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ON THE MORDELL-WEIL GROUP OF ELLIPTIC
CURVES INDUCED BY FAMILIES OF

DIOPHANTINE TRIPLES

MILJEN MIKIĆ

ABSTRACT. The problem of the extendibility of Dio-
phantine triples is closely connected with the Mordell-Weil
group of the associated elliptic curve. In this paper, we ex-
amine Diophantine triples {k − 1, k + 1, cl(k)} and prove that
the torsion group of the associated curves is Z/2Z× Z/2Z for
l = 3, 4 and l ≡ 1 or 2 (mod 4). Additionally, we prove that
the rank is greater than or equal to 2 for all l ≥ 2. This rep-
resents an improvement of previous results by Dujella, Pethő
and Najman, where cases k = 2 and l ≤ 3 were considered.

1. Introduction. A set of m positive integers {a1, a2, . . . , am} is
called a Diophantine m-tuple if aiaj + 1 is a perfect square for all
1 ≤ i < j ≤ m. One of the most interesting questions about
Diophantine m-tuples is how large these sets can be, or, in other words,
what is the upper bound for m. The first Diophantine quadruple,
{1, 3, 8, 120} was found by Fermat (see [2]). Dujella [3] proved that
there does not exist a Diophantine sextuple and that there are only
finitely many Diophantine quintuples.

Let {a, b, c} be a Diophantine triple, i.e.,

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2, r, s, t ∈ N.

In order to extend a Diophantine triple {a, b, c} to a quadruple, one has
to solve the system

(1.1) ax+ 1 = �, bx+ 1 = �, cx+ 1 = �.

It is natural to assign to the system (1.1) the elliptic curve

E : y2 = (ax+ 1)(bx+ 1)(cx+ 1)
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(we say that E is induced by the system (1.1)). E has three obvious
rational points of order 2:

A =

(
− 1

a
, 0

)
, B =

(
− 1

b
, 0

)
, C =

(
− 1

c
, 0

)
,

and two additional rational points:

P = (0, 1), R =

(
1

abc
,
rst

abc

)
.

P and R are in many cases independent and of infinite order, which
immediately gives rank E(Q) ≥ 2 in such cases.

It is clear that every solution of the system (1.1) induces an integer
point on the elliptic curve E. The converse of this statement depends
on the Mordell-Weil group of E. By the Mordell-Weil theorem, the
group E(Q) of rational points on every elliptic curve E is a finitely
generated abelian group. Hence, it is the product of the torsion group
and r (r ≥ 0) copies of the infinite cyclic group:

E(Q) ≃ E(Q)tors × Zr.

Therefore, to find the conditions for extending Diophantine triples to
quadruples, in this paper, we are going to examine the rank and the
torsion group of E induced by certain families of Diophantine triples.
By Mazur’s theorem [12], we know that E(Q)tors is one of the following
15 groups: Z/nZ, with 1 ≤ n ≤ 10, or n = 12, Z/2Z × Z/mZ with
1 ≤ m ≤ 4. However, in our joint paper with Dujella ([6, Corollary 4])
we proved that there are no rational points of order 4 on any elliptic
curve induced by a Diophantine triple. In other words, the only possible
torsion groups of E(Q) are Z/2Z×Z/2Z or Z/2Z×Z/6Z. Now, when
we determine how elliptic curves can be used to resolve the problem
of extending Diophantine triples to quadruples (and this is also the
case with extending quadruples to quintuples, see [5]), let us mention
that there is also an important connection between elliptic curves
and Diophantine m-tuples, but in the opposite direction. Namely,
Diophantine triples have been a useful tool for constructing families
of elliptic curves with high rank. An elliptic curve over the field of
rational functions with torsion group Z/2Z × Z/4Z and rank equal to
4, and an elliptic curve over Q with the same torsion group and rank 9,
both induced by rational Diophantine triples, have been constructed by
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Dujella and Peral [7], and these are the current rank records for this
torsion group.

Let us define, for k ≥ 2 and l ∈ N, a sequence {cl(k)} as:

(1.2) cl(k) =
(k +

√
k2 − 1)2l+1 + (k −

√
k2 − 1)2l+1 − 2k

2(k2 − 1)
.

