ELEMENTARY APPROACH TO HOMOGENEOUS C^{*}-ALGEBRAS

PIOTR NIEMIEC

Abstract

An elementary proof of Fell's theorem on models of homogeneous C^{*}-algebras is presented. A spectral theorem and a functional calculus for finite systems of elements which generate homogeneous C^{*}-algebras are proposed.

1. Introduction. In 1961, Fell [9] introduced models for n-homogeneous C^{*}-algebras in terms of certain fibre bundles. It is a natural generalization of the commutative Gelfand-Naimark theorem, which gives models for commutative C^{*}-algebras. However, Fell's proof involves the machinery of (general) operator fields and, as such, is more advanced than Gelfand's theory of commutative Banach algebras. Tomiyama and Takesaki [28] gave another proof of Fell's theorem, which involved techniques of von Neumann algebras. In this paper, we propose a new proof of this theorem (starting from the very beginning), which is elementary and resembles the standard proof of the commutative Gelfand-Naimark theorem. We avoid the abstract language of fibre bundles; instead of them we introduce n-spaces, which are counterparts of locally compact Hausdorff spaces in the commutative case. These are locally compact Hausdorff spaces endowed with a (continuous) free action of the group $\mathfrak{U}_{n}=\mathcal{U}_{n} / Z\left(\mathcal{U}_{n}\right)$ where \mathcal{U}_{n} is the unitary group of $n \times n$-matrices and $Z\left(\mathcal{U}_{n}\right)$ is its center.

Our approach to the subject mentioned above enables us to generalize the spectral theorem (for a normal Hilbert space operator) to the context of finite systems generating homogeneous C^{*}-algebras. It also

[^0]allows building so-called n-functional calculus for such systems. These and related topics are discussed in the present paper.

The paper is organized as follows. Section 2 is devoted to an operator-valued version of the Stone-Weierstrass theorem, which plays an important role in our proof of Fell's theorem on homogeneous C^{*} algebras (presented is Section 5). In Section 3, we define and establish basic properties of so-called n-spaces ($X,$.) (which, in fact, are the same as Fell's fibre bundles) and, corresponding to them, C^{*}-algebras $C^{*}(X,$.$) . These investigations are continued in the next part where$ we define spectral n-measures and characterize by means of them all representations of $C^{*}(X,$.$) for any n$-space ($\left.X,.\right)$. In Section 5 , we give a new proof of Fell's characterization of homogeneous C^{*}-algebras. In Section 6, we formulate the spectral theorem for finite systems of elements which generate n-homogeneous C^{*}-algebras and build the n functional calculus for them.

Notation and terminology. If a C^{*}-algebra \mathcal{A} has a unit e, the spectrum of x is denoted by $\sigma(x)$, and it is the set of all $\lambda \in \mathbb{C}$ for which $x-\lambda e$ is noninvertible in \mathcal{A}. For two self-adjoint elements a and b of \mathcal{A} we write $a \leqslant b$ provided $b-a$ is nonnegative. If $a \leqslant b$ and $b-a$ is invertible in \mathcal{A}, we shall express this by writing $a<b$ or $b>a$. The C^{*}-algebra of all bounded operators on a (complex) Hilbert space \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})$. Representations of unital C^{*}-algebras need not preserve unities and they are understood as $*$-homomorphisms into $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H}. A representation of a C^{*}-algebra is n-dimensional if it acts on an n-dimensional Hilbert space. A map is a continuous function.
2. Operator-valued Stone-Weierstrass theorem. The classical Stone-Weierstrass theorem finds many applications in functional analysis and approximation theory. It reached many generalizations as well, see e.g., $[\mathbf{2}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 4}, \mathbf{1 7}, \mathbf{2 1}, \mathbf{2 7}]$ and the references therein (consult also [5, Corollary 11.5.3], [9, Theorem 1.4] and [23, subsection 4.7]). A first significant counterpart of it for general C^{*}-algebras was established by Glimm [11]. Much later, Longo [17] and Popa [21] proved independently a stronger version of Glimm's result, solving a long-standing problem in theory of C^{*}-algebras. In comparison to the classical Stone-Weierstrass theorem or, for example, to its generaliza-
tion by Timofte [27], Glimm's and Longo's-Popa's theorems are not settled in function spaces. In this section, we propose another version of the theorem under discussion which takes place in spaces of functions taking values in C^{*}-algebras. As such, it may be considered as its very natural generalization. Although the results of Glimm and Longo and Popa are stronger and more general than ours, they involve advanced machinery of C^{*}-algebras and advanced language of this theory, while our approach is very elementary and its proof is similar to Stone's [24, 25]. To formulate our result, we need to introduce the following notion.

Definition 2.1. Let X be a set, x and y distinct points of X, and let \mathcal{A} be a unital C^{*}-algebra. A collection \mathcal{F} of functions from X to \mathcal{A} spectrally separates points x and y if there is $f \in \mathcal{F}$ such that $f(x)$ and $f(y)$ are normal elements of \mathcal{A} and their spectra are disjoint. If \mathcal{F} spectrally separates any two distinct points of X, we say that \mathcal{F} spectrally separates points of X.

The reader should notice that a collection of complex-valued functions spectrally separates two points if and only if it separates them.

Whenever \mathcal{A} is a unital C^{*}-algebra and a is a self-adjoint element of \mathcal{A}, let us denote by $M(a)$ the real number $\max \sigma(a)$. Further, if X is a locally compact Hausdorff space and $f: X \rightarrow \mathcal{A}$ is a map, we say that f vanishes at infinity if and only if for every $\varepsilon>0$ there is a compact set $K \subset X$ such that $\|f(x)\|<\varepsilon$ for any $x \in X \backslash K$. The set of all \mathcal{A}-valued maps on X vanishing at infinity is denoted by $\mathcal{C}_{0}(X, \mathcal{A})$. Notice that $\mathcal{C}_{0}(X, \mathcal{A})$ is a C^{*}-algebra when it is equipped with pointwise actions and the supremum norm induced by the norm of \mathcal{A}. Moreover, $\mathcal{C}_{0}(X, \mathcal{A})$ is unital if and only if X is compact (recall that we assume here that \mathcal{A} is unital).

A full version of our Stone-Weierstrass type theorem has the following form.

Theorem 2.2. Let X be a locally compact Hausdorff space, and let \mathcal{A} be a unital C^{*}-algebra. Let \mathcal{E} be $a *$-subalgebra of $\mathcal{C}_{0}(X, \mathcal{A})$ such that:
(AX0) if X is noncompact, then for each $z \in X$ either $f_{0}(z)$ is invertible in \mathcal{A} for some $f_{0} \in \mathcal{E}$ or $f(z)=0$ for any $f \in \mathcal{E}$;
and for any two points x and y of X one of the following two conditions is fulfilled:
(AX1) either x and y are spectrally separated by \mathcal{E}, or (AX2) $M(f(x))=M(f(y))$ for any self-adjoint $f \in \mathcal{E}$.

Then the (uniform) closure of \mathcal{E} in $\mathcal{C}_{0}(X, \mathcal{A})$ coincides with the *algebra $\Delta_{2}(\mathcal{E})$ of all maps $u \in \mathcal{C}_{0}(X, \mathcal{A})$ such that for any $x, y \in X$ and each $\varepsilon>0$ there exists $v \in \mathcal{E}$ with $\|v(z)-u(z)\|<\varepsilon$ for $z \in\{x, y\}$.

As a consequence of the above result we obtain the following result, which is a special case of [5, Corollary 11.5.3].

Proposition 2.3. Let X be a locally compact Hausdorff space, and let \mathcal{A} be a unital C^{*}-algebra. A *-subalgebra \mathcal{E} of $\mathcal{C}_{0}(X, \mathcal{A})$ is dense in $\mathcal{C}_{0}(X, \mathcal{A})$ if and only if \mathcal{E} spectrally separates points of X and for every $x \in X$ the set $\mathcal{E}(x):=\{f(x): f \in \mathcal{E}\}$ is dense in \mathcal{A}.

It is worth noting that we know no characterization of dense $*$ subalgebras of $\mathcal{C}_{0}(X, \mathcal{A})$ in case \mathcal{A} does not have a unit.

The proof of Theorem 2.2 is partially based on the original proof of the Stone-Weierstrass theorem given by Stone [24, 25]. However, the key tool in our proof is the so-called Loewner-Heinz inequality (for the discussion on this inequality, see [1, page 150]), first proved by Loewner [18]:

Theorem 2.4. Let a and b be two self-adjoint nonnegative elements in a C^{*}-algebra such that $a \leqslant b$. Then, for every $s \in(0,1), a^{s} \leqslant b^{s}$.

The proof of Theorem 2.2 is preceded by several auxiliary results. For simplicity, the unit of \mathcal{A} will be denoted by 1 and the function from X to \mathcal{A} constantly equal to 1 will be denoted by 1_{X}. We also preserve the notation of Theorem 2.2. Additionally, $\bar{\varepsilon}$ stands for the (uniform) closure of \mathcal{E} in $\mathcal{C}_{0}(X, \mathcal{A})$.

Lemma 2.5. Suppose X is compact. Then $1_{X} \in \overline{\mathcal{E}}$ if and only if for every $x \in X$ there is $f \in \mathcal{E}$ such that $f(x)$ is invertible in \mathcal{A}.

Proof. The necessity is clear (since the set of all invertible elements is open in \mathcal{A}).

To prove the sufficiency, for each $x \in X$ take $f_{x} \in \mathcal{E}$ such that $f_{x}(x)$ is invertible. Put $u_{x}=f_{x}^{*} f_{x} \in \mathcal{E}$, and let $V_{x} \subset X$ consist of all $y \in X$ such that $u_{x}(y)>0$. It follows from the continuity of u_{x} that V_{x} is open. By the compactness of $X, X=\bigcup_{j=1}^{p} V_{x_{j}}$ for some finite system x_{1}, \ldots, x_{p}. Put $u=\sum_{j=1}^{p} u_{x_{j}} \in \mathcal{E}$ and note that $u(x)>0$ for each $x \in X$. This implies that u is invertible in $\mathcal{C}_{0}(X, \mathcal{A})$. Let $f:[0,\|u\|] \rightarrow \mathbb{R}$ be a map with $f(0)=0$ and $\left.f\right|_{\sigma(u)} \equiv 1$. There is a sequence of real polynomials p_{1}, p_{2}, \ldots which converge uniformly to f on $[0,\|u\|]$. Then $p_{n}(u) \rightarrow f(u)=1_{X}$ (in the norm topology) and hence $1_{X} \in \overline{\mathcal{E}}$.

Lemma 2.6. Suppose X is compact and $1_{X} \in \overline{\mathcal{E}}$. Let $x \in X$ and $\delta>0$ be arbitrary. For any self-adjoint $f \in \Delta_{2}(\mathcal{E})$, there are self-adjoint $g, h \in \overline{\mathcal{E}}$ such that $g(x)=f(x)=h(x)$ and $g-\delta \cdot 1_{X} \leqslant f \leqslant h+\delta \cdot 1_{X}$.

Proof. It follows from the definition of $\Delta_{2}(\mathcal{E})$ (and the fact that $*-$ homomorphisms between C^{*}-algebras have closed ranges) that for every $y \in X$ there is an $f_{y} \in \overline{\mathcal{E}}$ with $f_{y}(z)=f(z)$ for $z \in\{x, y\}$. Replacing, if needed, f_{y} by $\left(f_{y}+f_{y}^{*}\right) / 2$, we may assume that f_{y} is self-adjoint. Let $U_{y} \subset X$ consist of all $z \in X$ such that $\left\|f_{y}(z)-f(z)\right\|<\delta$. Take a finite number of points x_{1}, \ldots, x_{p} for which $X=\bigcup_{j=1}^{p} U_{x_{j}}$. For simplicity, put $V_{j}=U_{x_{j}}$ and $g_{j}=f_{x_{j}}(j=1, \ldots, p)$. Observe that $f-\delta \cdot 1_{X} \leqslant g_{j}$ on V_{j} and $g_{j}(x)=f(x)$. We define, by induction, functions $h_{1}, \ldots, h_{p} \in \overline{\mathcal{E}}$: $h_{1}=g_{1}$ and $h_{k}=\left(h_{k-1}+g_{k}+\left|h_{k-1}-g_{k}\right|\right) / 2$ for $k=2, \ldots, p$ where $|u|=\sqrt{u^{*} u}$ for each $u \in \overline{\mathcal{E}}$. Since $\overline{\mathcal{E}}$ is a C^{*}-algebra, we clearly have $h_{k} \in \bar{\varepsilon}$. Use induction to show that $h_{j}(x)=f(x)$ and $g_{j} \leqslant h_{p}$ for $j=1, \ldots, p$. Then $h=h_{p}$ is the function we searched for. Indeed, $h(x)=f(x)$, and for any $y \in X$, there is $j \in\{1, \ldots, p\}$ such that $y \in V_{j}$, which implies that $f(y)-\delta \cdot 1 \leqslant g_{j}(y) \leqslant h(y)$.

Now if we apply the above argument to the function $-f$, we shall obtain a self-adjoint function $h^{\prime} \in \overline{\mathcal{E}}$ such that $-f(x)=h^{\prime}(x)$ and $-f \leqslant h^{\prime}+\delta \cdot 1_{X}$. Then put $g:=-h^{\prime}$ to complete the proof.

Lemma 2.7. Let $\varepsilon>0, r>0$ and $k \geqslant 1$ be given. There is a natural number $N=N(\varepsilon, r, k)$ with the following property. If a_{1}, \ldots, a_{k}, b are
self-adjoint elements of \mathcal{A} such that $0 \leqslant a_{j} \leqslant b, b a_{j}=a_{j} b(j=1, \ldots, k)$ and $\|b\| \leqslant r$, then $a_{s} \leqslant\left(\sum_{j=1}^{k} a_{j}^{n}\right)^{1 / n} \leqslant b+\varepsilon \cdot 1$ for any $s \in\{1, \ldots, k\}$ and $n \geqslant N$.

Proof. Let $N \geqslant 2$ be such that $\sqrt[n]{k} \leqslant 1+\varepsilon / r$ for each $n \geqslant N$, and let a_{1}, \ldots, a_{k}, b be as in the statement of the lemma. Then since $a_{s}^{n} \leqslant \sum_{j=1}^{k} a_{j}^{n}$, Theorem 2.4 yields $a_{s} \leqslant\left(\sum_{j=1}^{k} a_{j}^{n}\right)^{1 / n}$. Further, since b commutes with a_{j}, we get $a_{j}^{n} \leqslant b^{n}$, and consequently, $\sum_{j=1}^{k} a_{j}^{n} \leqslant k b^{n}$. So, another application of Theorem 2.4 gives us $\left(\sum_{j=1}^{k} a_{j}^{n}\right)^{1 / n} \leqslant \sqrt[n]{k} b$. So, it suffices to have $\sqrt[n]{k} b \leqslant b+\varepsilon \cdot 1$ which is fulfilled for $n \geqslant N$ because $\|(\sqrt[n]{k}-1) b\| \leqslant(\sqrt[n]{k}-1) r \leqslant \varepsilon$.

Lemma 2.8. Suppose X is compact and $1_{X} \in \overline{\mathcal{E}}$. If $f \in \Delta_{2}(\mathcal{E})$ commutes with every member of \mathcal{E}, then $f \in \overline{\mathcal{E}}$.

Proof. Since $\Delta_{2}(\mathcal{E})$ is a $*$-algebra, we may assume that f is selfadjoint. Fix $\delta>0$. By Lemma 2.6, for every $x \in X$, there is an $f_{x} \in \overline{\mathcal{E}}$ with $f_{x}(x)=f(x)$ and $f_{x} \leqslant f+\delta \cdot 1_{X}$. Let $U_{x} \subset X$ consist of all $y \in X$ such that $f_{x}(y)>f(y)-\delta \cdot 1$. We infer from the compactness of X that $X=\bigcup_{j=1}^{k} U_{x_{j}}$ for some points $x_{1}, \ldots, x_{k} \in X$. For simplicity, we put $V_{j}=U_{x_{j}}$ and $g_{j}=f_{x_{j}}$. We then have

$$
\begin{equation*}
g_{j}(x) \geqslant f(x)-\delta \cdot 1 \quad \text { for any } x \in V_{j} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{j}(x) \leqslant f(x)+\delta \cdot 1 \quad \text { for any } x \in X \tag{2.2}
\end{equation*}
$$

It follows from the compactness of X that there is a constant $c>0$ such that $g_{j}+c \cdot 1_{X} \geqslant 0(j=1, \ldots, k)$ and $f+(c-\delta) \cdot 1_{X} \geqslant 0$. Further, there is an $r>0$ such that $f+(c+\delta) \cdot 1_{X} \leqslant r \cdot 1_{X}$. Now let $N=N(\delta, r, k)$ be as in Lemma 2.7. Since f commutes with each member of $\bar{\varepsilon}$, we conclude from that lemma and from (2.2) that $g_{s}(x)+c \cdot 1 \leqslant\left[\sum_{j=1}^{k}\left(g_{j}(x)+c \cdot 1\right)^{n}\right]^{1 / n} \leqslant f(x)+(c+2 \delta) \cdot 1$ for any $x \in X$. Finally, since $1_{X} \in \overline{\mathcal{E}}$, the function

$$
g:=\left[\sum_{j=1}^{k}\left(g_{j}+c \cdot 1_{X}\right)^{n}\right]^{1 / n}-c \cdot 1_{X}
$$

belongs to $\bar{\varepsilon}$. What is more, $g \leqslant f+2 \delta \cdot 1_{X}$ and $g(x) \geqslant g_{j}(x) \geqslant$ $f(x)-\delta \cdot 1$ for $x \in V_{j}$ (cf., (2.1)). This gives $f-\delta \cdot 1_{X} \leqslant g$ on the whole space X, and therefore $-\delta \cdot 1_{X} \leqslant g-f \leqslant 2 \delta \cdot 1_{X}$, which is equivalent to $\|g-f\| \leqslant 2 \delta$ and finishes the proof.

