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OSCILLATIONS AND MODULI OF
CONTINUITY OF KERNEL DENSITY ESTIMATORS

UNDER DEPENDENCE

XIAOYONG XIAO AND HONGWEI YIN

ABSTRACT. We provide an almost sure bound for oscil-
lation rates of kernel density estimators for stationary pro-
cesses, under the predictive dependence measures which are
directly related to the data-generating mechanisms of the un-
derlying processes. We also discuss moduli of continuity of
the kernel density estimators.

1. Introduction. In this paper, we consider a general class of
stationary and causal sequences represented in the form

(1.1) Xn = J(. . . , εn−1, εn),

where J is a measurable function and {εn}n∈Z are independent and
identically distributed (iid) random variables defined on the same
probability space (Ω,A, P ), see e.g., [4, 7, 9, 13, 16] among others.
As is explained in [16], (1.1) can be taken as a physical system with
the input Fn = (. . . , εn−1, εn), a filter J and the output Xn. Then the
dependence can be taken as the degree of dependence of the output
Xn on the input Fn, which is a sequence of innovations that drive the
system.

Given a stationary sequence {Xk}1≤k≤n, the empirical distribution
function is known as

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}, x ∈ R.
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We denote by F the cumulative distribution function of Xk and by f
the density. For the moduli of continuity for the function

G̃n(x) =
√
n[Fn(x)− F (x)],

∆̃n(bn) = sup
|x−y|≤bn

|G̃n(x)− G̃n(y)|,(1.2)

where the sequence bn of positive numbers satisfies bn → 0 and nbn →
∞ as n → ∞. Plenty of literature exists on the asymptotic behavior

of ∆̃n(bn), under the condition that {Xk}1≤k≤n are iid, see e.g., [5,

10, 12]. However, the behavior of ∆̃n(bn) has been much less studied
under dependence. The commonly adopted framework for dependence
is the strong mixing condition. However, Wu [15] implemented the
new dependence measures proposed in [14] and provided an almost

sure bound for ∆̃n(bn) under short-range dependence.

Another way of studying the distribution of Xk is to consider the
kernel density estimator of f . From [8], given the data X1, . . . , Xn, the
kernel density estimator of f(x) is defined by

(1.3) fn(x) =
1

nbn

n∑
i=1

K

(
x−Xi

bn

)
=

1

n

n∑
i=1

Kbn(x−Xi),

where the kernel K and the bandwidth bn satisfy the conditions:∫
R
K(u) du = 1, Kbn(x) =

1

bn
K

(
x

bn

)
,(1.4)

bn → 0 and nbn →∞.

When {Xk}1≤k≤n are iid, Bickel and Rosenblatt [1] provided the
asymptotic distribution of sup0≤x≤1 |fn(x) − E[fn(x)]|. Neumann [6]
generalized their results to geometrically β-mixing processes. Wu [14]
obtained asymptotic normality of fn under short-range dependence.

In this paper, we are interested in the oscillatory behavior of the
kernel density estimators fn(x) − f(x). Moreover, we shall obtain an
almost sure bound for the moduli of continuity for the functions

(1.5) Gn(x) =
√
nbn

[
fn(x)− E[fn(x)]

]
,

(1.6) ∆n(δn) = sup
|x−y|≤δn

|Gn(x)−Gn(y)|,
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under dependence.

2. Conditions and notation. First we introduce some notation.
We write X ∈ Lp with p > 0 for a random variable X, if ∥X∥p :=

[E(|X|p)]1/p < ∞, and ∥ · ∥ := ∥ · ∥2. We say a function g is Hölder
continuous on the set A with index 0 < τ ≤ 1 and write g ∈ Cτ (A), if
there exists a constant Cg <∞ such that |g(x)− g(y)| ≤ Cg|x−y|τ for
all x, y ∈ A. We denote by C a constant whose value varies from line
to line.

For i ∈ Z and k ∈ N, we define the conditional cumulative distribu-
tion function Fk(x|Fi) = P (Xi+k ≤ x|Fi), and fk(x|Fi) =

d
dxFk(x|Fi)

as the conditional density. Moreover, let the conditional characteristic
function

φk(t|Fi) = E(e
√
−1tXi+k |Fi) =

∫
R
e
√
−1txfk(x|Fi) dx,

where
√
−1 is the imaginary unit.