Then (k − 1)cl(k) + 1 and (k + 1)cl(k) + 1 are perfect squares, i.e.,
{k− 1, k+1, cl(k)} is a Diophantine triple. To prove that, let us define
for k ≥ 2 and l ∈ N the sequences {sl(k)} and {tl(k)} as:

sl(k)
2 = (k − 1)cl(k) + 1,(1.3)

tl(k)
2 = (k + 1)cl(k) + 1.(1.4)

We will show that sl(k) and tl(k) are given by the following explicit
formulas:

sl(k) =
(k +

√
k2 − 1)l+1(

√
k + 1−

√
k − 1)

2
√
k + 1

+
(k −

√
k2 − 1)l+1(

√
k + 1 +

√
k − 1)

2
√
k + 1

,(1.5)

tl(k) =
(k +

√
k2 − 1)l+1(

√
k + 1−

√
k − 1)

2
√
k − 1

− (k −
√
k2 − 1)l+1(

√
k + 1 +

√
k − 1)

2
√
k − 1

.(1.6)

Namely, from (1.2) and (1.3), it follows that

sl(k)
2 =

(k +
√
k2 − 1)2l+1 + (k −

√
k2 − 1)2l+1 + 2

2(k + 1)

=

(
(k +

√
k2 − 1)l+1(

√
k + 1−

√
k − 1)

2
√
k + 1

+
(k −

√
k2 − 1)l+1(

√
k + 1 +

√
k − 1)

2
√
k + 1

)2

.

The formula (1.6) is analogously proved. With the explicit formulas
provided, one can easily verify that these sequences satisfy the following
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recurrence relations:

sl(k) = 2ksl−1(k)− sl−2(k),(1.7)

tl(k) = 2ktl−1(k)− tl−2(k).(1.8)

Thus, sl(k) and tl(k) are positive integers for all k ≥ 2 and l ∈ N,
which, together with (1.3) and (1.4), implies that {k − 1, k + 1, cl(k)}
is a Diophantine triple.

Dujella [4] was the first who examined a parametric family of elliptic
curves induced by Diophantine triples {k− 1, k+ 1, c1(k)}. All integer
points on the elliptic curves associated with these triples have been
found for the curves with rank 1 and for certain subfamilies of the
curves with ranks 2 and 3. Dujella and Pethő [8] considered a special
case k = 2, i.e., triples {1, 3, cl(2)}, and found all integer points when
the rank of the associated curve is 2, or l ≤ 40. Najman [14] continued
studying the families of the curves induced by {k− 1, k+ 1, cl(k)} and
successfully found all integer points on the families induced by triples
{k−1, k+1, c2(k)} and {k−1, k+1, c3(k)} under the assumption that
the rank of the associated curve is 2, or 2 ≤ k ≤ 10000. There are also
results about the extendibility of Diophantine triples {k−1, k+1, cl(k)};
in [1, 9] it was proved that, if {k − 1, k + 1, cl(k), d} is a Diophantine
quadruple, d has to be either cl−1(k) or cl+1(k).

This paper further extends findings about the families of curves
induced by triples {k − 1, k + 1, cl(k)}, with the focus on their torsion
group and rank. The latter is particularly interesting because it has
been conjectured (see [16]) that the number of integer points on an
elliptic curve E in Weierstrass form grows exponentially with the rank
of E(Q). In [14, Lemma 7], it was proved that the torsion group of the
curves induced by {k− 1, k+1, c3(k)} has to be isomorphic to the one
of Z/2Z × Z/2Z or Z/2Z × Z/6Z. However, there remained an open
question whether the latter can occur, and our Theorem 2.1 eliminates
that case. As the next logical step, Theorem 2.2 establishes the same
result for the family induced by Diophantine triples {k−1, k+1, c4(k)}.
Finally, Theorem 2.3 expands that result on the one half of all families
of curves induced by triples {k−1, k+1, cl(k)}, namely, those with l ≡ 1
or 2 (mod 4). The question of the rank is covered by Theorem 3.11. It
was previously proved that the rank of the associated elliptic curve is
greater than or equal to 2 in the cases l = 2, 3 [14, Proposition 5 and
11] and k = 2 [8, Proposition 2]. We extended this statement to all
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elliptic curves induced by {k − 1, k + 1, cl(k)} with l ≥ 2.

In order to extend a Diophantine triple {k − 1, k + 1, cl(k)} to a
quadruple, we have to solve the system

(1.9) (k − 1)x+ 1 = �, (k + 1)x+ 1 = �, cl(k)x+ 1 = �.