Lemma 2.9. Suppose X is compact, $1_{X} \in \overline{\mathcal{E}}$ and there exists an equivalence relation \mathcal{R} on X such that two points x and y are spectrally separated by \mathcal{E} whenever $(x, y) \notin \mathcal{R}$. Then every map $g: X \rightarrow \mathbb{C} \cdot 1 \subset \mathcal{A}$ which is constant on each equivalence class with respect to \mathcal{R} belongs to $\overline{\mathcal{E}}$.

Proof. By Lemma 2.8, we only need to check that $g \in \Delta_{2}(\mathcal{E})$. We may assume that $g: X \rightarrow \mathbb{R} \cdot 1$. Let x and y be arbitrary. Write $g(x)=\alpha \cdot 1$ and $g(y)=\beta \cdot 1$. If $(x, y) \in \mathcal{R}$, then both x and y belong to the same equivalence class, and hence $\alpha=\beta$. Then $g(z)=\left(\alpha \cdot 1_{X}\right)(z)$ for $z \in\{x, y\}$ (and $\left.\alpha \cdot 1_{X} \in \overline{\mathcal{E}}\right)$. Now assume that $(x, y) \notin \mathcal{R}$. Then, by assumption, there is an $f \in \mathcal{E}$ such that both $f(x)$ and $f(y)$ are normal and $\sigma(f(x)) \cap \sigma(f(y))=\varnothing$. Let $\varphi: \mathbb{C} \rightarrow \mathbb{R}$ be a map such that $\left.\varphi\right|_{\sigma(f(x))} \equiv \alpha$ and $\left.\varphi\right|_{\sigma(f(y))} \equiv \beta$. There is a sequence of polynomials $p_{1}(z, \bar{z}), p_{2}(z, \bar{z}), \ldots$, which converge uniformly to φ on $K:=\sigma(f(x)) \cup \sigma(f(y))$. Then $p_{n}\left(f, f^{*}\right) \in \mathcal{E}$ and, for $w \in\{x, y\},\left[p_{n}\left(f, f^{*}\right)\right](w)=p_{n}\left(f(w),[f(w)]^{*}\right)$. Since $f(w)$ is normal and its spectrum is contained in K, we see that

$$
\lim _{n \rightarrow \infty}\left[p_{n}\left(f, f^{*}\right)\right](w)=\varphi(f(w))
$$

Now notice that $\varphi(f(x))=\alpha \cdot 1=g(x)$ and $\varphi(f(y))=\beta \cdot 1=g(y)$ finishes the proof.

We recall that, if X is a compact Hausdorff space and \mathcal{R} is a closed equivalence relation on X, then the quotient topological space X / \mathcal{R} is Hausdorff as well.

Lemma 2.10. Suppose X is compact and there is a closed equivalence relation \mathcal{R} on X such that $M(f(x))=M(f(y))$ for each self-adjoint $f \in \mathcal{E}$ whenever $(x, y) \in \mathcal{R}$. Let $\pi: X \rightarrow X / \mathcal{R}$ denote the canonical projection, $f \in \overline{\mathcal{E}}$ be self-adjoint, a and b two real numbers, and let $U=\{x \in X: a \cdot 1<f(x)<b \cdot 1\}$. Then $\pi^{-1}(\pi(U))=U$ and $\pi(U)$ is open in X / \mathcal{R}.

Proof. Recall that $\pi(U)$ is open in X / \mathcal{R} if and only if $\pi^{-1}(\pi(U))$ is open in X. Therefore, it suffices to show that $\pi^{-1}(\pi(U))=U$. Of course, the inclusion ' \supset ' is immediate. And, if $y \in \pi^{-1}(\pi(U))$, then there is an $x \in U$ such that $(x, y) \in \mathcal{R}$. We then have $a \cdot 1<f(x)<$ $b \cdot 1, M(f(x))=M(f(y))$ and $M(-f(x))=M(-f(y))$ (the last two relations follow from the fact that $f \in \overline{\mathcal{E}})$. The first of these relations says that $[-M(-f(x)), M(f(x))] \subset(a, b)$, from which we infer that $[-M(-f(y)), M(f(y))] \subset(a, b)$, and consequently $y \in U$.

The following is a special case of Theorem 2.2.
Lemma 2.11. Suppose X is compact, $1_{X} \in \overline{\mathcal{E}}$ and, for any $x, y \in X$, one of conditions (AX1)-(AX2) is fulfilled. Then $\Delta_{2}(\mathcal{E})=\overline{\mathcal{E}}$.

Proof. We only need to show that $\Delta_{2}(\mathcal{E})$ is contained in $\bar{\varepsilon}$. Let $f \in \Delta_{2}(\mathcal{E})$ be self-adjoint, and let $\delta>0$. We shall construct $w \in \bar{\varepsilon}$ such that $\|w-f\| \leqslant 3 \delta$. By Lemma 2.6 , for each $x \in X$, there are functions $u_{x}, v_{x} \in \bar{\varepsilon}$ such that $u_{x}(x)=f(x)=v_{x}(x)$ and $u_{x}-\delta \cdot 1_{X}<$ $f<v_{x}+\delta \cdot 1_{X}$. Let $G_{x} \subset X$ consist of all $y \in X$ such that $v_{x}(y)-\delta \cdot 1<f(y)<u_{x}(y)+\delta \cdot 1$. Since $x \in G_{x}$ and X is compact, there is a finite system $x_{1}, \ldots, x_{k} \in X$ for which $X=\bigcup_{j=1}^{k} G_{x_{j}}$. For simplicity, we put $W_{j}=G_{x_{j}}, p_{j}=u_{x_{j}}$ and $q_{j}=v_{x_{j}}$. Observe that then

$$
\begin{equation*}
p_{j}(x)-\delta \cdot 1<f(x)<q_{j}(x)+\delta \cdot 1 \quad \text { for any } x \in X \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{j}(x)-\delta \cdot 1<f(x)<p_{j}(x)+\delta \cdot 1 \quad \text { for any } x \in W_{j} \tag{2.4}
\end{equation*}
$$

Let D_{j} consist of all $x \in X$ such that $-2 \delta \cdot 1<p_{j}(x)-q_{j}(x)<2 \delta \cdot 1$. We infer from (2.3) and (2.4) that $W_{j} \subset D_{j}$, and thus $X=\bigcup_{j=1}^{k} D_{j}$. Further, let \mathcal{R} be an equivalence relation on X given by the rule: $(x, y) \in \mathcal{R} \Longleftrightarrow M(u(x))=M(u(y))$ for each self-adjoint $u \in \mathcal{E}$. It follows from the definition of \mathcal{R} that \mathcal{R} is closed in $X \times X$. Denote by $\pi: X \rightarrow X / \mathcal{R}$ the canonical projection. We deduce from Lemma 2.10 that the sets $\pi\left(D_{1}\right), \ldots, \pi\left(D_{k}\right)$ form an open cover of the space X / \mathcal{R} (which is compact and Hausdorff). Now let $\beta_{1}, \ldots, \beta_{k}: X / \mathcal{R} \rightarrow[0,1]$ be a partition of unity such that $\beta_{j}^{-1}((0,1]) \subset \pi\left(D_{j}\right)$ for $j=1, \ldots, k$. Put $\alpha_{j}=\left(\beta_{j} \circ \pi\right) \cdot 1: X \rightarrow \mathbb{C} \cdot 1 \subset \mathcal{A}$. Lemma 2.9 combined with
conditions (AX1)-(AX2) yields that $\alpha_{1}, \ldots, \alpha_{k} \in \overline{\mathcal{E}}$. Define $w \in \overline{\mathcal{E}}$ by $w=\sum_{j=1}^{k} \alpha_{j} p_{j}$. Since $\sum_{j=1}^{k} \alpha_{j}=1_{X}$, we conclude from (2.3) that $w \leqslant f+\delta \cdot 1_{X}$. So, to end the proof, it is enough to check that $f(x) \leqslant w(x)+3 \delta \cdot 1$ for each $x \in X$. This inequality will be satisfied, provided

$$
\begin{equation*}
\alpha_{j}(x)(f(x)-3 \delta \cdot 1) \leqslant \alpha_{j}(x) p_{j}(x) \tag{2.5}
\end{equation*}
$$

for any j. We consider two cases. If $x \in D_{j}$, then $p_{j}(x)>q_{j}(x)-2 \delta \cdot 1>$ $f(x)-3 \delta \cdot 1$ (by (2.3)) and consequently (2.5) holds. Finally, if $x \notin D_{j}$, then $\pi(x) \notin \pi\left(D_{j}\right)$ (see Lemma 2.10) and therefore $\alpha_{j}(x)=0$, which easily gives (2.5).

Proof of Theorem 2.2. We only need to check that $\Delta_{2}(\mathcal{E}) \subset \overline{\mathcal{E}}$. We consider two cases.

First assume X is compact. Let $\mathcal{E}^{\prime}=\mathcal{E}+\mathbb{C} \cdot 1_{X}$. Observe that \mathcal{E}^{\prime} is a $*$-algebra and, for any two points x and y, one of the conditions (AX1)-(AX2) is fulfilled with \mathcal{E} replaced by \mathcal{E}^{\prime}. Consequently, it follows from Lemma 2.11 that $\overline{\varepsilon^{\prime}}=\Delta_{2}\left(\varepsilon^{\prime}\right)$. But $\overline{\varepsilon^{\prime}}=\bar{\varepsilon}+\mathbb{C} \cdot 1_{X}$. So, for any $g \in \Delta_{2}(\mathcal{E})$, we clearly have $g \in \Delta_{2}\left(\mathcal{E}^{\prime}\right)$, and hence $g=f+\lambda \cdot 1_{X}$ for some $f \in \bar{\varepsilon}$ and $\lambda \in \mathbb{C}$. If $\lambda=0$, then $g=f \in \bar{\varepsilon}$, and we are done. Otherwise, $1_{X}=(g-f) / \lambda \in \Delta_{2}(\mathcal{E})$, which implies that the assumptions of Lemma 2.5 are satisfied. We infer from that lemma that $1_{X} \in \overline{\mathcal{E}}$ and, therefore, $g \in \overline{\mathcal{\varepsilon}}$ as well.

Now assume that X is noncompact. Let $\widehat{X}=X \cup\{\infty\}$ be the onepoint compactification of X. Every function $f \in \mathcal{C}_{0}(X, \mathcal{A})$ admits a unique continuous extension $\widehat{f}: \widehat{X} \rightarrow \mathcal{A}$, given by $\widehat{f}(\infty)=0$. Denote by $\widehat{\mathcal{E}}$ the $*$-subalgebra of $\mathcal{C}(\widehat{X}, \mathcal{A})$ consisting of all extensions of (all) functions from \mathcal{E}. We claim that, for any $x, y \in \widehat{X}$, one of the conditions (AX1)-(AX2) is fulfilled with \mathcal{E} replaced by $\widehat{\mathcal{E}}$. Indeed, if both x and y differ from ∞, this follows from our assumptions about \mathcal{E}. And if, for example, $y=\infty \neq x$, condition (AX0) implies that either $M(\widehat{f}(x))=M(\widehat{f}(y))$ for each $f \in \mathcal{E}$ or $\widehat{u}(x)$ is invertible in \mathcal{A} for some $u \in \mathcal{E}$. But then $f=u^{*} u \in \mathcal{E}$ is normal and $0 \notin \sigma(\widehat{f}(x))$, while $\sigma(\widehat{f}(y))=\{0\}$, which shows that x and y are spectrally separated by $\widehat{\mathcal{E}}$. So, it follows from the first part of the proof that the closure of $\widehat{\varepsilon}$ in $\mathcal{C}(\widehat{X}, \mathcal{A})$ coincides with $\Delta_{2}(\widehat{\mathcal{E}})$. But the closure of $\widehat{\mathcal{E}}$ coincides with
$\{\widehat{f}: f \in \overline{\mathcal{\varepsilon}}\}$ and $\Delta_{2}(\widehat{\mathcal{E}})=\left\{\widehat{f}: f \in \Delta_{2}(\mathcal{\varepsilon})\right\}$. We infer from these that $\Delta_{2}(\mathcal{E})=\overline{\mathcal{E}}$, and the proof is complete.

Proof of Proposition 2.3. The necessity of the condition is clear (since, for any two distinct points x and y in X and any elements a and b of \mathcal{A}, there is a function $f \in \mathcal{C}_{0}(X, \mathcal{A})$ such that $f(x)=a$ and $f(y)=b)$. To prove the sufficiency, assume \mathcal{E} spectrally separates points of X and, for each $x \in X$, the set $\mathcal{E}(x)$ is dense in \mathcal{A}. First notice that then for each $x \in X$ there is an $f \in \mathcal{E}$ such that $f(x)$ is invertible in \mathcal{A}. This shows that all assumptions of Theorem 2.2 are satisfied. According to that result, we only need to show that, for any two distinct points x and y of X, the set $L:=\{(f(x), f(y)): f \in \mathcal{E}\}$ is dense in $\mathcal{A} \times \mathcal{A}$. Since x and y are spectrally separated by \mathcal{E}, the proof of Lemma 2.9 shows that $(1,0),(0,1) \in \bar{L}$. Further, since both $\mathcal{E}(x)$ and $\mathcal{E}(y)$ are dense in \mathcal{A}, we conclude that $\{f(x): f \in \overline{\mathcal{E}}\}=$ $\{f(y): f \in \overline{\mathcal{E}}\}=\mathcal{A}$ and, therefore, for arbitrary two elements a and b of \mathcal{A}, there are $u, v \in \bar{\varepsilon}$ for which $u(x)=a$ and $v(y)=b$. Then $(a, b)=(u(x), u(y)) \cdot(1,0)+(v(x), v(y)) \cdot(0,1) \in \bar{L}$ (we use here the coordinatewise multiplication), and we are done.
3. Topological n-spaces. In Fell's characterization of homogeneous C^{*}-algebras [9] (consult also [3, Theorem IV.1.7.23] and [28]) special fibre bundles appear. To make our lecture as simple and elementary as possible, we avoid this language and, instead of using fibre bundles, we shall introduce so-called n-spaces (see Definition 3.1 below). To this end, let M_{n} be the C^{*}-algebra of all complex $n \times n$-matrices. Let \mathcal{U}_{n} be the unitary group of M_{n} and I its neutral element. Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$. Let \mathfrak{U}_{n} denote the compact topological group $\mathcal{U}_{n} /(\mathbb{T} \cdot I)$, and let $\pi_{n}: \mathcal{U}_{n} \rightarrow \mathfrak{U}_{n}$ be the canonical homomorphism. Members of \mathfrak{U}_{n} will be denoted by \mathfrak{u} and \mathfrak{v}. The (probabilistic) Haar measure on \mathfrak{U}_{n} will be denoted by $d \mathfrak{u}$. For any $A \in M_{n}$ and $\mathfrak{u} \in \mathfrak{U}_{n}$, let $\mathfrak{u} . A$ denote the matrix $U A U^{-1}$ where $U \in \mathcal{U}_{n}$ is such that $\pi_{n}(U)=\mathfrak{u}$. It is easily seen that the function

$$
\mathfrak{U}_{n} \times M_{n} \ni(\mathfrak{u}, A) \longmapsto \mathfrak{u} . A \in M_{n}
$$

is a well-defined continuous action of \mathfrak{U}_{n} on M_{n} (which means that $\mathfrak{j} \cdot A=A$ where \mathfrak{j} is the identity of \mathfrak{U}, and $\mathfrak{u} \cdot(\mathfrak{v} \cdot A)=(\mathfrak{u v}) \cdot A$ for any $\mathfrak{u}, \mathfrak{v} \in \mathfrak{U}_{n}$ and $A \in M_{n}$). More generally, for any C^{*}-algebra \mathcal{A}, let $M_{n}(\mathcal{A})$ be the algebra of all $n \times n$-matrices with entries in \mathcal{A}. $\left(M_{n}(\mathcal{A})\right.$
may naturally be identified with $\mathcal{A} \otimes M_{n}$.) For any matrix $A \in M_{n}(\mathcal{A})$ and each $\mathfrak{u} \in \mathfrak{U}_{n}, \mathfrak{u} . A$ is defined as $U A U^{-1}$ where $U \in \mathcal{U}_{n}$ is such that $\pi_{n}(U)=\mathfrak{u}$, and $U A U^{-1}$ is computed in a standard manner.

