y, S)∆(P⟨X,S⟩⊥Y )

= −(P⟨X,S⟩Y | Y )∆(P⟨X,S⟩Y, S),

so

h(P⟨x,s⟩(y)) = −
∆(P⟨X,S⟩Y, Y, S)

∆(P⟨X,S⟩Y, S)
= (P⟨X,S⟩Y | Y ) = δ(x, s, y),

and the first statement is true.

Now let x ∈ ⟨x, s⟩ be different from s, and let (X | S) = 1. Since
(Y | S) = 1, also

(P⟨X,S⟩Y | S) = (Y | P⟨X,S⟩S) = (Y | S) = 1.

We will consider the cases when (S | S) < 0 and (S | S) = 0 separately.

• In the case (S | S) = 0, the function h(x) is defined for
x ∈ ⟨x, s⟩ \ ⟨s⟩⊥ and

h(x) = (X | X)− 2(X | Y ),

so

dh = 2(dX | X)− 2(dX | Y ) = 2(dX | X − Y ).
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For X = P⟨X,S⟩Y ,

(dX | X − Y ) = (dX | P⟨X,S⟩Y − Y )

= −(dX | P⟨X,S⟩
⊥Y ) = 0

for all dX ∈ ⟨X, S⟩.
• In the second case, we may assume that (S | S) = −1. Since
h(x) is constant on projective lines and, since every projective
line ⟨x, s⟩ intersects ⟨s⟩⊥, we may pick x ∈ ⟨x, s⟩∩ ⟨s⟩⊥. Then,

h(x) = −1 +
(X | Y )2

(X | X)
,

and

dh = −2(X | Y )

(X | X)2
((X | X)(dX | Y )− (X | Y )(dX | X))

equals 0 if either (X | Y ) = 0 or (dX | (X | X)Y −(X | Y )X) =
0.

Let X = P⟨X,S⟩Y . Then

(dX | (X | X)Y − (X | Y )X)

= (P⟨X,S⟩Y | Y )
(
dX | Y − P⟨X,S⟩Y

)
= 0

for all dX ∈ ⟨X, S⟩, since Y − P⟨X,S⟩Y = P⟨X,S⟩
⊥Y , so X is a

critical point of h.
The second critical point is at the cycle x0 where (X0 | Y ) =

0 and h(x0) = −1. �

Let us consider two special cases, S = R and S =W .

(i) The case of S = R. Without loss of generality, we can assume
that all cycles x represent spheres. Then

δ(x, y, r) =
∆(φR(x), φR(y), R)

∆(φR(x), R)∆(φR(y), R)

= − ∆(φW (x), φW (y), R)

∆(φW (x), R)(φW (y) | R)2
=
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= − (k + 1)2 vol(q1, . . . , qk, qy, p)

vol(q1, . . . , qk, p)2ρ2

= −v
2

ρ2
= − sin2 α,

where qi and qy are centers of the spheres xi, i = 1, . . . , k, and y,
respectively, p is a point in the intersection, ρ is the radius of the
cycle y, v is the height of the simplex spanned by (q1, . . . , qk, qy, p)
to the base simplex spanned by (q1, . . . , qk, p) and α is the angle
between the plane of the base simplex and the line segment which
connects the center qy with an intersection point p.

(ii) The case of S =W . In this case,

δ(x, y, w) =
∆(φWx, φW (y),W )

∆(φW (x),W )∆(φW (y),W )

= −k
2 vol(q1, . . . , qk, qy)

2

vol(q1, . . . , qk)2
= −v2,

where the points (q1, . . . , qk, qy) span the contact simplex that
lies in the common tangent plane of the cycles (x, y), (q1, . . . , qk)
span the contact simplex of x (see (3.9)) and v is the height of the
first simplex above to the second. The height v is the tangential
distance from the cycle y to the cone.