Let {ε′i} defined on (Ω,A, P ) be an iid copy of {εi}. We denote by

F∗
i = (. . . , ε−2, ε−1, ε

′
0, ε1, . . . , εi) for i ≥ 0,

F∗
i = Fi for i < 0, and X∗

i = J(F∗
i ). So F∗

i (respectively, X∗
i ) is a

coupled process of Fi (respectively, Xi) with ε0 replaced by an iid copy
ε′0. Next, for p > 1 and k ≥ 0, we introduce the Lp integral distance

(2.1) θp(k) =

[ ∫
R
∥f1+k(x|F0)− f1+k(x|F∗

0 )∥pp dx
]1/p

,

and the sup-distance

(2.2) θp(k) = sup
x∈R
∥f1+k(x|F0)− f1+k(x|F∗

0 )∥p.

Note that, if f1+k(x|F0) does not depend on ε0, then θp(k) = 0

and θp(k) = 0. So θp(k) and θp(k) measure the contribution of
the innovation ε0 in predicting the future output X1+k given F0 by
perturbing the input via coupling. If f1(·|F0) ∈ C2, then we define the
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Lp integral distance ψp(k) and ϕp(k) on derivatives:

ψp(k) =

[ ∫
R
∥f ′1+k(x|F0)− f ′1+k(x|F∗

0 )∥pp dx
]1/p

,

ϕp(k) =

[ ∫
R
∥f ′′1+k(x|F0)− f ′′1+k(x|F∗

0 )∥pp dx
]1/p

.(2.3)

These quantities are directly related to the data-generating mechanism
ofXk, thus play an important role in the study of asymptotic properties
of fn.

For a real sequence a = {ak}k∈Z, we define

(2.4) Sp(n; a) =
∑
j∈Z

( n−j∑
k=1−j

|ak|
)p̂

,

where p̂ = min(2, p) and p > 1. Let θp = {θp(k)}k∈Z, and θp(k) ≡ 0

for k < 0. We similarly define θp, ψp and ϕp. Let

Θp(n) = Sp(n; θp), Θp(n) = Sp(n; θp),(2.5)

Ψp(n) = Sp(n;ψp), Φp(n) = Sp(n;ϕp).

These quantities can be used to interpret the degree of dependence in
[16].

Note that, for a nonnegative sequence (aj), let

g(u) =
∑
j∈Z

aje
√
−1ju, u ∈ R,

be its Fourier transform. Then, by Parseval’s identity, we have the
Fejér kernel representation

2πS2(n; a) =

∫ 2π

0

∣∣g(u) n∑
k=1

e−
√
−1ku

∣∣2du(2.6)

=

∫ 2π

0

|g(u)|2 sin
2(nu/2)

sin2(u/2)
du.
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Condition 2.1.

(i) There exists a positive constant C0 <∞, such that

sup
x∈R

f1(x|F0) ≤ C0 almost surely.

(ii) For some τ > 0, assume that K ∈ Cτ (A) with bounded support
A, and Xk ∈ La for some a > 0.

(iii) Suppose that
∫
R uK(u) du = 0, f ∈ C2, and supx |f ′′(x)| <∞.

Condition (i) implies that Xk has a density f such that f(x) =
E[f1(x|F0)] ≤ C0. From Condition (ii), we see that K is bounded, and∫
R |u|

β |K(u)| du <∞ for each constant β > 0.

3. Main results.

3.1. Oscillations of kernel density estimators.

Theorem 3.1. Assuming conditions (i)–(iii), let l̃(n) =
√
(log n) log log n

and log n = o(nbn).

(i) If Θ2(n)+Ψ2(n) = O(nαl(n)), where 1 ≤ α ≤ 2 and l is a slowly
varying function, then

sup
x∈R
|fn(x)− f(x)| = Oa.s.

(√
log n

nbn
+ b2n

)
(3.1)

+ oa.s.(n
α/2−1l1/2(n)l̃(n))1{α≥(6/5)}.

(ii) If Θ2(n) + Ψ2(n) = O(n), then

(3.2) sup
x∈R
|fn(x)− f(x)| = Oa.s.

(√
log n

nbn
+ b2n

)
.

Note that Wu et al. [16] showed that

sup
x∈R
|fn(x)− E[fn(x)]| = Oa.s.

(√
log n

nbn
+ nα/2−1 l̂(n)

)
,

where l̂(n) = (log n)1/2+ϵl(n) if α > 1, and l̂(n) = (log n)1/2+ϵ∑
j:2j≤n l

1/2(2j) if α = 1 for ϵ > 0.
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Remark 3.2. The order of Θ2(n) + Ψ2(n) may be a little difficult
to distinguish, while, from [16, Lemma 1], we see that a sufficient
condition of Θ2(n) +Ψ2(n) = O(nαl(n)) with 1 < α < 2 is a condition
of long-rang dependence

(3.3) θ2(k) + ψ2(k) = O(|k|−(3−α)/2l1/2(|k|)),

or, by Parseval’s identity, we have an equivalent condition
(3.4)[∫

R
(1 + t2)∥φ1+k(t|F0)− φ1+k(t|F∗

0 )∥2dt
]1/2

=O(|k|−(3−α)/2l1/2(|k|)),

since∫
R
|φ1+k(t|F0)−φ1+k(t|F∗

0 )|2dt=2π

∫
R
|f1+k(x|F0)−f1+k(x|F∗

0 )|2dx,∫
R
t2|φ1+k(t|F0)−φ1+k(t|F∗

0 )|2dt=2π

∫
R
|f ′1+k(x|F0)−f ′1+k(x|F∗

0 )|2dx.