Definition 3.1. A pair $(X,$.$) is said to be an n$-space if X is a locally compact Hausdorff space and $\mathfrak{U}_{n} \times X \ni(\mathfrak{u}, x) \mapsto \mathfrak{u} . x \in X$ is a continuous free action of \mathfrak{U}_{n} on X. Recall that the action is free if and only if the equality $\mathfrak{u} \cdot x=x$ (for some $x \in X$) implies that \mathfrak{u} is the identity of \mathfrak{U}.

Let $(X,$.$) be an n$-space. Let $C^{*}(X,$.$) be the *$-algebra of all maps $f \in \mathcal{C}_{0}\left(X, M_{n}\right)$ such that $f(\mathfrak{u} . x)=\mathfrak{u} . f(x)$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$ and $x \in X$. $C^{*}(X,$.$) is a C^{*}$-subalgebra of $\mathcal{C}_{0}\left(X, M_{n}\right)$.

By a morphism between two n-spaces $(X,$.$) and (Y, *)$, we mean any proper map $\psi: X \rightarrow Y$ such that $\psi(\mathfrak{u} \cdot x)=\mathfrak{u} * \psi(x)$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$ and $x \in X$. (A map is proper if the inverse images of compact sets under this map are compact.) A morphism which is a homeomorphism is said to be an isomorphism. Two n-spaces are isomorphic if there exists an isomorphism between them.

The reader should notice that the (natural) action of \mathfrak{U}_{n} on M_{n} is not free. However, one may check that the set \mathfrak{M}_{n} of all irreducible matrices $A \in M_{n}$ (that is, $A \in \mathfrak{M}_{n}$ if and only if every matrix $X \in M_{n}$ which commutes with both A and A^{*} is of the form λI where $\lambda \in \mathbb{C}$) is open in M_{n} (and, thus, \mathfrak{M}_{n} is locally compact) and the action $\mathfrak{U}_{n} \times \mathfrak{M}_{n} \ni(\mathfrak{u}, A) \mapsto \mathfrak{u} . A \in \mathfrak{M}_{n}$ is free, which means that $\left(\mathfrak{M}_{n},.\right)$ is an n-space.

In this section, we establish basic properties of C^{*}-algebras of the form $C^{*}(X,$.$) where (X,$.$) is an n$-space. To this end, recall that, whenever $(\Omega, \mathfrak{M}, \mu)$ is a finite measure space and $f: \Omega \ni$ $\omega \mapsto\left(f_{1}(\omega), \ldots, f_{k}(\omega)\right) \in \mathbb{C}^{k}$ is an \mathfrak{M}-measurable (which means that $f^{-1}(U) \in \mathfrak{M}$ for every open set $U \subset \mathbb{C}^{k}$) bounded function, then $\int_{\Omega} f(\omega) \mathrm{d} \mu(\omega)$ is (well) defined as

$$
\left(\int_{\Omega} f_{1}(\omega) \mathrm{d} \mu(\omega), \ldots, \int_{\Omega} f_{k}(\omega) \mathrm{d} \mu(\omega)\right) .
$$

If $\|\cdot\|$ is any norm on \mathbb{C}^{k}, then

$$
\left\|\int_{\Omega} f(\omega) \mathrm{d} \mu(\omega)\right\| \leqslant \int_{\Omega}\|f(\omega)\| \mathrm{d} \mu(\omega) .
$$

In particular, the above rules apply to matrix-valued measurable functions.

From now on, $n \geqslant 1$ and an n-space $(X,$.$) are fixed. A set A \subset X$ is said to be invariant provided $\mathfrak{u} . a \in A$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$ and $a \in A$. Observe that, if A is closed or open and A is invariant, then A is locally compact and consequently $(A,$.$) is an n$-space (when the action of \mathfrak{U}_{n} is restricted to A). We begin with:

Lemma 3.2. For each $f \in \mathcal{C}_{0}\left(X, M_{n}\right)$, let $f^{\mathfrak{U}}: X \rightarrow M_{n}$ be given by:

$$
f^{\mathfrak{U}}(x)=\int_{\mathfrak{U}_{n}} \mathfrak{u}^{-1} \cdot f(\mathfrak{u} \cdot x) \mathrm{d} \mathfrak{u} \quad(x \in X) .
$$

(a) For any $f \in \mathcal{C}_{0}\left(X, M_{n}\right), f^{\mathfrak{U}} \in C^{*}(X,$.$) .$
(b) If $f \in \mathcal{C}_{0}\left(X, M_{n}\right)$ and $x \in X$ are such that $f(\mathfrak{u} . x)=\mathfrak{u} . f(x)$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$, then $f^{\mathfrak{U}}(x)=f(x)$.
(c) Let $A \subset X$ be a closed invariant nonempty set. Every map $g \in$ $C^{*}(A,$.$) extends to a map \widetilde{g} \in C^{*}(X,$.$) such that \sup _{a \in A}\|g(a)\|=$ $\sup _{x \in X}\|\widetilde{g}(x)\|$.
(d) For any $x \in X$ and $A \in M_{n}$, there is an $f \in C^{*}(X,$.$) with$ $f(x)=A$.
(e) Let x and y be two points of X such that there is no $\mathfrak{u} \in \mathfrak{U}_{n}$ for which $\mathfrak{u} . x=y$. Then, for any $A, B \in M_{n}$, there is an $f \in C^{*}(X,$. such that $f(x)=A$ and $f(y)=B$.
(f) $C^{*}(X,$.$) has a unit if and only if X$ is compact.

Proof. It is clear that $f^{\mathfrak{U}}$ is continuous for every $f \in \mathcal{C}_{0}\left(X, M_{n}\right)$. Further, if $K \subset X$ is a compact set such that $\|f(x)\| \leqslant \varepsilon$ for each $x \in X \backslash K$, then $\left\|f^{\mathfrak{U}}(z)\right\| \leqslant \varepsilon$ for any $z \in X \backslash \mathfrak{U}_{n} . K$ where $\mathfrak{U}_{n} . K=\left\{\mathfrak{u} . x: \mathfrak{u} \in \mathfrak{U}_{n}, x \in K\right\}$. The note that $\mathfrak{U}_{n} . K$ is compact leads to the conclusion that $f^{\mathfrak{U}} \in \mathcal{C}_{0}\left(X, M_{n}\right)$. Finally, for any $\mathfrak{v} \in \mathfrak{U}_{n}$, any representative $V \in \mathcal{U}_{n}$ of \mathfrak{v} and each $x \in X$, we have:

$$
\begin{aligned}
f^{\mathfrak{U}}(\mathfrak{v} \cdot x) & =\int_{\mathfrak{U}_{n}} \mathfrak{u}^{-1} \cdot f(\mathfrak{u v} \cdot x) \mathrm{d} \mathfrak{u}=\int_{\mathfrak{U}_{n}}\left(\mathfrak{u v}^{-1}\right)^{-1} \cdot f(\mathfrak{u} \cdot x) \mathrm{d} \mathfrak{u} \\
& =\int_{\mathfrak{U}_{n}} \mathfrak{v} \cdot\left[\mathfrak{u}^{-1} \cdot f(\mathfrak{u} \cdot x)\right] \mathrm{d} \mathfrak{u}=\int_{\mathfrak{U}_{n}} V\left[\mathfrak{u}^{-1} \cdot f(\mathfrak{u} \cdot x)\right] V^{-1} \mathrm{~d} \mathfrak{u} \\
& =V \cdot\left(\int_{\mathfrak{U}_{n}} \mathfrak{u}^{-1} \cdot f(\mathfrak{u} \cdot x) \mathrm{d} \mathfrak{u}\right) \cdot V^{-1}=\mathfrak{v} \cdot f^{\mathfrak{U}}(x),
\end{aligned}
$$

which proves (a). Point (b) is a simple consequence of the definition of $f^{\mathfrak{U}}$. Further, if g is as in (c), it follows from Tietze's type theorem that there is a $G \in \mathcal{C}_{0}\left(X, M_{n}\right)$ which extends g and satisfies $\sup _{a \in A}\|g(a)\|=\sup _{x \in X}\|G(x)\|$ (if X is noncompact, consider the onepoint compactification $\widehat{X}=X \cup\{\infty\}$ of X, and note that then the set $\widehat{A}=A \cup\{\infty\}$ is closed in \widehat{X} and g extends continuously to $\widehat{A})$. Then $\widetilde{g}=G^{\mathfrak{U}}$ is a member of $C^{*}(X,$.$) (by (a)) which we searched for (see$ (b)).

We turn to (d) and (e). Let $K=\mathfrak{U}_{n} .\{x\}$ and $f_{0}: K \rightarrow M_{n}$ be given by $f_{0}(\mathfrak{u} . x)=\mathfrak{u} . A\left(\mathfrak{u} \in \mathfrak{U}_{n}\right)$. Since the action of \mathfrak{U}_{n} on X is free, f_{0} is a well-defined map. Since K is compact, (c) yields the existence of $f \in C^{*}(X,$.$) which extends f_{0}$. To prove (e), we argue similarly: put $L=\mathfrak{U}_{n} \cdot\{x, y\}$, and let $g_{0}: L \rightarrow M_{n}$ be given by $g_{0}(\mathfrak{u} \cdot x)=\mathfrak{u} . A$ and $g_{0}(\mathfrak{u} . y)=\mathfrak{u} . B\left(\mathfrak{u} \in \mathfrak{U}_{n}\right)$. We infer from the assumption of (e) that g_{0} is a well defined map. Consequently, since L is compact, there exists, by (c), a map $g \in C^{*}(X,$.$) which extends g_{0}$. This finishes the proof of (e), while point (f) immediately follows from (d).

Proposition 3.3.

(a) For every closed two-sided ideal \mathcal{J} in $C^{*}(X,$.$) , there exists a$ (unique) closed invariant set $A \subset X$ such that J coincides with the ideal \mathcal{J}_{A} of all functions $f \in C^{*}(X,$.$) which vanish on A$. Moreover, $C^{*}(X,.) / \mathcal{J}$ is "naturally" isomorphic to $C^{*}(A,$.$) .$
(b) Let $k \leqslant n$, and let $\pi: C^{*}(X,.) \rightarrow M_{k}$ be a nonzero representation. Then $k=n$, and there is a unique point $x \in X$ such that $\pi(f)=f(x)$ for $f \in C^{*}(X,$.$) .$
(c) Let $(Y, *)$ be an n-space. For every *-homomorphism $\Phi:(X,.) \rightarrow$ $(Y, *)$, there is a unique pair (U, φ) where U is an open invariant subset of $Y, \varphi:(U, *) \rightarrow(X,$.$) is a morphism of n$-spaces and

$$
[\Phi(f)](y)= \begin{cases}f(\varphi(y)) & \text { if } y \in U \tag{3.1}\\ 0 & \text { if } y \notin U\end{cases}
$$

In particular, $C^{*}(X,$.$) and C^{*}(Y, *)$ are isomorphic if and only if so are $(X,$.$) and (Y, *)$.

Proof. The uniqueness of the set A in (a) follows from point (e) of

Lemma 3.2. To show its existence, let A consist of all $x \in X$ such that $f(x)=0$ for any $f \in \mathcal{J}$. It is clear that A is closed and invariant and that $\mathcal{J} \subset \mathcal{J}_{A}$. To prove the converse inclusion we shall involve Theorem 2.2 for $\mathcal{E}=\mathcal{J}$. First of all, it follows from Lemma 3.2 (d) that, for each $x \in X$, the set $\mathcal{J}(x):=\{f(x): f \in \mathcal{J}\}$ is a two-sided ideal in M_{n}. Since $\{0\}$ is the only proper ideal of M_{n}, we conclude that $\mathcal{J}(x)=\{0\}$ for $x \in A$ and $\mathcal{J}(x)=M_{n}$ for $x \in X \backslash A$. This shows that condition (AX0) of Theorem 2.2 is satisfied. Further, if x and y are arbitrary points of X, then either:

- $x, y \in A$; in that case, (AX2) is fulfilled; or
- $x \in A$ and $y \notin A$ (or conversely); in that case, there is $f \in \mathcal{J}$ such that $f(y)=I$, and $f(x)=0$ (since $x \in A$)-this implies that x and y are spectrally separated by \mathcal{J}; or
- $x, y \notin A$ and $y=\mathfrak{u} . x$ for some $\mathfrak{u} \in \mathfrak{U}_{n}$; in that case, (AX2) is fulfilled since, for any self-adjoint $f \in \mathcal{J}, f(y)=\mathfrak{u} . f(x)$ and consequently $\sigma(f(x))=\sigma(f(y))$; or
- $x, y \notin A$ and $y \notin \mathfrak{U}_{n} .\{x\}$; in that case, there are $f_{1} \in \mathcal{J}$ and $f_{2} \in C^{*}(X,$.$) such that f_{1}(x)=I=f_{2}(x)$ and $f_{2}(y)=0$ (cf., Lemma 3.2 (e)), then $f=f_{1} f_{2} \in \mathcal{J}$ is such that $f(x)=I$ and $f(y)=0$, and hence x and y are spectrally separated by \mathcal{J}.

Now, according to Theorem 2.2, it suffices to check that $\mathcal{J}_{A} \subset \Delta_{2}(\mathcal{J})$ (since \mathcal{J} is closed). To this end, we fix $f \in \mathcal{J}_{A}$ and two arbitrary points x and y of X. We consider similar cases as above:
$\left(1^{\circ}\right)$ If $x, y \in A$, we have nothing to do because then $f(x)=f(y)=0$.
$\left(2^{\circ}\right)$ If $x \in A$ and $y \notin A$ (or conversely), then there is $g \in \mathcal{J}$ such that $g(y)=f(y)$. But also $g(x)=0=f(x)$, and we are done.
$\left(3^{\circ}\right)$ If $x, y \notin A$ and $y=\mathfrak{u} .\{x\}$ for some $\mathfrak{u} \in \mathfrak{U}_{n}$, then there is a $g \in \mathcal{J}$ with $g(x)=f(x)$. Then also $g(y)=g(\mathfrak{u} \cdot x)=\mathfrak{u} . g(x)=\mathfrak{u} . f(x)=$ $f(y)$, and we are done.
(4*) Finally, if $x, y \notin A$ and $y \notin \mathfrak{U}_{n} .\{x\}$, there are functions $g_{1}, g_{2} \in \mathcal{J}$ and $h_{1}, h_{2} \in C^{*}(X,$.$) such that g_{1}(x)=f(x), g_{2}(y)=f(y)$, $h_{1}(x)=I=h_{2}(y)$ and $h_{1}(y)=0=h_{2}(x)$. Then $g=g_{1} h_{1}+g_{2} h_{2} \in$ \mathcal{J} satisfies $g(z)=f(z)$ for $z \in\{x, y\}$.

The arguments $\left(1^{\circ}\right)-\left(4^{\circ}\right)$ show that $f \in \Delta_{2}(\mathcal{J})$, and thus $\mathcal{J}=\mathcal{J}_{A}$. It follows from Lemma 3.2 (c) that the $*$-homomorphism $C^{*}(X,.) \ni f \mapsto$ $\left.f\right|_{A} \in C^{*}(A,$.$) is surjective. What is more, its kernel coincides with$ $\mathcal{J}_{A}=\mathcal{J}$ and therefore $C^{*}(X,.) / \mathcal{J}$ and $C^{*}(A,$.$) are isomorphic.$

We now turn to (b). We infer from (a) that there is a closed invariant set $A \subset X$ such that $\operatorname{ker}(\pi)=\mathcal{J}_{A}$. Since π is nonzero, A is nonempty. Further, $k^{2} \geqslant \operatorname{dim} \pi\left(C^{*}(X,).\right)=\operatorname{dim}\left(C^{*}(X,.) / \operatorname{ker}(\pi)\right)=$ $\operatorname{dim} C^{*}(A,.) \geqslant n^{2}$ (by Lemma $3.2(\mathrm{~d})$ and by (a)), and thus $k=n$, $\operatorname{dim} C^{*}(A,)=.n^{2}$ and π is surjective. Fix $a \in A$, and observe that $A=\mathfrak{U}_{n} \cdot\{a\}$ because otherwise $\operatorname{dim} C^{*}(A,)>.n^{2}$ (thanks to Lemma $3.2(\mathrm{e}))$. Now define $\Phi: M_{n} \rightarrow M_{n}$ by the rule $\Phi(X)=f(a)$ where $\pi(f)=X$. It may easily be checked (using the fact that $\operatorname{ker}(\pi)=$ $\left.\mathcal{J}_{\mathfrak{U}_{n,\{a\}}}\right)$ that Φ is a well defined one-to-one $*$-homomorphism of M_{n}. We conclude that there is a $\mathfrak{u} \in \mathfrak{U}_{n}$ for which $\Phi(X)=\mathfrak{u} . X$ (in the algebra of matrices this is quite an elementary fact; however, this follows also from [23, Corollary 2.9.32]). Put $x=\mathfrak{u}^{-1} . a$ and note that then $f(a)=\Phi(\pi(f))=\mathfrak{u} \cdot \pi(f)$, and consequently $\pi(f)=\mathfrak{u}^{-1} \cdot f(a)=f(x)$, for each $f \in C^{*}(X,$.$) . The uniqueness of x$ follows from Lemma 3.2 (d), (e).