5. Two families. In this section, we consider the relation between
two s-families of the same dimension. We define the discriminant
of the triple (x,y, s) and show that it can be expressed in terms of
the eigenvalues of the product P⟨X,S⟩P⟨Y,S⟩. We discuss the critical
points of the function obtained by considering the determinant of
triples (x, y, s), x ∈ ⟨x, s⟩, y ∈ ⟨y, s⟩ as a function of (x, y) and show
that they are closely associated to the fixed points of the products
P⟨x,s⟩P⟨y,s⟩ and P⟨y,s⟩P⟨x,s⟩ (which correspond to the eigenvectors of
the products P⟨X,S⟩P⟨Y,S⟩ and P⟨Y,S⟩P⟨X,S⟩). We also give a geometric
interpretation in the two cases s = r and s = w.

Definition 5.1. The discriminant of two hyperbolic s-families ⟨x, s⟩∩Ω
and ⟨y, s⟩ ∩ Ω spanned by linearly independent proper cycles x =
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(x1, . . . , xk) and y = (y1, . . . , yk) is defined by

(5.1) δ(x,y, s) =
∆(X,Y, S)

∆(X, S)∆(Y, S)
.

Because of the hyperbolicity of the two families and the linear inde-
pendence of the spanning cycles, the family ⟨x,y, s⟩ ∩ Ω is hyperbolic
if and only if δ(x,y, s) < 0.

Proposition 5.2. The value δ(x,y, s) of the discriminant of two hy-
perbolic s-families ⟨x, s⟩∩Ω and ⟨y, s⟩∩Ω is equal to 0 if either contain
a common cycle z ∈ ⟨x, s⟩ ∩ ⟨y, s⟩ or the corresponding cofamilies have
a nonempty intersection.

Proof. In the first case, the intersection ⟨X, S⟩ ∩ ⟨Y, S⟩ contains a
vector Z /∈ ⟨S⟩, so the columns of ∆(X,Y, S) are linearly dependent.
In the second case, the equation (Z | Z) = 0 has a nontrivial solution
in the subspace ⟨X,Y, S⟩. The resulting homogeneous system

(Z | S) = 0, (Z | Xi) = 0, (Z | Yi) = 0, i = 1, . . . , k,

thus has a nontrivial solution, and the coefficient matrix of this system,
which equals ∆(X,Y, S), must be 0. �

5.1. Eigenvalues and eigenvectors of a product of two projec-
tors. We will need some properties of the eigenvectors and eigenvalues
of the products P⟨X,S⟩P⟨Y,S⟩ and P⟨Y,S⟩P⟨X,S⟩ which we prove in this
section. Since S ∈ ⟨X, S⟩ ∩ ⟨Y, S⟩, one of the eigenvalues is 1, and one
of the corresponding eigenvectors is S. The eigenvectors correspond-
ing to the eigenvalue 1 are precisely the vectors in the intersection
⟨X, S⟩ ∩ ⟨Y, S⟩.

Proposition 5.3. The products of the Lie projectors P⟨X,S⟩P⟨Y,S⟩ and
P⟨Y,S⟩P⟨X,S⟩ have the same eigenvalues. If E is an eigenvector of
P⟨X,S⟩P⟨Y,S⟩, then F = P⟨Y,S⟩E is an eigenvector of P⟨Y,S⟩P⟨X,S⟩.
Eigenvectors which belong to different nonzero eigenvalues are Lie
orthogonal.
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Proof. Multiplying both sides of the equation P⟨X,S⟩P⟨Y,S⟩E = λE
by P⟨Y,S⟩, we get

P⟨Y,S⟩P⟨X,S⟩P⟨Y,S⟩E = λP⟨Y,S⟩E.

If P⟨Y,S⟩E = F , it follows that P⟨Y,S⟩P⟨X,S⟩F = λF . So the vector F
is an eigenvector of P⟨Y,S⟩P⟨X,S⟩ corresponding to the same eigenvalue
λ.

Let Ei and Ej be eigenvectors of P⟨X,S⟩P⟨Y,S⟩, corresponding to
eigenvalues λi and λj , respectively, where λi ̸= λj and λi, λj ̸= 0.
Then

(P⟨X,S⟩P⟨Y,S⟩Ei | P⟨X,S⟩P⟨Y,S⟩Ej) = λiλj(Ei | Ej).