Similarly, a sufficient condition of Θ2(n)+Ψ2(n) = O(n) is a condition
of short-rang dependence (the cumulative contribution of the input ε0
in predicting future values {Xk}k≥1 is finite):

(3.5)
∞∑
k=0

[
θ2(k) + ψ2(k)

]
<∞,

or an equivalent condition

(3.6)
∞∑
k=0

[ ∫
R
(1 + t2)∥φ1+k(t|F0)− φ1+k(t|F∗

0 )∥2dt
]1/2

<∞.

Since∫
R
t4|φ1+k(t|F0)− φ1+k(t|F∗

0 )|2dt

= 2π

∫
R
|f ′′1+k(x|F0)− f ′′1+k(x|F∗

0 )|2dx,

we have similar comments for Ψ2(n)+Φ2(n), and, for ψ2(k)+ϕ2(k), we
only need to replace the term (1+ t2) in (3.4) and (3.6) with t2(1+ t2).
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Note that E[f1(x|Fk)|F0] = f1+k(x|F0) for k ≥ 0. Then, by Jensen’s
inequality, we have

∥f1+k(x|F0)− f1+k(x|F∗
0 )∥p = ∥E[f1(x|Fk)− f1(x|F∗

k )|F0,F∗
0 ]∥p

≤ ∥f1(x|Fk)− f1(x|F∗
k )∥p.

Similarly, E[φ1(t|Fk)|F0] = φ1+k(t|F0) for k ≥ 0, and

∥φ1+k(t|F0)− φ1+k(t|F∗
0 )∥p ≤ ∥φ1(t|Fk)− φ1(t|F∗

k )∥p.

Then the term ∥f1+k(x|F0)− f1+k(x|F∗
0 )∥2 under the integral of θ2(k)

and ψ2(k) in equations (3.3) and (3.5) can be replaced by ∥f1(x|Fk)−
f1(x|F∗

k )∥2, and the term ∥φ1+k(t|F0)−φ1+k(t|F∗
0 )∥2 in equations (3.4)

and (3.6) can be replaced by ∥φ1(t|Fk)− φ1(t|F∗
k )∥2.

Remark 3.3. Theorem 3.1 shows the interesting dichotomous phe-
nomenon as follows.

For case (i), given a small bn, if α > 6/5 and

bn = o(n(1−α)l−1(n)(log log n)−2),

or 1 ≤ α < 6/5 and bn = o((log n/n)1/5), then the first term√
log n/(nbn) dominates equation (3.1); however, for a large bandwidth

bn, if α > 6/5 and (n−(2−α)/4l1/4(n)l̃1/2(n)) = o(bn), or 1 ≤ α < 6/5
and ((log n/n)1/5) = o(bn), then the second term b2n dominates, when
α = 6/5, the behavior of the first two terms depend on the representa-
tion of l(n); for a mild bandwidth bn, if (n

−(α−1)l−1(n)(log log n)−2) =

o(bn) and bn = o(n−(2−α)/4l1/4(n)l̃1/2(n)) for α ≥ 6/5, then the third

term nα/2−1l1/2(n)l̃(n) dominates.

For case (ii), if bn = o((log n/n)1/5), then the first term
√

log n/(nbn)

dominates equation (3.2); however, if ((log n/n)1/5) = o(bn), then the
second term b2n dominates. In a word, the overall bound depends on the
interplay between the bandwidth bn and the dependence parameter α.

From the analysis above, we briefly discuss how to choose an appro-
priate bn. If we take bn ≍ (n−1 log n)1/5 for α < 6/5, then it holds
that

sup
R
|fn(x)− f(x)| = Oa.s.(n

−1 log n)2/5.
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This gives the optimal convergence rate (n−1 log n)2/5, since Stute
[11] showed that (n log n)2/5 sup|x|≤c |fn(x) − f(x)|/f(x) converges

almost surely to a non-zero constant if inf |x|≤c f(x) > 0 for iid
random variables Xk. For α ≥ 6/5, if we take a mild band-
width bn such that (n−(α−1)l−1(n)(log log n)−2) = o(bn) and bn =

o(n−(2−α)/4l1/4(n)l̃1/2(n)), then we have

sup
R
|fn(x)− f(x)| = oa.s.(n

−(1−α/2)l1/2(n)l̃(n)).