We turn to (c). Let $\Phi: C^{*}(X,.) \rightarrow C^{*}(Y, *)$ be a $*$-homomorphism of C^{*}-algebras. Put

$$
U=Y \backslash\left\{y \in Y:[\Phi(f)](y)=0 \quad \text { for each } f \in C^{*}(X, .)\right\}
$$

It is clear that U is invariant and open in Y. For any $y \in U$, the function $C^{*}(X,.) \ni f \mapsto[\Phi(f)](y) \in M_{n}$ is a nonzero representation and therefore, thanks to (b), there is a unique point $\varphi(y) \in X$ such that $[\Phi(f)](y)=f(\varphi(x))$ for each $f \in C^{*}(X,$.$) . In this way, we have$ obtained a function $\varphi: U \rightarrow X$ for which (3.1) holds. By the uniqueness in (b), we see that $\varphi(\mathfrak{u} . y)=\mathfrak{u} . \varphi(y)$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$ and $y \in U$. So, to prove that φ is a morphism of n-spaces, it remains to check that φ is a proper map. First we shall show that φ is continuous. Suppose, to the contrary, that there is a set $D \subset U$ and a point $b \in U \cap \bar{D}$ (\bar{D} is the closure of D in Y) such that $a:=\varphi(b) \notin \overline{\varphi(D)}$ (the closure taken in X). Let V be an open neighborhood of a whose closure is compact and disjoint from $F:=\overline{\varphi(D)}$. Let $\langle\cdot,-\rangle$ be the standard inner product on M_{n}, that is, $\langle X, Y\rangle=\operatorname{tr}\left(Y^{*} X\right)$ ('tr' is the trace) and let $\|X\|_{2}:=\sqrt{\operatorname{tr}\left(X^{*} X\right)}$. Take an irreducible matrix $Q \in M_{n}$ with $\|Q\|_{2}=1$. For simplicity, put $\mathcal{B}=\left\{X \in M_{n}:\|X\|_{2} \leqslant 1\right\}$. Our aim is to construct $f \in C^{*}(X,$.$) such that f(a)=Q$ and $f^{-1}(\{Q\}) \subset V$. Observe that there is a compact convex nonempty set \mathcal{K} such that

$$
\begin{equation*}
Q \notin \mathcal{K} \subset \mathcal{B} \quad \text { and } \quad\left\{\mathfrak{u} . a: \mathfrak{u} \in \mathfrak{U}_{n}, \mathfrak{u} . Q \notin \mathcal{K}\right\} \subset V . \tag{3.2}
\end{equation*}
$$

(Indeed, it suffices to define \mathcal{K} as the convex hull of the set $\{X \in$ $\left.\mathcal{B}:\|X-Q\|_{2} \geqslant r\right\}$ where $r>0$ is such that $\mathfrak{u} . a \in V$ whenever $\mathfrak{u} \in \mathfrak{U}_{n}$ satisfies $\|\mathfrak{u} . Q-Q\|_{2}<r$. Such an r exists because Q is irreducible, and hence the maps $\mathfrak{U}_{n} \ni \mathfrak{u} \mapsto \mathfrak{u} . b \in X$ and $\mathfrak{U}_{n} \ni \mathfrak{u} \mapsto \mathfrak{u} . Q \in M_{n}$ are embeddings.) Let $W=\mathfrak{U}_{n} \cdot\{a\}$, and let $g_{0}: W \rightarrow M_{n}$ be given by $g_{0}\left(\right.$ u.a) $=\mathfrak{u} . Q$. Since $g_{0}(W \backslash V) \subset \mathcal{K}($ by $(3.2))$ and the set \mathcal{K} (being compact, convex and nonempty) is a retract of M_{n}, there is a map $g_{1} \in \mathcal{C}_{0}\left(X \backslash V, M_{n}\right)$ such that $g_{1}(X \backslash V) \subset \mathcal{K}$ and $g_{1}(x)=g_{0}(x)$ for $x \in W \backslash V$. Finally, there is a $g \in \mathcal{C}_{0}\left(X, M_{n}\right)$ which extends both g_{0} and g_{1}, and $g(X) \subset \mathcal{B}$. Now put $f=g^{\mathfrak{U}} \in C^{*}(X,$.$) , and notice that$ $f(a)=Q$ (by Lemma 3.2 (b)). We claim that

$$
\begin{equation*}
f^{-1}(\{Q\}) \subset V . \tag{3.3}
\end{equation*}
$$

Let us prove the above relation. Let $x \in X \backslash V$. Then $g(x)=g_{1}(x) \in \mathcal{K}$, and hence $g(x) \neq Q$ (see (3.2)). The set $\mathfrak{G}:=\left\{\mathfrak{u} \in \mathfrak{U}_{n}: \mathfrak{u}^{-1} . g(\mathfrak{u} . x) \neq\right.$ $Q\}$ is open in \mathfrak{U}_{n} and nonempty, which implies that its Haar measure is positive. Further, $\left|\left\langle\mathfrak{u}^{-1} \cdot g(\mathfrak{u} \cdot x), Q\right\rangle\right| \leqslant 1$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$ and $\left\langle\mathfrak{u}^{-1} . g(\mathfrak{u} . x), Q\right\rangle \neq 1$ for $\mathfrak{u} \in \mathfrak{G}($ since $g(X) \subset \mathcal{B})$. We infer from these remarks that $\int_{\mathfrak{U}_{n}}\left\langle\mathfrak{u}^{-1} . g(\mathfrak{u} . x), Q\right\rangle \mathrm{d} \mathfrak{u} \neq 1$. Equivalently, $\langle f(x), Q\rangle \neq 1$, which implies that $f(x) \neq Q$ and finishes the proof of (3.3). For $m \geqslant 1$, let

$$
C_{m}=\left\{y \in Y:\|[\Phi(f)](y)-Q\|_{2} \leqslant 2^{-m}\right\}
$$

and

$$
F_{m}=\left\{x \in X:\|f(x)-Q\|_{2} \leqslant 2^{-m}\right\} .
$$

Since $f \in \mathcal{C}_{0}\left(X, M_{n}\right)$ and $\Phi(f) \in \mathcal{C}_{0}\left(Y, M_{n}\right), F_{m}$ is compact and C_{m} is a compact neighborhood of b. Consequently, $C_{m} \cap D \neq \varnothing$. We infer from (3.1) that $\varphi\left(C_{m} \cap D\right) \subset F_{m} \cap F$. Now the compactness argument gives $F \cap \bigcap_{m=1}^{\infty} F_{m} \neq \varnothing$. Let c belong to this intersection. Then $f(c)=Q$ and $c \notin V$, which contradicts (3.3) and finishes the proof of the continuity of φ.

To see that φ is proper, take a compact set $K \subset X$ and note that $L=\mathfrak{U}_{n} . K$ is compact as well. Let $G \subset X$ be an open neighborhood of L with compact closure. Take a map $\beta \in \mathcal{C}_{0}\left(X, M_{n}\right)$ such that $\beta(x)=I$ for $x \in L$ and β vanishes off G. Let $f=\beta^{\mathfrak{U}} \in C^{*}(X,$. and observe that $f(x)=I$ for $x \in L$. Since $\Phi(f) \in \mathcal{C}_{0}\left(Y, M_{n}\right)$, the set $Z:=\{y \in Y:[\Phi(f)](y)=I\}$ is a compact subset of Y. But (3.1) implies that $Z \subset U$ and $\varphi^{-1}(K) \subset Z$. This finishes the proof of the
fact that φ is a morphism. The uniqueness of the pair (U, φ) follows from Lemma 3.2 and is left to the reader.

Now if Φ is a $*$-isomorphism of C^{*}-algebras, then $U=Y$ (by Lemma $3.2(\mathrm{~d})$) and thus $\Phi(f)=f \circ \varphi$. Similarly, Φ^{-1} is of the form $\Phi^{-1}(g)=g \circ \psi$ for some morphism $\psi:(X,.) \rightarrow(Y, *)$. Then $f=f \circ(\varphi \circ \psi)$ for each $f \in C^{*}(X,$.$) , and the uniqueness in (c) gives$ $(\varphi \circ \psi)(x)=x$ for each $x \in X$. Similarly, $(\psi \circ \varphi)(y)=y$ for any $y \in Y$, and consequently φ is an isomorphism of n-spaces. The proof is complete.
4. Representations of $C^{*}(X,$.$) . In this section, we will character-$ ize all representations of $C^{*}(X,$.$) for an arbitrary n$-space $(X,$.$) . But$ first we shall give a 'canonical' description of all continuous linear functionals on $C^{*}(X,$.$) . We underline here that we are not interested in$ the formula for the norm of a functional. The results of the section will be applied in the next two parts where we formulate our version of Fell's characterization of homogeneous C^{*}-algebras (Section 5) and a counterpart of the spectral theorem for finite systems of operators which generate n-homogeneous C^{*}-algebras (Section 6).

Definition 4.1. Let $(X,$.$) be an n$-space. Let $\mathfrak{B}(X)$ denote the σ algebra of all Borel subsets of X; that is, $\mathfrak{B}(X)$ is the smallest σ algebra of subsets of X which contains all open sets. For any $\mathfrak{u} \in \mathfrak{U}_{n}$ and $A \in \mathfrak{B}(X)$, the set $\mathfrak{u} . A:=\{\mathfrak{u} . a: a \in A\}$ is Borel as well. We shall denote by $\chi_{A}: X \rightarrow\{0,1\}$ the characteristic function of A. Further, $\mathfrak{B} C^{*}(X,$.$) stands for the C^{*}$-algebra of all bounded Borel (i.e., $\mathfrak{B}(X)$ measurable) functions $f: X \rightarrow M_{n}$ such that $f(\mathfrak{u} . x)=\mathfrak{u} . f(x)$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$ and $x \in X$.

An n-measure on $(X,$.$) is an n \times n$-matrix $\mu=\left[\mu_{j k}\right]$ where $\mu_{j k}: \mathfrak{B}(X) \rightarrow \mathbb{C}$ is a regular (complex-valued) measure and $\mu(\mathfrak{u} . A)=$ $\mathfrak{u} . \mu(A)$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$ and $A \in \mathfrak{B}(X)$ (here, of course, $\mu(A)=$ $\left.\left[\mu_{j k}(A)\right] \in M_{n}\right)$. The set of all n-measures on $(X,$.$) is denoted by$ $\mathcal{M}(X,$.$) .$

For any bounded Borel function $f: X \rightarrow M_{n}$ and an $n \times n$-matrix $\mu=\left[\mu_{j k}\right]$ of complex-valued regular Borel measures we define the
integral $\int f \mathrm{~d} \mu$ as the complex number

$$
\sum_{j, k} \int_{X} f_{j k} \mathrm{~d} \mu_{k j}
$$

where $f(x)=\left[f_{j k}(x)\right]$ for $x \in X$. We emphasize that in the formula for $\int f \mathrm{~d} \mu, f_{j k}$ meets $\mu_{k j}\left(\right.$ not $\left.\mu_{j k}(!)\right)$.

The first purpose of this section is to prove the following

Theorem 4.2. For every continuous linear functional $\varphi: C^{*}(X,.) \rightarrow$ \mathbb{C} there exists a unique $\mu \in \mathcal{M}(X,$.$) such that \varphi(f)=\int f \mathrm{~d} \mu$ for any $f \in C^{*}(X,$.$) .$

The above result is a simple consequence of the next one.

Proposition 4.3. Let $\mu=\left[\mu_{j k}\right]$ be an $n \times n$-matrix of complex-valued regular Borel measures on X. Then $\mu \in \mathcal{M}(X,$.$) if and only if, for$ every map $f \in \mathcal{C}_{0}\left(X, M_{n}\right)$,

$$
\begin{equation*}
\int f \mathrm{~d} \mu=\int f^{\mathfrak{U}} \mathrm{d} \mu \tag{4.1}
\end{equation*}
$$

Proof. For any $n \times n$-matrix A we shall write $A_{j k}$ to denote the suitable entry of A. We adapt the same rule for functions $f \in$ $\mathcal{C}_{0}\left(X, M_{n}\right)$ and matrix-valued measures. Further, for two arbitrarily fixed indices (j, k) and (p, q), the function $\mathfrak{U}_{n} \ni \mathfrak{u} \mapsto \mathfrak{u}_{j k} \overline{\mathfrak{u}}_{p q} \in \mathbb{C}$ is well defined and continuous (although ' $\mathfrak{u}_{j k}$ ' is not well defined). Observe that for any $A \in M_{n}, \mathfrak{u} \in \mathfrak{U}_{n}$ and an index (p, q) one has:

$$
(\mathfrak{u} . A)_{p, q}=\sum_{j, k} \mathfrak{u}_{p j} \overline{\mathfrak{u}}_{q k} \cdot A_{j k}
$$

and

$$
\left(\mathfrak{u}^{-1} \cdot A\right)_{p, q}=\sum_{j, k} \mathfrak{u}_{k q} \overline{\mathfrak{u}}_{j p} \cdot A_{j k}
$$

Further, for $\mathfrak{u} \in \mathfrak{U}_{n}$ and a complex-valued regular Borel measure ν on X, let $\nu^{\mathfrak{u}}$ be the (complex-valued regular Borel) measure on X given
by $\nu^{\mathfrak{u}}(A)=\nu(\mathfrak{u} . A)(A \in \mathfrak{B}(X))$. It follows from the transport measure theorem that, for any $g \in \mathcal{C}_{0}(X, \mathbb{C})$,

$$
\int_{X} g(\mathfrak{u} \cdot x) \mathrm{d} \nu^{\mathfrak{u}}(x)=\int_{X} g(x) \mathrm{d} \nu(x) .
$$

We adapt the above notation also for $n \times n$-matrix μ of measures: $\mu^{\mathfrak{u}}(A)=\mu(\mathfrak{u} . A)$. Notice that $\left(\mu^{\mathfrak{u}}\right)_{j k}=\left(\mu_{j k}\right)^{\mathfrak{u}}$.