On the other hand,

(P⟨X,S⟩P⟨Y,S⟩Ei | P⟨X,S⟩P⟨Y,S⟩Ej)

= (P⟨Y,S⟩P⟨X,S⟩P⟨Y,S⟩Ei | Ej)

= (P⟨Y,S⟩P⟨X,S⟩P⟨Y,S⟩Ei | P⟨X,S⟩Ej)

= (P⟨X,S⟩P⟨Y,S⟩P⟨X,S⟩P⟨Y,S⟩Ei | Ej)

= λ2i (Ei | Ej).

Since λi ̸= λj , it follows that (Ei | Ej) = 0. �

From now on, let E and F denote lists of linearly independent
eigenvectors of P⟨X,S⟩P⟨Y,S⟩ and P⟨Y,S⟩P⟨X,S⟩, respectively, which are
independent from S.

Proposition 5.4. Assume that δ(x,y, s) < 0.

(i) The eigenvalues of the products P⟨X,S⟩P⟨Y,S⟩ and P⟨Y,S⟩P⟨X,S⟩
different from zero are positive. The restriction of the Lie form
to ⟨E⟩ and ⟨F⟩ is positive definite.

(ii) If E ∈ E and F ∈ F are eigenvectors belonging to the same
eigenvalue such that (E | E) = 1 and (F | F ) = 1, then

(E | F ) =
√
λ where λ is the corresponding eigenvalue.

(iii) If (S | S) < 0, then all eigenvalues are nondegenerate, and the
corresponding eigenvectors span the subspaces ⟨X, S⟩ and ⟨Y, S⟩.
All cycles e ∈ ⟨e⟩ and f ∈ ⟨f⟩ different from s can be projected
onto the Lie quadric along s.
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If (S | S) = 0 the eigenvalue 1 is degenerate and the cycles,
corresponding to the eigenvectors independent from S, cannot be
projected onto the Lie quadric along s.

Proof.

(i) Since δ(x,y, s) < 0, S is the only eigenvector corresponding to
1 and, by Proposition 5.3, ⟨E⟩ ⊂ S⊥ and also ⟨F⟩ ⊂ S⊥. By
Theorem 3.9, this implies that (E | E) > 0 and (F | F ) > 0 for
all E ∈ E and F ∈ F, and the restriction of the Lie form to the
span ⟨E⟩ and ⟨F⟩ of eigenvectors is positive definite. Also,

(F | F ) = (P⟨Y,S⟩E | P⟨Y,S⟩E) = (P⟨Y,S⟩E | E)

= (P⟨Y,S⟩E | P⟨X,S⟩E) = (P⟨X,S⟩P⟨Y,S⟩E | E)

= λ(E | E) > 0,

so λ > 0.
(ii) If E and F are eigenvectors belonging to the same eigenvalue

λ and (E | E) = 1 and (F | F ) = 1, then P⟨Y,S⟩E = cF ,

(cF | cF ) = c2. On the other hand,

(cF | cF ) = (P⟨Y,S⟩E | P⟨Y,S⟩E) = (P⟨Y,S⟩E | E)

= (P⟨Y,S⟩E | P⟨X,S⟩E) = (P⟨X,S⟩P⟨Y,S⟩E | E)

= λ,

so c =
√
λ. Also,

(E | F ) = (E | 1√
λ
P⟨Y,S⟩E)

=

(
P⟨X,S⟩E | 1√

λ
P⟨Y,S⟩E

)
=

(
E | 1√

λ
P⟨X,S⟩P⟨Y,S⟩E

)
=

√
λ.

(iii) This follows directly from Theorem 3.9. �

5.2. The discriminant. Let ⟨x, s⟩ ∩ Ω and ⟨y, s⟩ ∩ Ω be two k-
dimensional hyperbolic families with δ(x,y, s) < 0. We discuss the
cases (S | S) < 0 and (S | S) = 0 separately.
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5.2.1. The case of (S | S) < 0. In this case (E, S) and (F, S) are
bases of ⟨X, S⟩ and ⟨Y, S⟩ consisting of eigenvectors of the products
P⟨X,S⟩P⟨Y,S⟩ and P⟨Y,S⟩P⟨X,S⟩, respectively, such that (Ei | Ej) = δij ,