This gives the infinitesimal order of the lower bound on the right hand
side of (3.1).

Next, we introduce

(3.7) Hn(x) =
n∑

i=1

[f1(x|Fi−1)− f(x)],

and rewrite
(3.8)
n{fn(x)− E[fn(x)]} = Pn(x) +Qn(x), Rn(x) = E[fn(x)]− f(x),

where

(3.9) Pn(x) =

n∑
i=1

{Kbn(x−Xi)− E[Kbn(x−Xi)|Fi−1]},

Qn(x) =
n∑

i=1

{E[Kbn(x−Xi)|Fi−1]− E[Kbn(x−Xi)]}(3.10)

=

∫
R
Kbn(x− u)Hn(u) du =

∫
R
K(u)Hn(x− bnu) du.
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Lemma 3.4.

(i) Assume conditions (i)–(ii) and log n = o(nbn). Then

sup
x∈R
|Pn(x)|= Oa.s.(

√
n log n/bn).

(ii) If Θ2(n)+Ψ2(n) = O(nαl(n)), where 1 ≤ α ≤ 2 and l is a slowly

varying function, then supx∈R |Qn(x)| = oa.s.(n
α/2l1/2(n)l̃(n)).

(iii) If Θ2(n) + Ψ2(n) = O(n), then supx∈R |Qn(x)| = oa.s.(
√
nl̃(n)).

Proof. Case (i) easily follows from the proof of Theorem 2 in Wu et
al. [16]. As for case (ii), we define projection operators Pk, by

PkZ = E(Z|Fk)− E(Z|Fk−1), Z ∈ L1 and k ∈ Z.

Note that PkHn(x) for k ≤ n are martingale differences and

Hn(x) =
n∑

k=−∞

PkHn(x).

Let θi(x) = ∥f1+i(x|F0) − f1+i(x|F∗
0 )∥. Then θ2(i) =

√
(
∫
R θ

2
i (x) dx),

and we have ∥P0f1(x|Fi)∥ ≤ θi(x). In fact, θi(x) = 0 for i ≤ −1, and
∥P0f1(x|Fi)∥ = 0 for i ≤ −1 by their definitions. Next, for i ≥ 0, we
have

∥P0f1(x|Fi)∥ = ∥E[f1(x|Fi)|F0]− E[f1(x|Fi)|F−1]∥
= ∥f1+i(x|F0)− E{E[f1(x|Fi)|F0]|F−1}∥
= ∥f1+i(x|F0)− E[f1+i(x|F0)|F−1]∥
= ∥E[f1+i(x|F0)|F0]− E[f1+i(x|F∗

0 )|F0]∥
≤ ∥f1+i(x|F0)− f1+i(x|F∗

0 )∥,

where we have used the fact that

E[fk(x|F0)|F−1] = E[fk(x|F∗
0 )|F0], for k ≥ 1,

and Jensen’s inequality.
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By Doob’s inequality, Burkholder’s inequality and then Minkowski’s
inequality, we have

E
[
max
l≤n

H2
l (x)

]
≤ 4∥Hn(x)∥2 ≤ C1

n∑
k=−∞

∥PkHn(x)∥2

= C1

n∑
k=−∞

∥∥∥∥ n∑
i=1

Pkf1(x|Fi)

∥∥∥∥2
≤ C1

n∑
k=−∞

( n∑
i=1

∥Pkf1(x|Fi)∥
)2

≤ C1

n∑
k=−∞

( n∑
i=1

θi−k(x)

)2

= C1

n∑
k=−∞

( n−k∑
i=1−k

θi(x)

)2

.

On the other hand, by Hölder’s inequality, it holds that∫
R

( n−k∑
i=1−k

θi(x)

)2

dx ≤
∫
R

n−k∑
i=1−k

θ2i (x)

θ2(i)

( n−k∑
i=1−k

θ2(i)

)
dx.

Therefore,∫
R
E[max

l≤n
H2

l (x)] dx ≤ C1

n∑
k=−∞

( n−k∑
i=1−k

θ̄2(i)

) n−k∑
i=1−k

∫
R θ

2
i (x) dx

θ2(i)

= C1

n∑
k=−∞

( n−k∑
i=1−k

θ2(i)

)2

= O(Θ2(n)).

Similarly, we have∫
R
E
[
max
l≤n

(H ′
l(x))

2
]
dx = O(Ψ2(n)).