Now assume that $\mu \in \mathcal{M}(X,$.$) . This means that, for any \mathfrak{u} \in \mathfrak{U}_{n}$, $\mathfrak{u} . \mu=\mu^{\mathfrak{u}}$. For $f \in \mathcal{C}_{0}\left(X, M_{n}\right)$ and $x \in X$, we have

$$
\left(f^{\mathfrak{U}}\right)_{p q}(x)=\sum_{j, k} \int_{\mathfrak{U}_{n}} \mathfrak{u}_{k q} \overline{\mathfrak{u}}_{j p} \cdot f_{j k}(\mathfrak{u} . x) \mathrm{d} \mathfrak{u}
$$

and therefore, by Fubini's theorem,

$$
\begin{aligned}
\int f^{\mathfrak{U}} \mathrm{d} \mu & =\sum_{p, q} \int_{X}\left(f^{\mathfrak{U}}\right)_{p, q} \mathrm{~d} \mu_{q p} \\
& =\sum_{p, q} \sum_{j, k} \int_{X} \int_{\mathfrak{U}_{n}} \mathfrak{u}_{k q} \overline{\mathfrak{u}}_{j p} \cdot f_{j k}(\mathfrak{u} \cdot x) \mathrm{d} \mathfrak{u} \mathrm{~d} \mu_{q p}(x) \\
& =\sum_{j, k} \int_{\mathfrak{U}_{n}} \int_{X} f_{j k}(\mathfrak{u} \cdot x) \mathrm{d}\left(\sum_{p, q} \mathfrak{u}_{k q} \overline{\mathfrak{u}}_{j p} \cdot \mu_{q p}\right)(x) \mathrm{d} \mathfrak{u} \\
& =\sum_{j, k} \int_{\mathfrak{U}_{n}} \int_{X} f_{j k}(\mathfrak{u} \cdot x) \mathrm{d}(\mathfrak{u} \cdot \mu)_{k j}(x) \mathrm{d} \mathfrak{u} \\
& =\sum_{j, k} \int_{\mathfrak{U}_{n}} \int_{X} f_{j k}(\mathfrak{u} \cdot x) \mathrm{d}\left(\mu_{k j}\right)^{\mathfrak{u}}(x) \mathrm{d} \mathfrak{u} \\
& =\sum_{j, k} \int_{\mathfrak{U}_{n}} \int_{X} f_{j k}(x) \mathrm{d} \mu_{k j}(x) \mathrm{d} \mathfrak{u} \\
& =\sum_{j, k} \int_{X} f_{j k}(x) \mathrm{d} \mu_{k j}(x) \\
& =\int f \mathrm{~d} \mu,
\end{aligned}
$$

which gives (4.1). Conversely, assume (4.1) if fulfilled for any $f \in$ $\mathcal{C}_{0}\left(X, M_{n}\right)$ and fix a compact \mathcal{G}_{δ} subset K of X and an index (p, q). Let $g \in \mathcal{C}_{0}(X, \mathbb{C})$ be arbitrary, and let $f \in \mathcal{C}_{0}\left(X, M_{n}\right)$ be such that $f_{p q}=g$ and $f_{j k}=0$ for $(j, k) \neq(p, q)$. Applying (4.1) for such an f,
we obtain

$$
\begin{equation*}
\int_{X} g \mathrm{~d} \mu_{q p}=\sum_{j, k} \int_{X} \int_{\mathfrak{U}_{n}} \mathfrak{u}_{q k} \overline{\mathfrak{u}}_{p j} \cdot g(\mathfrak{u} \cdot x) \mathrm{d} \mathfrak{u} \mathrm{~d} \mu_{k j}(x) . \tag{4.2}
\end{equation*}
$$

Further, since K is compact and \mathcal{G}_{δ}, there is a sequence $\left(g_{k}\right)_{k=1}^{\infty} \subset$ $\mathcal{C}_{0}(X, \mathbb{C})$ such that $g_{k}(X) \subset[0,1]$ and $\lim _{k \rightarrow \infty} g_{k}(x)=\chi_{K}(x)$ for any $x \in X$. Substituting $g=g_{k}$ in (4.2) and letting $k \rightarrow \infty$, we obtain (by Lebesgue's dominated convergence theorem as well as Fubini's):

$$
\begin{aligned}
\mu_{q, p}(K) & =\sum_{j, k} \int_{\mathfrak{U}_{n}} \int_{X} \mathfrak{u}_{q k} \overline{\mathfrak{u}}_{p j} \cdot \chi_{K}(\mathfrak{u} \cdot x) \mathrm{d} \mu_{k j}(x) \mathrm{d} \mathfrak{u} \\
& =\int_{\mathfrak{U}_{n}}\left(\sum_{j, k} \mathfrak{u}_{q k} \overline{\mathfrak{u}}_{p j} \cdot \mu_{k j}\left(\mathfrak{u}^{-1} \cdot K\right)\right) \mathrm{d} \mathfrak{u} \\
& =\int_{\mathfrak{U}_{n}}(\mathfrak{u} \cdot \mu)_{q, p}\left(\mathfrak{u}^{-1} \cdot K\right) \mathrm{d} \mathfrak{u} .
\end{aligned}
$$

We infer from the arbitrariness of (p, q) in the above formula that

$$
\mu(K)=\int_{\mathfrak{U}_{n}} \mathfrak{u} \cdot \mu\left(\mathfrak{u}^{-1} \cdot K\right) \mathrm{d} \mathfrak{u}
$$

Now, if $\mathfrak{v} \in \mathfrak{U}_{n}$, the set \mathfrak{v}. K is also compact and \mathcal{G}_{δ}, and therefore

$$
\begin{aligned}
\mu(\mathfrak{v} \cdot K) & =\int_{\mathfrak{U}_{n}} \mathfrak{u} \cdot \mu\left(\mathfrak{u}^{-1} \mathfrak{v} \cdot K\right) \mathrm{d} \mathfrak{u} \\
& =\int_{\mathfrak{U}_{n}} \mathfrak{v} \cdot\left[\mathfrak{u} \cdot \mu\left(\mathfrak{u}^{-1} \cdot K\right)\right] \mathrm{d} \mathfrak{u} \\
& =\mathfrak{v} \cdot\left(\int_{\mathfrak{U}_{n}} \mathfrak{u} \cdot \mu\left(\mathfrak{u}^{-1} \cdot K\right) \mathrm{d} \mathfrak{u}\right) \\
& =\mathfrak{v} \cdot \mu(K) .
\end{aligned}
$$

Finally, since μ is regular, the relation $\mu(\mathfrak{v} . A)=\mathfrak{v} . \mu(A)$ holds for any $A \in \mathfrak{B}(X)$, and we are done.

Proof of Theorem 4.2. Note that the function $P: \mathcal{C}_{0}\left(X, M_{n}\right) \ni f \mapsto$ $f^{\mathfrak{U}} \in C^{*}(X,$.$) is a continuous linear projection (that is, P(f)=f$ for $\left.f \in C^{*}(X,).\right)$. So, if $\varphi: C^{*}(X,.) \rightarrow \mathbb{C}$ is a continuous linear functional, so is $\psi:=\varphi \circ P: \mathcal{C}_{0}\left(X, M_{n}\right) \rightarrow \mathbb{C}$. Since $\mathcal{C}_{0}\left(X, M_{n}\right)$ is isomorphic, as a Banach space, to $\left[\mathcal{C}_{0}(X, \mathbb{C})\right]^{n^{2}}$, the Riesz-type representation
theorem yields that there is a unique $n \times n$-matrix μ of complexvalued regular Borel measures such that $\psi(f)=\int f \mathrm{~d} \mu$. Observe that $\psi\left(f^{\mathfrak{U}}\right)=\psi(f)$ for any $f \in \mathcal{C}_{0}\left(X, M_{n}\right)$, and hence $\mu \in \mathcal{M}(X,$.$) ,$ thanks to Proposition 4.3. The uniqueness of μ follows from the above construction, Proposition 4.3 and the uniqueness in the Riesz-type representation theorem.

Now we turn to representations of $C^{*}(X,$.$) . To this end, we$ introduce

Definition 4.4. An operator-valued n-measure on the n-space ($X,$. is any function of the form $E: \mathfrak{B}(X) \ni A \mapsto\left[E_{j k}(A)\right] \in M_{n}(\mathcal{B}(\mathcal{H}))$ (where $(\mathcal{H},\langle\cdot,-\rangle)$ is a Hilbert space) such that:
(M1) for any $h, w \in \mathcal{H}$ and $j, k \in\{1, \ldots, n\}$, the function

$$
E_{j k}^{(h, w)}: \mathfrak{B}(X) \ni A \mapsto\left\langle E_{j k}(A) h, w\right\rangle \in \mathbb{C}
$$

is a (complex-valued) measure,
(M2) for any $\mathfrak{u} \in \mathfrak{U}_{n}$ and $A \in \mathfrak{B}(X), E(\mathfrak{u} . A)=\mathfrak{u} . E(A)$.
In other words, an operator-valued n-measure is an $n \times n$-matrix of operator-valued measures which satisfies axiom (M2). The operatorvalued n-measure E is regular if and only if $E_{j k}^{(h, w)}$ is regular for any h, w and j, k.

Recall that if $\mu: \mathfrak{B}(X) \rightarrow \mathcal{B}(\mathcal{H})$ is an operator-valued measure and $f: X \rightarrow \mathbb{C}$ is a bounded Borel function, $\int_{X} f \mathrm{~d} \mu$ is a bounded linear operator on \mathcal{H}, defined by an implicit formula:

$$
\left\langle\left(\int_{X} f \mathrm{~d} \mu\right) h, w\right\rangle=\int_{X} f \mathrm{~d} \mu^{(h, w)}, \quad(h, w \in \mathcal{H})
$$

where $\mu^{(h, w)}(A)=\langle\mu(A) h, w\rangle(A \in \mathfrak{B}(X))$. Now assume that $E=$ $\left[E_{j k}\right]: \mathfrak{B}(X) \rightarrow M_{n}(\mathcal{B}(\mathcal{H}))$ is an n-measure and $f=\left[f_{j k}\right]: X \rightarrow M_{n}$ is a bounded Borel function. We define $\int f \mathrm{~d} E$ as a bounded linear operator on \mathcal{H} given by

$$
\int f \mathrm{~d} E=\sum_{j, k} \int_{X} f_{j k} \mathrm{~d} E_{k j}
$$

We are now ready to introduce

Definition 4.5. A spectral n-measure is any operator-valued regular n-measure $E: \mathfrak{B}(X) \rightarrow M_{n}(\mathcal{B}(\mathcal{H}))$ such that

$$
\begin{gather*}
\left(\int f \mathrm{~d} E\right)^{*}=\int f^{*} \mathrm{~d} E \tag{4.3}\\
\int f \cdot g \mathrm{~d} E=\int f \mathrm{~d} E \cdot \int g \mathrm{~d} E \tag{4.4}
\end{gather*}
$$

for any $f, g \in \mathfrak{B} C^{*}(X,$.$) . (The product f \cdot g$ is computed pointwise as the product of matrices.) In other words, a spectral n-measure is an operator-valued regular n-measure $E: \mathfrak{B}(X) \rightarrow M_{n}(\mathcal{B}(\mathcal{H}))$ such that the operator

$$
\mathfrak{B} C^{*}(X, .) \ni f \longmapsto \int f \mathrm{~d} E \in \mathcal{B}(\mathcal{H})
$$

is a representation of a C^{*}-algebra $\mathfrak{B} C^{*}(X,$.$) .$

The main result of this section is the following.
Theorem 4.6. Let $(X,$.$) be an n$-space and $\pi: C^{*}(X,.) \rightarrow \mathcal{B}(\mathcal{H})$ a representation. There is a unique spectral n-measure $E: \mathfrak{B}(X) \rightarrow$ $M_{n}(\mathcal{B}(\mathcal{H}))$ such that

$$
\begin{equation*}
\pi(f)=\int f \mathrm{~d} E \quad\left(f \in C^{*}(X, .)\right) \tag{4.5}
\end{equation*}
$$

In particular, every representation of $C^{*}(X,$.$) admits an extension to$ a representation of $\mathfrak{B} C^{*}(X,$.$) .$

In the proof of the above result we shall involve the following:

Lemma 4.7. Let $\mu: \mathfrak{B}(X) \rightarrow \mathbb{R}_{+}$be a regular measure. For any $f \in \mathfrak{B} C^{*}(X,$.$) and \varepsilon>0$, there exists $g \in C^{*}(X,$.$) such that$ $\sup _{x \in X}\|g(x)\| \leqslant \sup _{x \in X}\|f(x)\|$ and $\int_{X}\|f(x)-g(x)\| \mathrm{d} \mu(x)<\varepsilon$.

Proof. Let $f=\left[f_{j k}\right] \in \mathfrak{B} C^{*}(X,$.$) , and let M>0$ be such that

$$
\sup _{x \in X}\|f(x)\| \leqslant M
$$

It follows from the regularity of μ that, for each (j, k), there is a compact set $L_{j k}$ such that

$$
\mu\left(X \backslash L_{j k}\right) \leqslant \frac{\varepsilon}{2 M n^{2}}
$$

and $\left.f_{j k}\right|_{L_{j k}}$ is continuous. Put

$$
L=\bigcap_{j, k} L_{j k}
$$

and $K=\mathfrak{U}_{n}$.L. Then K is compact and invariant, and

$$
\mu(X \backslash K) \leqslant \frac{\varepsilon}{2 M} .
$$

What is more, $\left.f\right|_{K}$ is continuous (this follows from the facts that $\left.f\right|_{L}$ is continuous and $f(\mathfrak{u} . x)=\mathfrak{u} . f(x))$. Now Lemma 3.2 (c) yields the existence of $g \in C^{*}(X,$.$) such that \sup _{x \in X}\|g(x)\| \leqslant \sup _{x \in X}\|f(x)\|$ and $\left.g\right|_{K}=\left.f\right|_{K}$. Then:

$$
\begin{aligned}
\int_{X}\|f(x)-g(x)\| \mathrm{d} \mu(x) & =\int_{X \backslash K}\|f(x)-g(x)\| \mathrm{d} \mu \\
& \leqslant 2 M \cdot \mu(X \backslash K) \\
& =\varepsilon
\end{aligned}
$$

and we are done.

Proposition 4.8. Let $E=\left[E_{j k}\right]: \mathfrak{B}(X) \rightarrow M_{n}(\mathcal{B}(\mathcal{H}))$ be a regular n-measure.
(a) E satisfies (4.3) for any $f \in \mathfrak{B} C^{*}(X,$.$) if and only if (4.3) is$ fulfilled for any $f \in C^{*}(X,$.$) , if and only if \left(E_{j k}(A)\right)^{*}=E_{k j}(A)$ for each $A \in \mathfrak{B}(X)$;
(b) E is spectral if and only if (4.3) and (4.4) are satisfied for any $f, g \in C^{*}(X,$.$) .$

Proof. For any complex-valued regular Borel measure ν on X we shall denote by $|\nu|$ the variation of ν. Recall that $|\nu|$ is a nonnegative finite regular Borel measure on X. Further, for any $h, w \in \mathcal{H}$ and $j, k \in\{1, \ldots, n\}$, let $E_{j k}^{(h, w)}$ be as in Definition 4.4. Finally, $\langle\cdot,-\rangle$ stands for the scalar product of \mathcal{H}.

We begin with (a). Fix $h, w \in \mathcal{H}$ and $j, k \in\{1, \ldots, n\}$. First assume that (4.3) is fulfilled for any $f \in C^{*}(X,$.$) . Let E^{(h, w)}:=\left[E_{j k}^{(h, w)}\right]$, and note that $E^{(h, w)} \in \mathcal{M}(X,$.$) since E_{p q}(\mathfrak{u} . A)=\sum_{j, k} \mathfrak{u}_{p j} \overline{\mathfrak{u}}_{q k} \cdot E_{j k}(A)$. Thus, $E_{p q}^{(h, w)}(\mathfrak{u} . A)=\sum_{j, k} \mathfrak{u}_{p j} \overline{\mathfrak{u}}_{q k} \cdot E_{j k}^{(h, w)}(A)=\left(\mathfrak{u} . E^{(h, w)}(A)\right)_{p q}$. Observe that $\left(E^{(h, w)}\right)^{*} \in \mathcal{M}(X,$.$) as well where \left(E^{(h, w)}\right)^{*}(A)=$ $\left(E^{(h, w)}(A)\right)^{*}$ (because $(\mathfrak{u} . P)^{*}=\mathfrak{u} . P^{*}$ for any $\left.P \in M_{n}\right)$. Further, for each $f \in C^{*}(X,$.$) , we have$

$$
\begin{aligned}
\overline{\int f^{*} \mathrm{~d} E^{(h, w)}} & =\sum_{j, k} \overline{\int_{X}\left(f^{*}\right)_{j k} \mathrm{~d} E_{k j}^{(h, w)}}=\sum_{j, k} \int_{X} f_{k j} \overline{\mathrm{~d}} \overline{E_{k j}^{(h, w)}} \\
& =\sum_{j, k} \int_{X} f_{k j} \mathrm{~d}\left(E^{(h, w)}\right)_{j k}^{*}=\int f \mathrm{~d}\left(E^{(h, w)}\right)^{*}
\end{aligned}
$$

and, on the other hand,

$$
\begin{aligned}
\overline{\int f^{*} \mathrm{~d} E^{(h, w)}} & =\overline{\left\langle\left(\int f^{*} \mathrm{~d} E\right) h, w\right\rangle}=\overline{\left\langle\left(\int \mathrm{d} E\right)^{*} h, w\right\rangle} \\
& =\left\langle\left(\int f \mathrm{~d} E\right) w, h\right\rangle=\int f \mathrm{~d} E^{(w, h)}
\end{aligned}
$$

The uniqueness in Theorem 4.2 implies that $\left(E^{(h, w)}\right)^{*}=E^{(w, h)}$, which means that, for each $A \in \mathfrak{B}(X),\left\langle\left(E_{j k}(A)\right) w, h\right\rangle=\overline{\left\langle\left(E_{k j}(A)\right) h, w\right\rangle}=$ $\left\langle\left(E_{k j}(A)\right)^{*} w, h\right\rangle$. We conclude that $\left(E_{j k}(A)\right)^{*}=E_{k j}(A)$. Finally, if the last relation holds for any $j, k \in\{1, \ldots, n\}$, then for every $f \in \mathfrak{B} C^{*}(X,$.$) we get:$

$$
\begin{aligned}
\left(\int f \mathrm{~d} E\right)^{*} & =\sum_{j, k}\left(\int_{X} f_{j k} \mathrm{~d} E_{k j}\right)^{*}=\sum_{j, k} \int_{X} \bar{f}_{j k} \mathrm{~d}\left(E_{k j}\right)^{*} \\
& =\sum_{j, k} \int_{X}\left(f^{*}\right)_{k j} \mathrm{~d} E_{j k}=\int f^{*} \mathrm{~d} E
\end{aligned}
$$

This completes the proof of (a).
We now turn to (b). We assume that (4.3) and (4.4) are fulfilled for any $f, g \in C^{*}(X,$.$) . We know from (a) that actually (4.3) is satisfied$ for any $f \in \mathfrak{B} C^{*}(X,$.$) . The proof of (4.4) is divided into three steps,$ stated below.