(Fi | Fj) = δij , Fi = P⟨X,S⟩Ei and (Ei | Fj) =
√
λiδij for all

i, j = 1, . . . , k. Each cycle ei ∈ e and fj ∈ f can be projected onto
the Lie quadric in the direction of s. The discriminant equals

δ(x,y, s) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · ·
√
λ1 0 0

0 1 · · · 0
√
λ2 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .√
λ1 0 · · · 1 0 0
0

√
λ2 · · · 0 1 0

0 0 . . . 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
I Λ 0
Λ I 0
0T 0T 1

∣∣∣∣∣∣ = −|I−Λ2|

= −
k∏

i=1

(1− λi),

where

Λ =


√
λ1 0 · · · 0
0

√
λ2 · · · 0

. . . . . . . . . . . . . . . . . . . . . .
0 0 · · ·

√
λk


and I is the identity matrix of the size k × k.

Let S = R. Each cycle ei ∈ E and fi ∈ F belongs to the space ⟨r⟩⊥
and can be projected onto the Lie quadric in the direction of the r.

The projections êi and f̂i have homogeneous coordinates Êi = Ei −R

and F̂i = Fi −R (since (Ei | Ei) = 1 and (Fi | Fi = 1) and

(Êi | F̂i) = (Ei −R | Fi −R) =
√
λi − 1.

Since (Êi | R) = (F̂i | R) = 1 it follows that Êi and F̂i are homogeneous
coordinates in the chart Ur and, by (2.4),

√
λi = − cosαi, where αi

is the angle of intersection of the geometric cycles corresponding to

êi ∈ ⟨x, s⟩ ∩ Ω and f̂i ∈ ⟨y, s⟩ ∩ Ω. The eigenvalue λi is thus equal to
cos2 αi.
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5.2.2. The case of (S | S) = 0. Since 1 is a degenerate eigenvalue, the
eigenvectors (E, S) and (F, S) do not span the subspaces ⟨X, S⟩ and
⟨Y, S⟩, so there exist vectors T and U such that ⟨T, S⟩ = ⟨E⟩⊥∩⟨X,S⟩
and ⟨U, S⟩ = ⟨F⟩⊥ ∩ ⟨Y,S⟩.

Let t̂ and û be the projections of t and u onto the quadric along s,

and T̂ and Û homogeneous coordinates in the chart Us so that a basis of

the space ⟨T, S⟩, (T̂ , S) and similarly (Û , S). Then ⟨E, T̂ , S⟩ = ⟨X, S⟩
and ⟨F, Û , S⟩ = ⟨Y, S⟩, and the discriminant is

(5.2) δ(x,y, s) =

∣∣∣∣∣∣
I Λ 0
Λ I 0
0T 0T D

∣∣∣∣∣∣ ,
where

Λ =


√
λ1 0 · · · 0
0

√
λ2 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · ·
√
λk−1

 ,
I is the identity matrix of size of k − 1× k − 1 and

D =

 0 (T̂ | Û) 1

(T̂ | Û) 0 1
1 1 0

∣∣∣∣∣∣ .
Thus,

δ(x,y, s) = 2(T̂ | Û)

k−1∏
i=1

(1− λi).

Let S = W . Cycles e ∈ e and f ∈ f belong to the space ⟨w⟩⊥ and

cannot be projected onto the Lie quadric along w. Let êi and f̂i be
the projections along r. These cycles represent the planes of the two

w-families. Local coordinates in the chart Ur are Êi = Ei − R and
F̂i = Fi−R, so (Êi | F̂i) = 1−λi = sin2 αi where αi the angle between

the planes êi and f̂i. On the other hand, T̂ and Û are local coordinates

in Uw, (T̂ | Û) = −d2/2, where d is the tangential distance between

the cycles t̂ and û. As we will see later, this tangential distance is the
minimal tangential distance between the cycles of the families ⟨x, w⟩∩Ω
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and ⟨y, w⟩ ∩ Ω. Thus,

δ(x,y, w) = −d2
k−1∏
i=1

sin2 αi.