By [15, Lemma 1], we have

sup
x∈R

H2
l (x) ≤

∫
R
H2

l (x) dx+

∫
R
(H ′

l(x))
2dx.
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If Θ2(n) + Ψ2(n) = O(nαl(n)), then

∞∑
d=1

E[maxl≤2d supx∈RH
2
l (x)]

2dαl(2d)l̃2(2d)

≤
∞∑
d=1

E[maxl≤2d
∫
RH

2
l (x) + (H ′

l(x))
2dx]

2dαl(2d)l̃2(2d)

≤
∞∑
d=1

E[
∫
R maxl≤2d H

2
l (x) + maxl≤2d(H

′
l(x))

2dx)]

2dαl(2d)l̃2(2d)

=
∞∑
d=1

O(2dαl(2d))

2dαl(2d)l̃2(2d)
=

∞∑
d=1

O

(
1

d log2 d

)
<∞.

By the Borel-Cantelli lemma, as d→∞,

max
l≤2d

sup
x∈R
|Hl(x)| = oa.s.(2

dα/2l1/2(2d)l̃(2d)).

For any n ≥ 2, there is a d ∈ N such that 2d−1 < n ≤ 2d. Since
maxl≤n |Hl(x)| ≤ maxl≤2d |Hl(x)|, then we are done. Case (iii) easily
follows from the proof of case (ii), and we only need to replace nαl(n)
with n. �

From the proof of case (ii) in Lemma 3.4, we easily obtain the
uniform bounds of empirical functions under long-rang dependence.

Corollary 3.5. Assuming condition (i), if Θ2(n)+Ψ2(n) = O(nαl(n)),
where 1 ≤ α ≤ 2 and l is a slowly varying function, then

(3.11) ∆̃n(bn) = Oa.s.(
√
bn log n) + oa.s.(bnn

(α−1)/2l1/2(n)l̃(n)),

where l̃(n) =
√

(log n) log log n.

Proof. We have the decomposition

G̃n(x) =
1√
n

n∑
i=1

[1{Xi≤x} − F1(x|Fi−1)] +
1√
n

n∑
i=1

[F1(x|Fi−1)− F (x)]

=: G̃n,1(x) + G̃n,2(x).
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From [15, Lemma 3], it holds that

sup
|x−y|≤bn

|G̃n,1(x)− G̃n,1(y)| = Oa.s.(
√
bn log n).

On the other hand, when Θ2(n) + Ψ2(n) = O(nαl(n)), we have

sup
x∈R
|Hn(x)| = sup

x∈R

∣∣∣∣ n∑
i=1

[f1(x|Fi−1)− f(x)]
∣∣∣∣

= oa.s.(n
α/2l1/2(n)l̃(n));

therefore,

sup
|x−y|≤bn

|G̃n,2(x)− G̃n,2(y)| ≤
bn√
n
sup
x∈R
|Hn(x)|

= oa.s.(bnn
(α−1)/2l1/2(n)l̃(n)).

Now we are done, since

∆̃n(bn) ≤ sup
|x−y|≤bn

|G̃n,1(x)−G̃n,1(y)|+ sup
|x−y|≤bn

|G̃n,2(x)−G̃n,2(y)|. �

Assume that Xk are iid standard uniform random variables, and

logn = o(nbn), log log n = o(log b−1
n ),

Stute [12] showed that

(3.12) lim
n→∞

∆̃n(bn)√
bn log b

−1
n

=
√
2 almost surely.

If bn+(nbn)
−1 = O(n−γ) for some γ > α− 1, then the bound in (3.11)

turns out to be
√
bn log n, which is the optimal bound, since it has the

same order of magnitude as
√
bn log b

−1
n .

Lemma 3.6.

(i) Assume that
∫
R |uK(u)| du <∞, f ∈ C1 and supx∈R |f ′(x)| <∞.

Then supx∈R |Rn(x)| = O(bn).
(ii) If condition (iii) holds, then supx∈R |Rn(x)| = O(b2n).

Proof. This result is well known, and it easily follows from Taylor’s
expansion, see also [16, Corollary 2]. �
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Now we go back to the proof of Theorem 3.1. Since√
log n

nbn
+ b2n ≥

5

44/5

(
log n

n

)2/5

,

then

nα/2−1l1/2(n)l̃(n)1{α<(6/5)} = o

(√
log n

nbn
+ b2n

)
.

Moreover,

n−1/2 l̃(n) = o

(√
logn

nbn
+ b2n

)
.

Hence, from Lemmas 3.4 and 3.6, the results of Theorem 3.1 are
obvious.

Note that if Theorem 3.1 (iii) is replaced by condition (i) in
Lemma 3.6, then the term b2n in (3.1) and (3.2) should be replaced
by bn. Since √

log n

nbn
+ bn ≥

3

22/3

(
log n

n

)1/3

,

then the indicator 1{α≥(6/5)} in (3.1) should be replaced by 1{α≥(4/3)}.