Step 1. If $\xi \in \mathfrak{B} C^{*}(X,$.$) is such that$

$$
\begin{equation*}
\int g \cdot \xi \mathrm{~d} E=\int g \mathrm{~d} E \cdot \int \xi \mathrm{~d} E \tag{4.6}
\end{equation*}
$$

for any $g \in C^{*}(X,$.$) , then$

$$
\int f \cdot \xi \mathrm{~d} E=\int f \mathrm{~d} E \cdot \int \xi \mathrm{~d} E \text { for any } f \in \mathfrak{B} C^{*}(X, .)
$$

Proof of Step 1. Fix $f \in \mathfrak{B} C^{*}(X,), h,. w \in \mathcal{H}$ and $\varepsilon>0$. Let $M \geqslant 1$ be such that $\sup _{x \in X}\|\xi(x)\| \leqslant M$. Put

$$
v=\left(\int \xi \mathrm{d} E\right) h
$$

and

$$
\mu=\sum_{j, k}\left(\left|E_{j k}^{(h, w)}\right|+\left|E_{j k}^{(v, w)}\right|\right)
$$

Since μ is finite and regular, Lemma 4.7 gives us a map $g \in C^{*}(X,$. such that

$$
\int_{X}\|f(x)-g(x)\| \mathrm{d} \mu(x) \leqslant \frac{\varepsilon}{M} .
$$

Then (4.6) holds and, therefore, (remember that $M \geqslant 1$):

$$
\begin{aligned}
\mid\langle & \left.\left\langle\int f \cdot \xi \mathrm{~d} E-\int f \mathrm{~d} E \cdot \int \xi \mathrm{~d} E\right) h, w\right\rangle \mid \\
\leqslant & \left|\left\langle\left(\int f \cdot \xi \mathrm{~d} E-\int g \cdot \xi \mathrm{~d} E\right) h, w\right\rangle\right| \\
& +\left|\left\langle\left(\int g \mathrm{~d} E \cdot \int \xi \mathrm{~d} E-\int f \mathrm{~d} E \cdot \int \xi \mathrm{~d} E\right) h, w\right\rangle\right| \\
= & \left|\sum_{j, k} \int_{X}((f-g) \xi)_{j k} \mathrm{~d} E_{k j}^{(h, w)}\right| \\
& +\left|\sum_{j, k} \int_{X}\left(g_{j k}-f_{j k}\right) \mathrm{d} E_{k j}^{(v, w)}\right| \\
\leqslant & \sum_{j, k} \int_{X}\|(f(x)-g(x)) \xi(x)\| \mathrm{d}\left|E_{k j}^{(h, w)}\right|(x)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j, k} \int_{X}\|g(x)-f(x)\| \mathrm{d}\left|E_{k j}^{(v, w)}\right|(x) \\
\leqslant & M \int_{X}\|f(x)-g(x)\| \mathrm{d} \mu(x) \leqslant \varepsilon
\end{aligned}
$$

Step 2. For any $f \in \mathfrak{B} C^{*}(X,$.$) and g \in \mathcal{C}(X,$.$) , (4.4) holds.$
Proof of Step 2. It follows from Step 1 and our assumptions in (b) that

$$
\int g^{*} \cdot f^{*} \mathrm{~d} E=\int g^{*} \mathrm{~d} E \cdot \int f^{*} \mathrm{~d} E
$$

Now it suffices to apply (4.3):

$$
\begin{aligned}
\int f \cdot g \mathrm{~d} E & =\left(\int g^{*} \cdot f^{*} \mathrm{~d} E\right)^{*}=\left(\int g^{*} \mathrm{~d} E \cdot \int f^{*} \mathrm{~d} E\right)^{*} \\
& =\int f \mathrm{~d} E \cdot \int g \mathrm{~d} E
\end{aligned}
$$

Step 3. The condition (4.4) is satisfied for any $f, g \in \mathfrak{B} C^{*}(X,$.$) .$
Proof of Step 3. Just apply Step 2 and then Step 1.
Proof of Theorem 4.6. According to Proposition 4.8 (b), it suffices to show that there exists a regular n-measure $E: \mathfrak{B}(X) \rightarrow M_{n}(\mathcal{B}(\mathcal{H}))$ such that (4.5) holds and that such an E is unique. According to Theorem 4.2, for any $h, w \in \mathcal{H}$ there is a unique $\mu^{(h, w)}=\left[\mu_{j k}^{(h, w)}\right] \in$ $\mathcal{M}(X,$.$) such that$

$$
\begin{equation*}
\langle\pi(f) h, w\rangle=\int f \mathrm{~d} \mu^{(h, w)} \tag{4.7}
\end{equation*}
$$

for each $f \in C^{*}(X,).(\langle\cdot,-\rangle$ is the scalar product of $\mathcal{H})$. Now, for any $j, k \in\{1, \ldots, n\}$ and each $A \in \mathfrak{B}(X)$, there is a unique bounded operator on \mathcal{H}, denoted by $E_{j k}(A)$, for which $\mu_{j k}^{(h, w)}(A)=$ $\left\langle\left(E_{j k}(A)\right) h, w\right\rangle \quad(h, w \in \mathcal{H})$. We put $E(A)=\left[E_{j k}(A)\right] \in M_{n}(\mathcal{B}(\mathcal{H}))$. We want to show that $E(\mathfrak{u} . A)=\mathfrak{u} \cdot E(A)$. Since $\mu^{(h, w)} \in \mathcal{M}(X,$.$) , we$ obtain:

$$
\begin{aligned}
\left\langle\left(E_{p q}(\mathfrak{u} . A)\right) h, w\right\rangle & =\left(\mu^{(h, w)}(\mathfrak{u} . A)\right)_{p q}=\left(\mathfrak{u} . \mu^{(h, w)}(A)\right)_{p q} \\
& =\sum_{j, k} \mathfrak{u}_{p j} \overline{\mathfrak{u}}_{q k} \cdot \mu_{j k}^{(h, w)}(A)=\sum_{j, k} \mathfrak{u}_{p j} \overline{\mathfrak{u}}_{q k} \cdot\left\langle\left(E_{j k}(A)\right) h, w\right\rangle
\end{aligned}
$$

$$
=\left\langle(\mathfrak{u} \cdot E(A))_{p q} h, w\right\rangle,
$$

which shows that indeed $E(\mathfrak{u} . A)=\mathfrak{u} . E(A)$. Further, observe that $E_{j k}^{(h, w)}=\mu_{j k}^{(h, w)}$, and thus E is an operator-valued regular n-measure and

$$
\left\langle\left(\int f \mathrm{~d} E\right) h, w\right\rangle=\langle\pi(f) h, w\rangle
$$

(thanks to (4.7)). Consequently,

$$
\int f \mathrm{~d} E=\pi(f)
$$

and we are done.
The uniqueness of E follows from the above construction, and its proof is left to the reader.

Example 4.9. Let ($X,$.) be an n-space, and let $E=\left[E_{j k}\right]: \mathfrak{B}(X) \rightarrow$ $M_{n}(\mathcal{B}(\mathcal{H}))$ be a spectral n-measure. We denote by $\mathfrak{B}_{i n v}(X)$ the σ algebra of all invariant Borel subsets of X (that is, $A \in \mathfrak{B}(X)$ belongs to $\mathfrak{B}_{\text {inv }}(X)$ if and only if $\mathfrak{u} . A=A$ for any $\left.\mathfrak{u} \in \mathfrak{U}_{n}\right)$. Let

$$
F: \mathfrak{B}_{\text {inv }}(X) \ni A \longmapsto \sum_{j} E_{j j}(A) \in \mathcal{B}(\mathcal{H}) .
$$

Then, for every $A \in \mathfrak{B}_{i n v}(X)$, one has:
(E1) $E_{j k}(A)=0$ whenever $j \neq k$,
(E2) $E_{11}(A)=\ldots=E_{n n}(A)=\frac{1}{n} F(A)$,
and F is a spectral measure (possibly with $F(X) \neq I_{\mathcal{H}}$ where $I_{\mathcal{H}}$ is the identity operator on $\mathcal{H})$. Let us briefly prove these claims. Since $E(A)=E(\mathfrak{u} . A)=\mathfrak{u} . E(A)$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$, conditions (E1)-(E2) are fulfilled. Further, if $j_{A}: X \rightarrow M_{n}$ is given by $j_{A}(x)=\chi_{A}(x) \cdot I$ where $I \in M_{n}$ is the unit matrix, then $j_{A} \in \mathfrak{B} C^{*}(X,$.$) and, for B \in \mathfrak{B}_{\text {inv }}(X)$,

$$
\begin{aligned}
F(A \cap B) & =\int j_{A \cap B} \mathrm{~d} E=\int j_{A} \cdot j_{B} \mathrm{~d} E \\
& =\int j_{A} \mathrm{~d} E \cdot \int j_{B} \mathrm{~d} E=F(A) F(B)
\end{aligned}
$$

What is more, Proposition 4.8 (a) implies that $F(A)$ is self-adjoint, and hence F is indeed a spectral measure. One may also easily check
that $F(X)=I_{\mathcal{H}}$ if and only if the representation $\pi_{E}: C^{*}(X,.) \ni f \mapsto$ $\int f \mathrm{~d} E \in \mathcal{B}(\mathcal{H})$ is nondegenerate.

The spectral measure F defined above corresponds to the representation of the center Z of $C^{*}(X,$.$) . It is a simple exercise that Z$ consists precisely of all $f \in \mathcal{C}_{0}(X, \mathbb{C} \cdot I)$ which are constant on the sets of the form $\mathfrak{U}_{n} .\{x\}(x \in X)$. Thus, $\mathfrak{B}_{\text {inv }}(X)$ may naturally be identified with the Borel σ-algebra of the spectrum of Z, and consequently, F is the spectral measure induced by the representation $\left.\pi_{E}\right|_{Z}$ of Z.

Conditions (E1)-(E2) show that a nonzero spectral n-measure E for $n>1$ never satisfies the condition of a spectral measure - that $E(A \cap B)=E(A) E(B)$. Indeed, $E(X) \neq(E(X))^{2}$.

The next result is well known. For the reader's convenience, we give its short proof.

Lemma 4.10. Let \mathcal{A} be a C^{*}-algebra, and let $\pi: \mathcal{A} \rightarrow M_{n}$ (where $n \geqslant 1$ is finite) be a nonzero irreducible representation of \mathcal{A}. Then π is surjective.

Proof. Let $J=\pi(\mathcal{A})$. Since π is irreducible, $J^{\prime}=\mathbb{C} \cdot I$, and consequently, $J^{\prime \prime}=M_{n}$. But it follows from von Neumann's double commutant theorem that $J^{\prime \prime}=J+\mathbb{C} \cdot I$ (here we use the fact that n is finite). So, the facts that J is a $*$-algebra and $M_{n}=J+\mathbb{C} \cdot I$ imply that J is a two-sided ideal in M_{n}. Consequently, $J=\{0\}$ or $J=M_{n}$. But $\pi \neq 0$, and hence $J=M_{n}$.

With the aid of the above lemma and Theorem 4.6, we shall now characterize all irreducible representations of $C^{*}(X,$.$) .$

Proposition 4.11. Every nonzero irreducible representation π of $C^{*}(X,$.$\left.) (where (X,.\right)$ is an n-space) is n-dimensional and has the form $\pi(f)=f(x)$ (for some $x \in X)$.

Proof. Let $\pi: C^{*}(X,.) \rightarrow \mathcal{B}(\mathcal{H})$ be a nonzero irreducible representation. It follows from Theorem 4.6 that there is a spectral n measure $E: \mathfrak{B}(X) \rightarrow \mathcal{B}(\mathcal{H})$ such that (4.5) holds. Let $\mathfrak{B}_{\text {inv }}(X)$ and $F: \mathfrak{B}_{\text {inv }}(X) \rightarrow \mathcal{B}(\mathcal{H})$ be as in Example 4.9. Then F is a (regular)
spectral measure (with $F(X)=I_{\mathcal{H}}$ because π is nondegenerate) and, for any $A \in \mathfrak{B}_{\text {inv }}(X)$ and $f \in C^{*}(X,$.$) , we have$

$$
\int f \mathrm{~d} E \cdot \int \chi_{A} I \mathrm{~d} E=\int \chi_{A} I \mathrm{~d} E \cdot \int f \mathrm{~d} E
$$

(where I is the unit $n \times n$-matrix). Since π is irreducible, we deduce that, for every $A \in \mathfrak{B}_{\text {inv }}(X), \int \chi_{A} I \mathrm{~d} E$ is a scalar multiple of the identity operator on \mathcal{H}. This implies that we may think of F as a complexvalued (spectral) measure. But $\mathfrak{B}_{\text {inv }}(X)$ is naturally 'isomorphic' to the σ-algebra of all Borel sets of X / \mathfrak{U}_{n} (which is locally compact) and thus F is supported on a set $S:=\mathfrak{U}_{n}$. a for some $a \in X$. But then

$$
\int \chi_{X} I \mathrm{~d} E=\int \chi_{S} I \mathrm{~d} E,
$$

and consequently, $\pi(f)=\left.\int f\right|_{S} \mathrm{~d} E_{S}$, where E_{S} is the restriction of E to $\mathfrak{B}(S)$. Since the vector space $\left\{\left.f\right|_{S}: f \in C^{*}(X,).\right\}$ is finite dimensional (and its dimension is equal to n^{2}), we infer that $\mathcal{A}:=\pi\left(C^{*}(X,).\right)$ is finite dimensional as well and $\operatorname{dim} \mathcal{A} \leqslant n^{2}$. So, the irreducibility of π implies that \mathcal{H} is finite dimensional, while Lemma 4.10 shows that $\operatorname{dim} \mathcal{H} \leqslant n$. Finally, Proposition 3.3 (b) completes the proof.

5. Homogeneous C^{*}-algebras.

Definition 5.1. A C^{*}-algebra is said to be n-homogeneous (where n is finite) if and only if every nonzero irreducible representation of it is n-dimensional.

Our version of Fell's characterization of n-homogeneous C^{*}-algebras [9] reads as follows.

Theorem 5.2. For a C^{*}-algebra \mathcal{A} and finite $n \geqslant 1$, the following conditions are equivalent:
(i) \mathcal{A} is an n-homogeneous C^{*}-algebra;
(ii) there is an n-space $(X,$.$) such that \mathcal{A}$ is isomorphic (as a C^{*} algebra) to $C^{*}(X,$.$) .$

What is more, if \mathcal{A} is n-homogeneous, the n-space (X, .) appearing in (ii) is unique up to isomorphism.

Proof of Theorem 5.2. We infer from Proposition 3.3 (c) that the n space $(X,$.$) appearing in (ii) is unique up to isomorphism. In addition,$ it easily follows from Proposition 4.11 that $C^{*}(X,$.$) is n$-homogeneous for any n-space ($X,$.$) . So, it remains to show that (i) implies (ii).$ To this end, assume \mathcal{A} is n-homogeneous, and let \mathfrak{X} be the set of all representations (including the zero one) $\pi: \mathcal{A} \rightarrow M_{n}$, equipped with the topology of pointwise convergence. Since each representation is a bounded linear operator of norm not greater than $1, \mathfrak{X}$ is compact. Consequently, $X:=\mathfrak{X} \backslash\{0\}$ is locally compact. We define an action of \mathfrak{U}_{n} on X by the formula:

$$
(\mathfrak{u} . \pi)(a)=\mathfrak{u} . \pi(a) \quad\left(a \in \mathcal{A}, \pi \in X, \mathfrak{u} \in \mathfrak{U}_{n}\right) .
$$

It is easily seen that the action is continuous. What is more, Lemma 4.10 ensures us that it is free as well. $\mathrm{So},(X,$.$) is an n$-space. The next step of construction is very common. For any $a \in \mathcal{A}$, let $\widehat{a}: X \rightarrow M_{n}$ be given by $\widehat{a}(\pi)=\pi(a)$. It is clear that $\widehat{a} \in \mathcal{C}_{0}\left(X, M_{n}\right)$ (indeed, if X is noncompact, then $\mathfrak{X}=X \cup\{0\}$ is a one-point compactification of X and \widehat{a} extends to a map on \mathfrak{X} which vanishes at 0). We also readily have $\widehat{a}(\mathfrak{u} . \pi)=\mathfrak{u} . \widehat{a}(\pi)$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$. So, we have obtained a *-homomorphism $\Phi: \mathcal{A} \ni a \mapsto \widehat{a} \in C^{*}(X,$.$) . It follows from$ (i) (and the fact that all irreducible representations separate points of a C^{*}-algebra) that Φ is one-to-one and, consequently, Φ is isometric. So, to end the proof, it suffices to show that $\mathcal{E}=\Phi(\mathcal{A})$ is dense in $C^{*}(X,$.$) .$ To this end, we involve Theorem 2.2. It follows from Lemma 4.10 that condition (AX0) is fulfilled. Further, let π_{1} and π_{2} be arbitrary members of X.