5.3. Critical points. Let ⟨x, s⟩ ∩ Ω and ⟨y, s⟩ ∩ Ω be k-parametric
hyperbolic families, such that δ(x,y, s) < 0. The two products
P⟨X,S⟩P⟨Y,S⟩ and P⟨Y,S⟩P⟨X,S⟩ both have rank k + 1, and there are at
most k+1 nonzero eigenvalues. One of them is 1, and its corresponding
eigenvector is S.

Now consider the function

(5.3) h(x, y) =
∆(X,Y, S)

∆(X,S)∆(Y, S)

where x ∈ ⟨x, s⟩ and y ∈ ⟨y, s⟩ vary independently.

Theorem 5.5. The function h(x, y) restricted to ⟨x, s⟩∩Ω×⟨y, s⟩∩Ω
has at least one critical point. If (e, f) is a critical point of h(x, y),
then e is a critical point of

h1(y) =
∆(X, Y, S)

∆(X, S)∆(Y, S)

and f is a critical point of

h2(x) =
∆(X,Y, S)

∆(X,S)∆(Y, S)
.

(i) If (S | S) < 0, the function h(x, y) restricted to ⟨x, s⟩∩Ω×⟨y, s⟩∩
Ω has a critical point at a pair (ê, f̂) obtained by projecting a
fixed point e of P⟨x,s⟩P⟨y,s⟩ and f of P⟨y,s⟩(e) of P⟨y,s⟩P⟨x,s⟩ onto
⟨x, s⟩ ∩ Ω and ⟨y, s⟩ ∩ Ω, respectively, along s. All critical points
are of this type.

(ii) If (S | S) = 0, there exists a unique fixed projective line ⟨t, s⟩ of
P⟨x,s⟩P⟨y,s⟩ and a unique fixed projective line ⟨u, s⟩ of P⟨y,s⟩P⟨x,s⟩.

These intersect the Lie quadric in points t̂ and û. The point (t̂, û)
is the only critical point of h(x, y) restricted to the ⟨x, s⟩ ∩ Ω ×
⟨y, s⟩ ∩ Ω.
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Proof. Consider the function

h1(y) =
∆(X, Y, S)

∆(X, S)∆(Y, S)
=

∆(P⟨X,S⟩⊥Y )

∆(Y, S)

=
(Y | Y )− (Y | P⟨X,S⟩Y )

∆(Y, S)
.

(i) Let (S | S) < 0, and let (e, f) be such that e is a fixed point
of P⟨x,s⟩P⟨y,s⟩, f is a fixed point of P⟨y,s⟩P⟨x,s⟩, and e = P⟨x,s⟩f
(and thus f = P⟨y,s⟩e). According to Theorem 4.3, e is a critical
point of h(x, f) and f is a critical point of h(e, y). Without loss
of generality, we may assume that (S | S) = −1. Since h1 is
constant on projective lines ⟨y, s⟩, it suffices to consider its values
on the subspace ⟨s⟩⊥ to find its critical points on ⟨y, s⟩. Let
y ∈ ⟨y, s⟩ ∩ ⟨s⟩⊥, so ∆(Y, S) = −(Y | Y ). By Theorem 3.9,
⟨y, s⟩ ∩ ⟨s⟩⊥ ∩ Ω = ∅, and (Y | Y ) > 0 and

h1(y) = −
∆(Y − P⟨X,S⟩Y )

(Y | Y )
= −

(
1−

P⟨X,S⟩Y | Y )

(Y | Y )

)
.

The critical point y satisfies the condition

2(P⟨X,S⟩Y | dY )(Y | Y )− (P⟨X,S⟩Y | Y )(Y | dY )

(Y | Y )2
= 0

for all dY ∈ ⟨Y, S⟩. Without loss of generality, we can assume
that (Y | Y ) = 1 so

P⟨X,S⟩Y = (P⟨X,S⟩Y | Y )Y.

Applying P⟨X,S⟩ on both sides we obtain

P⟨Y,S⟩P⟨X,S⟩Y = (P⟨X,S⟩Y | Y )Y,

which is true if and only if Y is an eigenvector, F . So f is a

critical point oh h1(y) and f̂ is a critical point of its restriction
to ⟨x, s⟩ ∩ Ω. Clearly, all critical points are of this kind.