We mention that Wu et al. [16] also showed the Lp bounds for
fn(x) − E[fn(x)] under condition (i). Suppose that

∫
R |K(u)| du < ∞

and supu |K(u)| <∞. Then

sup
x
∥fn(x)− f(x)∥p = O

(
1√
nbn

+Θ1/p′

p (n)/n

)
,

where p′ = min(2, p). Moreover, assume condition (iii). We provide
the rate of convergence in probability, by Lemma 3.6, that

(3.13) sup
x
|fn(x)− f(x)| = Op

(
1√
nbn

+ b2n +Θ
1/2
2 (n)/n

)
.

At last, according to [16, Theorem 3], assuming conditions (i)–(iii),
if the kernel K is symmetric and bnΘ2(n) = o(n), then for a fixed point
x0, it holds that√

nbn{fn(x0)− E[fn(x0)]}
d−→ N

[
0, f(x0)κ

]
,
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where
d−→ means convergence in distribution and κ =

∫
RK

2(u) du.

Moreover, if
√
nb

5/2
n = o(1), due to supx∈R |Rn(x)| = O(b2n), then we

have √
nbn{fn(x0)− f(x0)}

d−→ N
[
0, f(x0)κ

]
.

In addition, from (3.13), it holds that

(3.14)

√
nbn{fn(x0)− f(x0)}√

fn(x0)κ

d−→ Z,

where Z is the standard normal random variable. Therefore, A confi-
dence interval for the unknown f(x0) with confidence level 1 − α be-
comes(
fn(x0)− Φ−1

(
1− α

2

)√
fn(x0)κ

nbn
, fn(x0) + Φ−1

(
1− α

2

)√
fn(x0)κ

nbn

)
,

where Φ(·) is the standard normal distribution function and n is large
enough.

3.2. Moduli of continuity. Wu [14] showed asymptotic normality of
fn(x)−E[fn(x)] for each x ∈ R. Now we consider moduli of continuity
of functions Gn(x) when δn < C is a sequence of positive numbers for
a certain constant C.

Theorem 3.7. Assume conditions (i)–(ii), and

(3.15) ∞← (nδn)
τ log n = o((nbn)

τ+1/2).

Let l̃(n) =
√
(log n) log log n.

(i) If Ψ2(n)+Φ2(n) = O(nαl(n)), where 1 ≤ α ≤ 2 and l is a slowly
varying function, then

(3.16)

∆n(δn) = Oa.s.

((
δn
bn

)τ
log n√
nbn

)
+ oa.s.(δnb

1/2
n n(α−1)/2l1/2(n)l̃(n)).

(ii) If Ψ2(n) + Φ2(n) = O(n), then

(3.17) ∆n(δn) = Oa.s.

((
δn
bn

)τ
log n√
nbn

)
+ oa.s.(δnb

1/2
n l̃(n)).
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Proof.

(i) Letting Tn = sup{|x−y|≤δn,|y|≥n5/a} |Gn(x) − Gn(y)|, since K ∈
Cτ (A) with a bounded support A and X1 ∈ La, we have, by
Markov’s inequality, that√

bn
n
E(|Tn|) ≤ 4E

[
sup

|x|≥n5/a/2

∣∣∣∣K(
x−X1

bn

)∣∣∣∣]
= O(1)P

(
|X1| ≥

n5/a

4

)
=
O(1)

n5
.

By the Borel-Cantelli lemma, we have

Tn = oa.s.(n
−3b−1/2

n ) = oa.s.

((
δn
bn

)τ√
log n

nbn

)
.

Write n{fn(x) − E[fn(x)]} = Pn(x) + Qn(x) as (3.8). By
a similar proof of Lemma 3.4 (ii), we have supx |Q′

n(x)| =

oa.s.(n
α/2l1/2(n)l̃(n)). Then

(3.18) sup
|x−y|≤δn

√
nbn|[Qn(x)−Qn(y)]/n|

= oa.s.(δn
√
bnn

(α−1)/2l1/2(n)l̃(n)).