We consider two cases. First assume that $\pi_{2}=\mathfrak{u} . \pi_{1}$ for some $\mathfrak{u} \in \mathfrak{U}_{n}$. Then $\widehat{a}\left(\pi_{2}\right)=\mathfrak{u} . \widehat{a}\left(\pi_{1}\right)$, and consequently, $\sigma\left(\widehat{a}\left(\pi_{1}\right)\right)=\sigma\left(\widehat{a}\left(\pi_{2}\right)\right)(a \in \mathcal{A})$. So, in that case (AX2) holds. Now assume that there is no $\mathfrak{u} \in \mathfrak{U}_{n}$ for which $\pi_{2}=\mathfrak{u} . \pi_{1}$. We shall show that, in that case:

$$
\begin{equation*}
\pi_{1}(a)=0 \quad \text { and } \quad \pi_{2}(a)=I \text { for some } a \in \mathcal{A} \tag{5.1}
\end{equation*}
$$

Let $\mathcal{M} \subset M_{2 n}$ consist of all matrices of the form

$$
\left(\begin{array}{cc}
\pi_{1}(x) & 0 \\
0 & \pi_{2}(x)
\end{array}\right) \quad \text { with } x \in \mathcal{A} .
$$

Since \mathcal{M} is a finite-dimensional C^{*}-algebra, it is singly generated (see, e.g., [22]) and unital (cf., [26, subsection 1.11]). Thanks to

Lemma 4.10, \mathcal{M} contains matrices of the form

$$
\left.\left(\begin{array}{ll}
I & 0 \\
0 & A
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
B & 0 \\
0 & I
\end{array}\right) \quad \text { (for some } A, B \in M_{n}\right)
$$

We conclude that the unit of \mathcal{M} coincides with the unit of $M_{2 n}$. This, combined with the fact that \mathcal{M} is singly generated, yields that there is $z \in \mathcal{A}$ such that, for $A_{j}=\pi_{j}(z)(j=1,2)$, we have

$$
\mathcal{M}=\left\{\left(\begin{array}{cc}
p\left(A_{1}, A_{1}^{*}\right) & 0 \\
0 & p\left(A_{2}, A_{2}^{*}\right)
\end{array}\right): p \in \mathcal{P}\right\}
$$

where \mathcal{P} is the free algebra of all polynomials in two noncommuting variables. Observe that then $M_{n}=\pi_{j}(\mathcal{A})=\left\{p\left(A_{j}, A_{j}^{*}\right): p \in \mathcal{P}\right\}(j=$ $1,2)$, which means that A_{1} and A_{2} are irreducible matrices. What is more, A_{1} and A_{2} are not unitarily equivalent, that is, there is no $\mathfrak{u} \in \mathfrak{U}_{n}$ for which $A_{2}=\mathfrak{u} . A_{1}$ (indeed, if $A_{2}=\mathfrak{u} . A_{1}$, then $\pi_{2}=\mathfrak{u} . \pi_{1}$ since, for every $x \in \mathcal{A}$, there is a $p \in \mathcal{P}$ such that $\left.\pi_{j}(x)=p\left(A_{j}, A_{j}^{*}\right)\right)$. These two remarks imply that

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right) \in \mathcal{M}
$$

because the $*$-commutant in $M_{2 n}$ of the matrix

$$
\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right)
$$

consists of matrices of the form

$$
\left(\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right)
$$

(this follows from the so-called Schur's lemma on intertwining transformations; see [6, Theorem 1.5, Corollary 1.8]; cf., also [19, Proposition 5.2.1]), and consequently,

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right) \in \mathcal{M}^{\prime \prime}=\mathcal{M}
$$

So, there is an $a \in \mathcal{A}$ such that

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
\pi_{1}(a) & 0 \\
0 & \pi_{2}(a)
\end{array}\right)
$$

which gives (5.1). Replacing a by $\left(a+a^{*}\right) / 2$, we may assume that a is self-adjoint. Then $f=\widehat{a} \in \mathcal{E}$ is self-adjoint (and hence normal) and
$\sigma\left(f\left(\pi_{1}\right)\right) \cap \sigma\left(f\left(\pi_{2}\right)\right)=\varnothing$, which shows that π_{1} and π_{2} are spectrally separated by \mathcal{E}. According to Theorem 2.2, it therefore suffices to check that each $g \in C^{*}(X,$.$) belongs to \Delta_{2}(\mathcal{E})$. To this end, we fix $\pi_{1}, \pi_{2} \in X$ and consider the same two cases as before. If $\pi_{2}=\mathfrak{u} . \pi_{1}$, it follows from Lemma 4.10 that there is an $x \in \mathcal{A}$ for which $\pi_{1}(x)=g\left(\pi_{1}\right)$. Then $\widehat{x}\left(\pi_{1}\right)=g\left(\pi_{1}\right)$ and $\widehat{x}\left(\pi_{2}\right)=\mathfrak{u} . \widehat{x}\left(\pi_{1}\right)=\mathfrak{u} . g\left(\pi_{1}\right)=g\left(\pi_{2}\right)$, and we are done.

Finally, if $\pi_{2} \neq \mathfrak{u} . \pi_{1}$ for any $\mathfrak{u} \in \mathfrak{U}_{n}$, (5.1) implies that there are points a_{1} and a_{2} in \mathcal{A} such that $\pi_{1}\left(a_{1}\right)=I=\pi_{2}\left(a_{2}\right)$ and $\pi_{1}\left(a_{2}\right)=0=$ $\pi_{2}\left(a_{1}\right)$. Moreover, there are points $x, y \in \mathcal{A}$ such that $\pi_{1}(x)=g\left(\pi_{1}\right)$ and $\pi_{2}(y)=g\left(\pi_{2}\right)$ (by Lemma 4.10). Put $z=x a_{1}+y a_{2} \in \mathcal{A}$ and note that $\widehat{z}\left(\pi_{j}\right)=g\left(\pi_{j}\right)$ for $j=1,2$, which means that $g \in \Delta_{2}(\mathcal{E})$. The whole proof is complete.

Definition 5.3. Let \mathcal{A} be an n-homogeneous C^{*}-algebra. By an n spectrum of \mathcal{A} we mean any n-space $(X,$.$) such that \mathcal{A}$ is isomorphic to $C^{*}(X,$.$) . It follows from Theorem 5.2$ that an n-spectrum of \mathcal{A} is unique up to isomorphism of n-spaces. By concrete n-spectrum of \mathcal{A} we mean the n-space of all nonzero representations $\pi: \mathcal{A} \rightarrow M_{n}$ endowed with the pointwise convergence topology and the natural action of \mathfrak{U}_{n}.

The trivial algebra $\{0\}$ is n-homogeneous and its n-spectrum is the empty n-space.

The reader interested in general ideas of operator spectra should consult $[\mathbf{6}$, subsection 2.5]; $[\mathbf{7}, \mathbf{8}, \mathbf{9}] ;[4]$ as well as $[\mathbf{1 2}, \mathbf{1 3}] ;[\mathbf{1 5}, \mathbf{1 6}]$; [20].

Our approach to n-homogeneous C^{*}-algebras allows us to prove briefly the following

Proposition 5.4. Let \mathcal{A}_{1} and \mathcal{A}_{2} be two n-homogeneous C^{*}-algebras such that $\mathcal{A}_{1} \subset \mathcal{A}_{2}$.
(a) Every representation $\pi_{1}: \mathcal{A}_{1} \rightarrow M_{n}$ is extendable to a representation $\pi_{2}: \mathcal{A}_{2} \rightarrow M_{n}$.
(b) If every n-dimensional representation (including the zero one) of \mathcal{A}_{1} has a unique extension to an n-dimensional representation of \mathcal{A}_{2}, then $\mathcal{A}_{1}=\mathcal{A}_{2}$.

Proof. We begin with (a). We may and do assume that π_{1} is nonzero. For $j=1,2$, let $\left(X_{j},.\right)$ denote an n-spectrum of \mathcal{A}_{j}, and let $\Psi_{j}: \mathcal{A}_{j} \rightarrow$ $C^{*}\left(X_{j},.\right)$ be a $*$-isomorphism of C^{*}-algebras. Let $j: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ be the inclusion map. Then $\Phi:=\Psi_{2} \circ j \circ \Psi_{1}^{-1}: C^{*}\left(X_{1},.\right) \rightarrow C^{*}\left(X_{2},.\right)$ is a one-to-one $*$-homomorphism. We infer from Proposition 3.3 that there are an invariant open (in X_{2}) set U and a morphism $\varphi:(U,.) \rightarrow\left(X_{1},.\right)$ such that (3.1) holds. We claim that

$$
\begin{equation*}
\varphi(U)=X_{1} \tag{5.2}
\end{equation*}
$$

Since φ is proper, the set $F:=\varphi(U)$ is closed in X_{1}. It is also invariant. So, if $F \neq X_{1}$, we may take $b \in X_{1} \backslash F$ and apply Lemma 3.2 (c) to get a function $f \in C^{*}\left(X_{1},.\right)$ such that $\left.f\right|_{F} \equiv 0$ and $f(b)=I$. Then $\Phi(f)=0$, by (3.1), which contradicts the fact that Φ is one-to-one. So, (5.2) is fulfilled.

Further, Proposition 3.3 yields that there is an $x \in X_{1}$ such that $\pi_{1}\left(\Psi_{1}^{-1}(f)\right)=f(x)$ for any $f \in C^{*}\left(X_{1},.\right)$. It follows from (5.2) that we may find $z \in U$ for which $\varphi(z)=x$. Now define $\pi_{2}: \mathcal{A}_{2} \rightarrow M_{n}$ by $\pi_{2}(a)=\left[\Psi_{2}(a)\right](z)\left(a \in \mathcal{A}_{2}\right)$. It remains to check that π_{2} extends π_{1}. To see this, for $a \in \mathcal{A}_{1}$ put $f=\Psi_{1}(a)$, and note that $\pi_{2}(a)=$ $\left[\Psi_{2}(a)\right](z)=\left[\Psi_{2}\left(\Psi_{1}^{-1}(f)\right)\right](z)=[\Phi(f)](z)=f(\varphi(z))=f(x)=\pi_{1}(a)$ (cf., (3.1)).

Now, if the assumption of (b) is satisfied, the above argument shows that φ is one-to-one (since different points of X_{2} correspond to different n-dimensional representations of \mathcal{A}_{2}). It may also easily be checked that, for every $z \in X_{2} \backslash U$, the representation $\mathcal{A}_{2} \ni$ $a \mapsto\left[\Psi_{2}(a)\right](z) \in M_{n}$ vanishes on \mathcal{A}_{1} (use (3.1) and the definition of $\Phi)$. So, we conclude from the uniqueness of the extension of the zero representation of \mathcal{A}_{1} that $U=X_{2}$, and hence, both φ and Φ are isomorphisms. Consequently, $\mathcal{A}_{1}=\mathcal{A}_{2}$, and we are done.
6. Spectral theorem and n-functional calculus. Whenever \mathcal{A} is a unital C^{*}-algebra and x_{1}, \ldots, x_{k} are arbitrary elements of \mathcal{A}, let $C^{*}\left(x_{1}, \ldots, x_{k}\right)$ denote the C^{*}-subalgebra of \mathcal{A} generated by x_{1}, \ldots, x_{k}, and let $C_{1}^{*}\left(x_{1}, \ldots, x_{k}\right)$ be the smallest C^{*}-subalgebra of \mathcal{A} which contains x_{1}, \ldots, x_{k} as well as the unit of $\mathcal{A}\left(\right.$ so,$C_{1}^{*}\left(x_{1}, \ldots, x_{k}\right)=$ $C^{*}\left(x_{1}, \ldots, x_{k}\right)+\mathbb{C} \cdot 1$ where 1 is the unit of $\left.\mathcal{A}\right)$. We would like to distinguish those systems $\left(x_{1}, \ldots, x_{k}\right)$ for which one of these two C^{*} algebras defined above is n-homogeneous. However, the property of
being n-homogeneous is not hereditary for $n>1$. That is, when $n>1$, every nonzero n-homogeneous C^{*}-algebra contains a C^{*}-subalgebra which is not n-homogeneous (namely, a nonzero commutative one). This results in the class of distinguished systems possibly depending on the choice of C^{*}-algebras related to them. Fortunately, this does not happen, which is explained in the following.

Lemma 6.1. Let \mathcal{A} be a unital C^{*}-algebra and $x_{1}, \ldots, x_{k} \in \mathcal{A}$. If $C_{1}^{*}\left(x_{1}, \ldots, x_{k}\right)$ is n-homogeneous for some $n>1$, then

$$
C_{1}^{*}\left(x_{1}, \ldots, x_{k}\right)=C^{*}\left(x_{1}, \ldots, x_{k}\right)
$$

Proof. Suppose, to the contrary, that the assertion is false. Observe that $\mathcal{I}:=C^{*}\left(x_{1}, \ldots, x_{k}\right)$ is a two-sided ideal in $\mathcal{B}:=C_{1}^{*}\left(x_{1}, \ldots, x_{k}\right)$, since

$$
\mathcal{B}=\mathcal{I}+\mathbb{C} \cdot 1 \quad(1=\text { the unit of } \mathcal{A})
$$

Moreover, $\mathcal{B} / \mathcal{I}$ is isomorphic (as a C^{*}-algebra) to \mathbb{C}, which means that the canonical projection $\pi: \mathcal{B} \rightarrow \mathcal{B} / \mathcal{I}$ may be considered as a onedimensional (nonzero) representation. It is obviously irreducible, which contradicts the fact that \mathcal{B} is n-homogeneous (since $n>1$).

Taking into account the above result, we may now introduce

Definition 6.2. A system $\left(x_{1}, \ldots, x_{k}\right)$ of elements of an (unnecessarily unital) C^{*}-algebra \mathcal{A} is said to be n-homogeneous (where $n \geqslant 1$ is finite) if the C^{*}-subalgebra $C^{*}\left(x_{1}, \ldots, x_{k}\right)$ of \mathcal{A} generated by x_{1}, \ldots, x_{k} is n homogeneous.

This part of the paper is devoted to studies of (finite) n-homogeneous systems. We begin with:

Proposition 6.3. Let $\left(x_{1}, \ldots, x_{k}\right)$ be an n-homogeneous system in a C^{*}-algebra \mathcal{A}. Let ($\left.\mathfrak{X},.\right)$ be the concrete n-spectrum of $C^{*}\left(x_{1}, \ldots, x_{k}\right)$, and let

$$
\begin{equation*}
\sigma_{n}\left(x_{1}, \ldots, x_{k}\right):=\left\{\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right): \pi \in \mathfrak{X}\right\} \tag{6.1}
\end{equation*}
$$

be equipped with the topology inherited from $\left(M_{n}\right)^{k}$ and with the action

$$
\mathfrak{u} .\left(A_{1}, \ldots, A_{k}\right):=\left(\mathfrak{u} . A_{1}, \ldots, \mathfrak{u} . A_{k}\right)
$$

$\left(\right.$ where $\mathfrak{u} \in \mathfrak{U}_{n}$ and $\left.\left(A_{1}, \ldots, A_{k}\right) \in \sigma_{n}\left(x_{1}, \ldots, x_{k}\right)\right)$.
(Sp1) The pair $\left(\sigma_{n}\left(x_{1}, \ldots, x_{k}\right)\right.$,.) is an n-space.
(Sp2) The function
$H:(\mathfrak{X},.) \ni \pi \longmapsto\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right) \in\left(\sigma_{n}\left(x_{1}, \ldots, x_{k}\right),.\right)$
is an isomorphism of n-spaces.
(Sp3) Every member of $\sigma_{n}\left(x_{1}, \ldots, x_{k}\right)$ is irreducible; that is, if

$$
\left(A_{1}, \ldots, A_{k}\right) \in \sigma_{n}\left(x_{1}, \ldots, x_{k}\right)
$$

and $T \in M_{n}$ commutes with each of $A_{1}, A_{1}^{*}, \ldots, A_{k}, A_{k}^{*}$, then T is a scalar multiple of the unit matrix.
(Sp4) The set $\sigma_{n}\left(x_{1}, \ldots, x_{k}\right)$ is either compact or its closure in $\left(M_{n}\right)^{k}$ coincides with $\sigma_{n}\left(x_{1}, \ldots, x_{k}\right) \cup\{0\}$.