(ii) Let (S | S) = 0. In this case, the function h1(y) is defined on
⟨y, s⟩ \ ⟨s⟩⊥ and constant on projective lines ⟨x, s⟩, and

h1(y) =
(Y | Y )− (Y | P⟨X,S⟩Y )

(Y | S)2
.
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So

dh1 = 2

(
(dY | Y )− (dY | P⟨X,S⟩Y )

)
(Y | S)2

(X | S)4

−
(
(Y | Y )− (Y | P⟨X,S⟩Y )

)
(Y | S)(dY | S)

(X | S)4
.

The point y is critical if(
dY | (Y − P⟨X,S⟩Y )− S

(Y | S)
(Y | Y − P⟨X,S⟩Y )

)
= 0,

that is, if

Y − P⟨X,S⟩Y =
S

(Y | S)
(Y | Y − P⟨X,S⟩Y ).

Without loss of generality, we may assume that (Y | S) = 1. After
applying P⟨Y,S⟩ and rearranging, we obtain

(5.4) P⟨Y,S⟩P⟨X,S⟩Y = Y − S(Y | Y − P⟨X,S⟩Y ).

The solution Y of the equation is not an eigenvector. Let U ∈
⟨F⟩⊥. The projective line ⟨u, s⟩ is a fixed line of the P⟨y,s⟩P⟨x,s⟩.
The line intersects the quadric in the unique critical point of h1(y)
restricted to ⟨y, s⟩ ∩ Ω. �

5.4. Two pencils in R3. In this section, we will focus on geometric
cycles and pencils in R3.

Let ⟨x, r⟩∩Ω and ⟨y, r⟩∩Ω be two hyperbolic (Steiner) pencils, which
determine two subcycles (circles or lines) in R3. Now ⟨x⟩ = ⟨x1, x2⟩
where x1 and x2 are proper cycles and similarly for ⟨y⟩ = ⟨y1, y2⟩. Since
(R |R) = −1, the critical points of the function h on ⟨x, r⟩ × ⟨y, r⟩ are
of the form (e, f), where e and f = P⟨y,r⟩(e) are fixed points of the
product of projectors. One of these critical points is (r, r). We will
be interested in the critical points on ⟨x, r⟩ ∩ Ω × ⟨y, r⟩ ∩ Ω. Since
⟨x, r⟩ ∩ Ω × ⟨y, r⟩ ∩ Ω is a compact set, and h is continuous, there

must be two critical points (ê1, f̂1) and (ê2, f̂2) where the maximum
and minimum are achieved.

Theorem 5.6. Let ⟨x, r⟩ ∩ Ω and ⟨y, r⟩ ∩ Ω be independent in the
sense that they have no common cycles. The corresponding subcycles



GEOMETRIC CONSTRUCTIONS ON CYCLES IN Rn 1749

in R3 intersect if δ(x,y, r) = 0, they are linked if δ(x,y, r) < 0 and
are nonlinked if δ(x,y, r) > 0. If δ(x,y, r) < 0, then the smallest
and largest angle of intersection between a cycle x ∈ ⟨x, r⟩ ∩ Ω and a

cycle y ∈ ⟨y, r⟩ ∩ Ω are reached at pairs (ê1, f̂1) and (ê2, f̂2), which
are obtained by projecting the fixed points e1, e2 of P⟨x,r⟩P⟨y,r⟩ and
f1 = P⟨y,r⟩(e1), f2 = P⟨y,r⟩(e2) of P⟨y,r⟩P⟨x,r⟩ onto Ω along r.