Next, we only have to consider the behavior of Pn(x) − Pn(y) over
y ∈ [−n5/a, n5/a]. We define Ix,y = 1{(x,y):|x−y|≤δn} and

Zi(x, y) = Kbn(x−Xi)−Kbn(y −Xi)(3.19)

− E[Kbn(x−Xi)−Kbn(y −Xi)|Fi−1]

by the summands of Pn(x) − Pn(y). Let l = ⌊n1+5/a+1/τ⌋ and

⌊x⌋l = ⌊xl⌋/l. Note that |ZiIx,y| ≤ 2CKδ
τ
nb

−(1+τ)
n , and

E[Z2
i Ix,y|Fi−1] ≤ E{[Kbn(x−Xi)−Kbn(y −Xi)]

2|Fi−1}

≤ C2
Kδ

2τ
n b−2(1+τ)

n .
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Take ρn = δτnb
−(1+τ)
n log n and

√
λ = 16CK(1 + 5/a + 1/τ). By the

inequality of Freedman [3], we have

P (|Pn(x)− Pn(y)|Ix,y ≥
√
λρn)

≤ 2 exp

(
−λρ2n

4CKδτnb
−(1+τ)
n

√
λρn + 2C2

Kδ
2τ
n b

−2(1+τ)
n

)
= O

(
n−

√
λ/(4CK)

)
;

therefore,

P

(
max

|y|≤n5/a
|Pn(⌊x⌋l)− Pn(⌊y⌋l)|Ix,y >

√
λρn

)
= O

(
n10/al2n−

√
λ/(4CK)

)
= o(n−2).

On the other hand, since K ∈ Cτ (A), (nδn)τ log n→∞ and

sup
x
|Pn(x)− Pn(⌊x⌋l)| = O(nb−1

n [n5/a/(lbn)]
τ ) = O(ρn),

then by the Borel-Cantelli lemma, we have

max
|y|≤n5/a

|Pn(x)− Pn(y)|Ix,y = Oa.s.(ρn).

Now (3.16) is proved and (3.17) is obvious. �

4. Applications. Next, we apply Theorems 3.1 and 3.7 to the
following processes (Xk) with the structure

(4.1) Xk = εk + Yk−1,

where Yk−1 is Fk−1 measurable. It is a large class of processes. The
widely used linear processes

(4.2) Xk =

∞∑
i=0

aiεk−i,

chains of the form

(4.3) Xk = G(Xk−1, Xk−2, . . .) + εk

with infinite memory, and nonlinear processes of the form

(4.4) Xk = m(Xk−1) + εk,
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with a stationary solution all fall within the framework of (4.1). Let

φ(t) = E(e
√
−1tε1) be the characteristic function of (εk).

Theorem 4.1. Let 0 < β ≤ 2. For Xk = εk + Yk−1, assume that

(4.5)

∫
R
|φ(t)|2(1 + t2)|t|βdt <∞.

(i) For some 1 < α < 2, if

(4.6) ∥Xk −X∗
k∥

β/2
β = O

(
k−(3−α)/2l1/2(k)

)
, for k ≥ 0,

then (3.11) holds. Moreover, assume conditions (ii)–(iii). Then
equation (3.1) holds.

(ii) Assume conditions (ii)–(iii). If

(4.7)

∞∑
k=0

∥Xk −X∗
k∥

β/2
β <∞,

then equation (3.2) is satisfied.

Note that Wu [15] has studied this process (4.1) under short-
rang dependence for empirical processes, and the results above can be
obtained by similar analysis. Condition (4.5) is not overly restrictive.
Obviously, it is satisfied if |φ(t)| = O(|t|−γ) as |t| → ∞, where
γ > (3+β)/2. It is also satisfied for the important symmetric-α-stable
distributions with heavy tails. Recall that X∗

k and Xk are identically
distributed, and X∗

k is a coupled version of Xk with ε0 replaced by ε′0.
Then the quantity ∥Xk −X∗

k∥β measures the degree of dependence of
J(. . . , εk−1, εk) on ε0. In many applications, condition (4.6) or (4.7)
is easily verifiable since it is directly related to the data-generating
mechanism and the calculation of ∥Xk − X∗

k∥β is easy [14]. From

Remark 3.2, (4.6) is a sufficient condition of Θ2(n)+Ψ2(n) = O(nαl(n))
with 1 < α < 2 and a slowly varying function l(n), which suggests
long-rang dependence. However, (4.7) is a sufficient condition of
Θ2(n) + Ψ2(n) = O(n), suggesting short-range dependence.

As for the moduli of continuity of functions Gn(x) for the model
(4.1), we have the following results whose proofs are similar to Theo-
rem 4.1.
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Corollary 4.2. Let 0 < β ≤ 2. For Xk = εk+Yk−1, assume condition
(ii) and (4.5) are replaced by a stronger condition:

(4.8)

∫
R
|φ(t)|2(1 + t2)|t|2+βdt <∞.

(i) For some 1 < α < 2, if (3.15) and (4.6) hold, then equation (3.16)
is satisfied.

(ii) If (3.15) and (4.7) hold, then equation (3.17) is satisfied.