Proof. Let $\pi_{0}: \mathcal{A} \rightarrow M_{n}$ be the zero representation, and let $\Omega=$ $\mathfrak{X} \cup\left\{\pi_{0}\right\}$ be equipped with the pointwise convergence topology. Then Ω is compact (cf., the proof of Theorem 5.2). If $\pi_{1}, \pi_{2} \in \Omega$, then the set $\left\{x \in C^{*}\left(x_{1}, \ldots, x_{k}\right): \pi_{1}(x)=\pi_{2}(x)\right\}$ is a C^{*}-subalgebra of $C^{*}\left(x_{1}, \ldots, x_{k}\right)$. This implies that the function $\widetilde{H}: \Omega \ni \pi \mapsto$ $\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right) \in \sigma_{n}\left(x_{1}, \ldots, x_{k}\right) \cup\{0\}$ is one-to-one. It is obviously seen that \widetilde{H} is surjective and continuous. Consequently, \widetilde{H} is a homeomorphism (since Ω is compact). This proves (Sp 4) and shows that $\sigma_{n}\left(x_{1}, \ldots, x_{k}\right)$ is locally compact. It is also clear that $H(\mathfrak{u} . \pi)=$ $\mathfrak{u} . H(\pi)$, which is followed by (Sp1) and (Sp2). Finally, for any $\pi \in \mathfrak{X}$, $C^{*}\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{k}\right)\right)=\pi\left(C^{*}\left(x_{1}, \ldots, x_{k}\right)\right)=M_{n}$ (see Lemma 4.10), which yields (Sp 3) and completes the proof.

Definition 6.4. Let $\left(x_{1}, \ldots, x_{k}\right)$ be an n-homogeneous system in a C^{*}-algebra. The n-space $\left(\sigma_{n}\left(x_{1}, \ldots, x_{k}\right),.\right)$ defined by (6.1) is said to be the n-spectrum of $\left(x_{1}, \ldots, x_{k}\right)$. According to Proposition 6.3, the n-spectrum of $\left(x_{1}, \ldots, x_{k}\right)$ is an n-spectrum of $C^{*}\left(x_{1}, \ldots, x_{k}\right)$.

Proposition 6.5. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ be an n-homogeneous system in a C^{*}-algebra. There exists a unique *-homomorphism

$$
\Phi_{\mathbf{x}}: C^{*}\left(\sigma_{n}(\mathbf{x}), .\right) \longrightarrow C^{*}(\mathbf{x})
$$

such that $\Phi_{\mathbf{x}}\left(p_{j}\right)=x_{j}$, where $p_{j}: \sigma_{n}(\mathbf{x}) \ni\left(A_{1}, \ldots, A_{k}\right) \mapsto A_{j} \in$ $M_{n}(j=1, \ldots, k)$. Moreover, $\Phi_{\mathbf{x}}$ is a*-isomorphism of C^{*}-algebras.

Proof. Let $(\mathfrak{X},$.$) be the concrete n$-spectrum of $C^{*}(\mathbf{x})$, and let $H:(\mathfrak{X},.) \rightarrow\left(\sigma_{n}(\mathbf{x}),.\right)$ be the isomorphism as in point $(\mathrm{Sp} 2)$ of Proposition 6.3. For $x \in C^{*}(\mathbf{x})$ let $\widehat{x} \in \mathcal{C}(\mathfrak{X},$.$) be given by \widehat{x}(\pi)=\pi(x)$. The proof of Theorem 5.2 shows that the function $C^{*}(\mathbf{x}) \ni x \mapsto \widehat{x} \in C^{*}(\mathfrak{X},$. is a $*$-isomorphism of C^{*}-algebras. Consequently, $\Psi: C^{*}(\mathbf{x}) \ni x \mapsto$ $\widehat{x} \circ H^{-1} \in C^{*}\left(\sigma_{n}(\mathbf{x}),.\right)$ is a $*$-isomorphism as well. A direct calculation shows that $\Psi\left(x_{j}\right)=p_{j}(j=1, \ldots, k)$. This implies that $C^{*}\left(p_{1}, \ldots, p_{k}\right)=C^{*}\left(\sigma_{n}(\mathbf{x}),.\right)$, from which we infer the uniqueness of $\Phi_{\mathbf{x}}$. To convince about its existence, just put $\Phi_{\mathbf{x}}=\Psi^{-1}$.

We are now ready to introduce the following:

Definition 6.6. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ be an n-homogeneous system, and let $\Phi_{\mathbf{x}}$ be as in Proposition 6.5. For every $f \in C^{*}\left(\sigma_{n}\left(x_{1}, \ldots, x_{k}\right),.\right)$, we denote by $f\left(x_{1}, \ldots, x_{k}\right)$ the element $\Phi_{\mathbf{x}}(f)$. The assignment $f \mapsto$ $f\left(x_{1}, \ldots, x_{k}\right)$ is called the n-functional calculus.

The reader familiar with functional calculus on normal operators (or normal elements in C^{*}-algebras) has to be careful with the n-functional calculus, because its main disadvantage is that its values are not n homogeneous elements in general. Therefore, we cannot speak of the n-spectrum of $f\left(x_{1}, \ldots, x_{k}\right)$ in general. What is more, it may happen that $\sigma_{n}\left(x_{1}, \ldots, x_{k}\right)$ is compact, but $j\left(x_{1}, \ldots, x_{k}\right)$, where j is constantly equal to the unit matrix, differs from the unit of the underlying C^{*} algebra \mathcal{A} from which x_{1}, \ldots, x_{k} were taken. This happens precisely when $C^{*}\left(x_{1}, \ldots, x_{k}\right)$ has a unit, but this unit is not the unit of \mathcal{A}.

As a consequence of Theorem 4.6 and Proposition 6.5 we obtain the spectral theorem (for n-homogeneous systems) announced before.

Theorem 6.7. Let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{k}\right)$ be an n-homogeneous system of bounded linear operators acting on a Hilbert space \mathcal{H}. There exists a unique spectral n-measure $E_{\boldsymbol{T}}: \mathfrak{B}\left(\sigma_{n}(\boldsymbol{T})\right) \rightarrow M_{n}(\mathcal{B}(\mathcal{H}))$ such that

$$
\int p_{j} \mathrm{~d} E_{\boldsymbol{T}}=T_{j} \quad(j=1, \ldots, k)
$$

where $p_{j}: \sigma_{n}(\boldsymbol{T}) \ni\left(A_{1}, \ldots, A_{k}\right) \mapsto A_{j} \in M_{n}$.

Definition 6.8. Let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{k}\right)$ be an n-homogeneous system of bounded Hilbert space operators, and let $E_{\boldsymbol{T}}$ be the spectral n-measure as in Theorem 6.7. $E_{\boldsymbol{T}}$ is called the spectral n-measure of \boldsymbol{T}, and the assignment

$$
\mathfrak{B} C^{*}(\sigma(\boldsymbol{T}), .) \ni f \longmapsto f\left(T_{1}, \ldots, T_{n}\right):=\int f \mathrm{~d} E_{\boldsymbol{T}} \in \mathcal{B}(\mathcal{H})
$$

is called the extended n-functional calculus.

There is nothing surprising in the following

Proposition 6.9. Let \mathcal{M} be a von Neumann algebra acting on a Hilbert space \mathcal{H}, and let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{k}\right)$ be an n-homogeneous system of operators belonging to \mathcal{M}. Let $X=\sigma_{n}(\boldsymbol{T})$.
(a) For any $f \in \mathfrak{B} C^{*}(X,),. f(\boldsymbol{T}) \in \mathcal{M}$.
(b) If $f^{(1)}, f^{(2)}, \ldots \in \mathfrak{B} C^{*}(X,$.$) converge pointwise to f: X \rightarrow M_{n}$ and

$$
\sup _{\substack{m \geqslant 1 \\ x \in X}}\left\|f^{(m)}(x)\right\|<\infty
$$

then $f \in \mathfrak{B} C^{*}(X,$.$) and \lim _{m \rightarrow \infty}\left(f^{(m)}(\boldsymbol{T})\right) h=(f(\boldsymbol{T})) h$ for each $h \in \mathcal{H}$.

Proof. We begin with (a). It is clear that $g(\boldsymbol{T}) \in \mathcal{M}$ for $g \in C^{*}(X,$.$) .$ Let $E_{\boldsymbol{T}}=\left[E_{p q}\right]$. Denote by $\langle\cdot,-\rangle$ the scalar product of \mathcal{H}, and fix $f=\left[f_{p q}\right] \in \mathfrak{B} C^{*}(X,$.$) . We shall show that f(\boldsymbol{T})$ belongs to the closure of $\left\{g(\boldsymbol{T}): g \in C^{*}(X,).\right\}$ in the weak operator topology of $\mathcal{B}(\mathcal{H})$, which will give (a). To this end, we fix $h_{1}, w_{1}, \ldots, h_{r}, w_{r} \in \mathcal{H}$ and $\varepsilon>0$. Put $\mu=\sum_{s=1}^{r} \sum_{p, q}\left|E_{p q}^{\left(h_{s}, w_{s}\right)}\right|$. By Lemma 4.7, there is a $g=\left[g_{p q}\right] \in C^{*}(X,$.$) such that$

$$
\int_{X}\|f(x)-g(x)\| \mathrm{d} \mu(x) \leqslant \varepsilon
$$

But then, for each $s \in\{1, \ldots, r\}$,

$$
\begin{aligned}
& \left|\left\langle\left(\int f \mathrm{~d} E_{\boldsymbol{T}}-\int g \mathrm{~d} E_{\boldsymbol{T}}\right) h_{s}, w_{s}\right\rangle\right| \\
& =\left|\sum_{p, q} \int_{X}\left(f_{p q}-g_{p q}\right) \mathrm{d} E_{q p}^{\left(h_{s}, w_{s}\right)}\right| \\
& \leqslant \sum_{p, q} \int_{X}\left|f_{p q}-g_{p q}\right| \mathrm{d}\left|E_{q p}^{\left(h_{s}, w_{s}\right)}\right| \\
& \leqslant \int_{X}\|f(x)-g(x)\| \mathrm{d} \mu(x) \\
& \leqslant \varepsilon
\end{aligned}
$$

and we are done (since $f(\boldsymbol{T})=\int f \mathrm{~d} E_{\boldsymbol{T}}$ and $\left.g(\boldsymbol{T})=\int g \mathrm{~d} E_{\boldsymbol{T}}\right)$.
We turn to (b). It is clear that $f \in \mathfrak{B} C^{*}(X,$.$) . Replacing f^{(m)}$ by $f^{(m)}-f$, we may assume $f=0$. Observe that, then,

$$
\lim _{m \rightarrow \infty}\left(\left(f^{(m)}\right)^{*} f^{(m)}\right)_{p q}(x)=0
$$

for any $x \in X$ and $p, q \in\{1, \ldots, n\}$, and the functions $\left(\left(f^{(1)}\right)^{*} f^{(1)}\right)_{p q}$, $\left(\left(f^{(2)}\right)^{*} f^{(2)}\right)_{p q}, \ldots$ are uniformly bounded. Therefore (by Lebesgue's dominated convergence theorem), for any $h \in H$,

$$
\begin{aligned}
\left\|\left(f^{(m)}(\boldsymbol{T})\right) h\right\|^{2} & =\left\langle\left(f^{(m)}(\boldsymbol{T})\right)^{*}\left(f^{(m)}(\boldsymbol{T})\right) h, h\right\rangle \\
& =\left\langle\left(\int\left(f^{(m)}\right)^{*} f^{(m)} \mathrm{d} E_{\boldsymbol{T}}\right) h, h\right\rangle \\
& =\sum_{p, q} \int_{X}\left(\left(f^{(m)}\right)^{*} f^{(m)}\right)_{p q} \mathrm{~d} E_{q p}^{(h, h)} \longrightarrow 0 \quad(m \rightarrow \infty)
\end{aligned}
$$

which finishes the proof.
We end the paper with the note that the above result enables defining the extended n-functional calculus for n-homogeneous systems in W^{*} algebras.

REFERENCES

1. R. Bhatia, Matrix analysis, Springer, New York, 1997.
2. E. Bishop, A generalization of the Stone-Weierstrass theorem, Pac. J. Math. 11 (1961), 777-783.
3. B. Blackadar, Operator algebras. Theory of C^{*}-algebras and von Neumann algebras, Encycl. Math. Sci. 122: Operator algebras and non-commutative geometry III), Springer-Verlag, Berlin, 2006.
4. W.-M. Ching, Topologies on the quasi-spectrum of a C^{*}-algebra, Proc. Amer. Math. Soc. 46 (1974), 273-276.
5. J. Dixmier, C^{*}-algebras, North-Holland Publishing Company, Amsterdam, 1977.
6. J. Ernest, Charting the operator terrain, Mem. Amer. Math. Soc. 171 (1976), 207 pages.
7. J.M.G. Fell, C^{*}-algebras with smooth dual, Illinois J. Math. 4 (1960), 221-230.
8. \qquad , The dual spaces of C^{*}-algebras, Trans. Amer. Math. Soc. 94 (1960), 365-403.
9. , The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280.
10. M.I. Garrido and F. Montalvo, On some generalizations of the KakutaniStone and Stone-Weierstrass theorems, Extr. Math. 6 (1991), 156-159.
11. J. Glimm, A Stone-Weierstrass theorem for C^{*}-algebras, Ann. Math. 72 (1960), 216-244.
12. D.W. Hadwin, An operator-valued spectrum, Not. Amer. Math. Soc. 23 (1976), A-163.
13. \qquad An operator-valued spectrum, Ind. Univ. Math. J. 26 (1977), 329340.
14. D. Hofmann, On a generalization of the Stone-Weierstrass theorem, Appl. Categ. Struct. 10 (2002), 569-592.
15. J.S. Kim, Ch.R. Kim and S.G. Lee, Reducing operator valued spectra of a Hilbert space operator, J. Korean Math. Soc. 17 (1980), 123-129.
16. S.G. Lee, Remarks on reducing operator valued spectrum, J. Korean Math. Soc. 16 (1980), 131-136.
17. R. Longo, Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split W^{*}-inclusions, Inv. Math. 76 (1984), 145-155.
18. K. Löwner, Über monotone Matrixfunctionen, Math. Z. 38 (1934), 177-216.
19. P. Niemiec, Unitary equivalence and decompositions of finite systems of closed densely defined operators in Hilbert spaces, Diss. Math. (Rozprawy Mat.) 482 (2012), 1-106.
20. C. Pearcy and N. Salinas, Finite-dimensional representations of separable C^{*}-algebras, Not. Amer. Math. Soc. 21 (1974), A-376.
21. S. Popa, Semiregular maximal abelian *-subalgebras and the solution to the factor state Stone-Weierstrass problem, Inv. Math. 76 (1984), 157-161.
22. T. Saitô, Generations of von Neumann algebras, in Lecture on operator algebras Lect. Notes Math. 247, Springer, Berlin, 1972, 435-531.
23. S. Sakai, C^{*}-Algebras and W^{*}-Algebras, Springer-Verlag, Berlin, 1971.
24. M.H. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.
25. \qquad , The generalized Weierstrass approximation theorem, Math. Mag. 21 (1948), 167-184.
26. M. Takesaki, Theory of operator algebras I, Encycl. Math. Sci. 124, Springer-Verlag, Berlin, 2002.
27. V. Timofte, Stone-Weierstrass theorems revisited, J. Approx. Theory 136 (2005), 45-59.
28. J. Tomiyama and M. Takesaki, Applications of fibre bundles to the certain class of C^{*}-algebras, Tôhoku Math. J. 13 (1961), 498-522.

Instytut Matematyki, Wydziae Matematyki i Informatyki, Uniwersytet Jagielloński, ul. Łojasiewicza 6, 30-348 Kraków, Poland
Email address: piotr.niemiec@uj.edu.pl

[^0]: 2010 AMS Mathematics subject classification. Primary 46L05, Secondary 46L35.

 Keywords and phrases. Homogeneous C^{*}-algebra, spectrum of a C^{*}-algebra, Stone-Weierstrass theorem, commutative Gelfand-Naimark theorem, spectral theorem, spectral measure, functional calculus.

 This work is supported by the NCN (National Science Center in Poland), decision No. DEC-2013/11/B/ST1/03613.

 Received by the editors on September 4, 2013.