Proof. The first statement follows directly from Proposition 5.2.
Since ∆(X, R) < 0 and ∆(Y, R) < 0, the sign of δ(x,y, r) is equal
to the sign of ∆(X,Y, S). Let (E1, E2, R) and (F1, F2, R) be bases
of ⟨X, R⟩ and ⟨Y, R⟩ consist of eigenvectors of P⟨X,R⟩P⟨Y,R⟩ and
P⟨Y,R⟩P⟨X,R⟩, respectively. Since the Lie form restricted to ⟨X, R⟩
or ⟨Y, R⟩ has index 1 and (R | R) < 0, we can normalize them so
that(Ei, Ej) = δij , (Fi | Fj) = δij and (Ei | Fj) = δij

√
λi, where λi are

corresponding eigenvalues (see subsection 5.2.1). Then,

∆(X,Y, S) = −(1− λ1)(1− λ2).

If δ(x,y, r) > 0, then not all pairs of the cycles (x, y), x ∈ ⟨x, r⟩ ∩ Ω,
y ∈ ⟨y, r⟩∩Ω intersect, which implies that the subcycles are nonlinked.
If δ(x,y, r) < 0 then by Theorem 5.5, the extreme values of h(x, y) =
− sin2 α (x, y) ∈ ⟨x, r⟩ ∩ Ω × ⟨y, r⟩ ∩ Ω are achieved at the two pairs

(ê1, f̂1) and (ê2, f̂2) with maximal and minimal angles of intersection
α. �

The situation with cones (and in general with s-pencils, where
(S | S) = 0) is different than in the case of subcycles (where (S | S) <
0).

Theorem 5.7. Let ⟨x, w⟩ ∩ Ω and ⟨y, w⟩ ∩ Ω be cones.

(i) If δ(x,y, w) = 0, then two cones either share a common cycle or
an oriented tangential plane or they have parallel axes.

(ii) If δ(x,y, w) < 0, then for any pair of cycles (x, y) ∈ ⟨x, w⟩ ∩Ω×
⟨y, w⟩∩Ω, their tangential distance exists. The minimal tangential

distance is reached at a pair (ê, f̂) which is obtained by projecting
the fixed points e of P⟨x,w⟩P⟨y,w⟩ and f of P⟨y,w⟩P⟨x,w⟩ along w
onto Ω.
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Figure 8. The case of two linked circles and two nonintersecting cones,

δ < 0.
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(iii) If δ(x,y, w) > 0, then there exist two cycles, one of each family,
which have no tangential distance.

Proof.

(i) The discriminant is equal to

δ(x,y, w) = −d2 sin2 α.

So the discriminant is zero either if d = 0, that is, the minimal
distance is zero and there is a common tangential plane, or α = 0
and axes of the cones are parallel. The discriminant is zero also
if cycles in (x,y) are linearly dependent and the families share a
common cycle, (see Proposition 5.2).

(ii) If the discriminant is negative, then the axes are not parallel
and each pair of cycles containing a cycle from each family has a
tangential distance, (see Proposition 5.5).

(iii) Follows from Proposition 5.5. �

The meaning of the discriminant of two hyperbolic cones or subcy-
cles can be expressed in terms of the special determinants, see subsec-
tion 3.5. Let us take a look at cone families. The discriminant

δ(x,y, w) =
∆(X,Y,W )

∆(X,W )∆(Y,W )

is proportional to the squared volume of the simplex spanned by
tangential distances of cycles x and y divided by the product of the
squared volumes of the facets spanned by tangential distances of x and
y. In the case of two lines defined by a pair of points in space, the
discriminant is equal to the squared volume of the simplex spanned by
all four points divided by the product of squared distances between the
points of the same line. It follows that

Proposition 5.8. The discriminant of two hyperbolic cone families is
equal to zero if the volume of the contact simplex spanned by tangential
distances is zero, is negative if the volume of the contact simplex is
different from zero and is positive if there is no such simplex.
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In the case of subcycles the discriminant can be expressed in the
terms of a quotient of volumes of simplices or polar sines, but the
geometrical meaning is less evident.

Figure 8 on the top shows two linked subcycles corresponding to
Steiner pencils ⟨x, r⟩ ∩ Ω and ⟨y, r⟩ ∩ Ω. The sphere is the minimal
sphere of the product family ⟨x,y, r⟩ ∩ Ω. The circles intersect the
sphere in antipodal points. On the bottom, the figure shows two
nonintersecting cones. Two middle spheres are the spheres of minimal
tangential distance.
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