Next, we analyze the linear process Xk =
∑∞

i=0 aiεk−i, where εi are
iid random variables with density fε. Important special cases of linear
process include ARMA and fractional ARIMA models. Assume that
εk ∈ Lq for some q > 0, and for p > 1,

(4.9) C2 :=

∫
R

[
|fε(x)|p + |f ′ε(x)|p + |f ′′ε (x)|p

]
dx <∞.

Let a0 = 1, and Yk = Xk+1 − εk+1 for k ≥ 0. Then f1(x|Fk) = fε(x−
Yk). By Hölder’s inequality, since fε(x + t) − fε(x) =

∫ t

0
f ′ε(x + u) du,

we have∫
R
|fε(x+ t)− fε(x)|pdx ≤

∫
R

∣∣∣|t|p−1

∫ t

0

|f ′ε(x+ u)|pdu
∣∣∣ dx

≤ C2|t|p.

On the other hand, the above integral is also bounded by 2pC2. By
Jensen’s inequality, we have

∥f1+k(x|F0)− f1+k(x|F∗
0 )∥p = ∥E[f1(x|Fk)|F0]− E[f1(x|F∗

k )|F∗
0 ]∥p

≤ ∥fε(x− Yk)− fε(x− Y ∗
k )∥p.

Then

θp(k) ≤
(
E

∫
R
|fε(x− Yk)− fε(x− Y ∗

k )|pdx
)1/p

≤ {E[min(2pC2, C2|ak+1(ε0 − ε′0)|p)]}1/p(4.10)

≤ 2(C2)
1/p{E[|ak+1(ε0 − ε′0)|min(q,p)]}1/p

= O[|ak+1|min(1,q/p)].
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Similarly, we have

ψp(k) = O[|ak+1|min(1,q/p)] and ϕp(k) = O[|ak+1|min(1,q/p)].

Therefore, for the special case p = q = 2, we have ∥Xk − X∗
k∥2 =

|ak|∥ε0−ε′0∥2, and (4.6) is reduced to |ak| = O(k−(3−α)/2l1/2(k)), which
implies Θ2(n) + Ψ̄2(n) + Φ2(n) = O(nαl(n)), and (4.7) is replaced by∑∞

k=0 |ak| <∞, which is a classical condition for linear processes to be

short-range dependent and implies Θ2(n) + Ψ2(n) + Φ̄2(n) = O(n).

Now we consider the model (4.3) for chains with infinite memory
[2, 16]. We assume that G satisfies

(4.11) |G(x−1, x−2, . . .)−G(x′−1, x
′
−2, . . .)|

≤
∞∑
j=1

ωj |x−j − x′−j |, where ωj ≥ 0.

For simplicity, we assume εk ∈ L2. Let ρ2(k) = ∥Xk−X∗
k∥. From (4.3)

and (4.11), we have

ρ2(k + 1) ≤
k+1∑
i=1

ωiρ2(k + 1− i), k ≥ 0.

Define a sequence (ak)k≥0 by a0 = ρ2(0) and

ak+1 =
k+1∑
i=1

ωiak+1−i.

Then S2(n; ρ2(.)) ≤ S2(n; a). Let h(s) =
∑∞

k=0 aks
k and u(s) =∑∞

i=1 ωis
i, for |s| ≤ 1. By simple calculation, we have h(s) =

a0(1 − u(s))−1. Suppose that, as s ↑ 1, we have 1 − u(s) ∼ (1 − s)d
with d ∈ (0, 1/2) which implies u(1) = 1. As in (2.6), we obtain

2πS2(n; a) =

∫ 2π

0

∣∣∣h(e√−1u)
∣∣∣2 sin2(nu/2)

sin2(u/2)
du = O(n1+2d).

Suppose that the density function of εi satisfies (4.9). Let Yk =
Xk+1 − εk+1. Following the calculation in (4.10), we get θ2(k) =
O(∥Yk − Y ∗

k ∥) = O(ρ2(k + 1)). Thus, Θ2(n) = O(n1+2d). If u(1) < 1,

then h(1) < ∞ and Θ2(n) = O(n). The other quantities Ψ2(n) and
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Φ2(n) can be handled similarly, therefore, Theorems 3.1 and 3.7 are
applicable.

For the nonlinear processes Xk = m(Xk−1) + εk, an important
example is the threshold autoregressive model [13]

Xk = amax(Xk−1, 0) + bmin(Xk−1, 0) + εk,

where a and b are real parameters. If εk ∈ Lβ and λ = supx |m′(x)| < 1,
then (4.4) has a stationary distribution and

∥Xk −X∗
k∥β ≤ λ∥Xk−1 −X∗

k−1∥β ≤ · · · ≤ λk∥ε0 − ε′0∥β = O(λk),

(see also [17]); thus, (4.7) is satisfied.
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