We assign to the system (1.9) the elliptic curve

El(k) : y
2 = ((k − 1)x+ 1)((k + 1)x+ 1)(cl(k)x+ 1).

2. Torsion group of El(k). The coordinate transformation

x 7−→ x

(k − 1)(k + 1)cl(k)
, y 7−→ y

(k − 1)(k + 1)cl(k)

applied on the curve El(k) leads to the elliptic curve

(2.1) El(k)
′ : y2 = (x+(k−1)(k+1))(x+(k−1)cl(k))(x+(k+1)cl(k)).

There are three rational points on El(k)
′ of order two:

A′ = (1−k2, 0), B′ = ((1−k)cl(k), 0), C ′ = (−(k+1)cl(k), 0).

We will prove these are the only rational points of finite order for l = 3,
l = 4, and for all l of the form l = 4m−2 and l = 4m−3 where m ∈ N.

At the beginning, let us list the first few members of {cl(k)}:

c1(k) = 4k,

c2(k) = 16k3 − 4k,

c3(k) = 64k5 − 48k3 + 8k,

c4(k) = 256k7 − 320k5 + 112k3 − 8k.

One can easily verify by the induction on l that the members of {cl(k)}
satisfy the following recurrence relation:

(2.2) cl+2(k) = (4k2 − 2)cl+1(k)− cl(k) + 4k.

Theorem 2.1. E3(k)(Q)tors ≃ Z/2Z× Z/2Z.

Proof. Putting l = 3 in (2.1) gives the elliptic curve:

E3(k)
′ : y2 = (x+ (k − 1)(k + 1))

(
x+ (k − 1)(64k5 − 48k3 + 8k)

)
×
(
x+ (k + 1)(64k5 − 48k3 + 8k)

)
.
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With a simple transformation x 7→ x− (k− 1)(k+1) we get a curve in
the form y2 = x(x+M)(x+N):

E3(k)
′′ : y2 = x(x+ (k − 1)(64k5 − 48k3 + 7k − 1))

× (x+ (k + 1)(64k5 − 48k3 + 7k + 1)).

Since {k− 1, k+1, 64k5 − 48k3 +8k} is a Diophantine triple, it follows
from [6, Corollary 4] that the only possible torsion groups of E3(k)

′′

are Z/2Z × Z/2Z or Z/2Z × Z/6Z. We will prove that the latter case
is impossible. Let us suppose the contrary, that the torsion group is
isomorphic to Z/2Z×Z/6Z. By [15, Main Theorem 1] (more precisely
stated in [11, Proposition 2]) there exist coprime integers a, b and a
positive integer d such that:

M = d2(a4 + 2a3b),

N = d2(b4 + 2ab3)

and a/b /∈ {−2,−1,−1/2, 0, 1}. Therefore, we have:

M = (k − 1)(64k5 − 48k3 + 7k − 1) = d2(a4 + 2a3b),(2.3)

N = (k + 1)(64k5 − 48k3 + 7k + 1) = d2(b4 + 2ab3).(2.4)

Notice that

N +M = 128k6 − 96k4 + 14k2 + 2,(2.5)

N −M = 128k5 − 96k3 + 16k.(2.6)

Let us define m = gcd(M,N). We will prove that m = 2a3b, where
a ≤ 4, b ≤ 1 which will imply that d2 ∈ {1, 4, 16}.

Obviously, m | N−M , which is equivalent to m | 16k(8k4−6k2+1),
and that gives

(2.7) m | 16k(4k2 − 1)(2k2 − 1).

Let p be any prime divisor of m. From (2.7), we have several possibili-
ties:

(i) p | k. Because of (2.4), we have:

N = 64k6 + 64k5 − 48k4 − 48k3 + 7k2 + 8k + 1 ≡ 1 (mod p),

which contradicts N ≡ 0 (mod p).
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(ii) p | 2k2 − 1. We have:

14k2 ≡ 7 (mod p), 96k4 ≡ 24 (mod p), 128k6 ≡ 16 (mod p).

Therefore, from (2.5):

N +M ≡ 16− 24 + 7 + 2 ≡ 1 (mod p),

which contradicts N +M ≡ 0 (mod p).
(iii) p | 16. In this case it is obvious that p = 2.
(iv) p | 4k2−1. We will only consider the case p | 2k−1 (case p | 2k+1

is analogous). We have:

8k ≡ 4 (mod p), 8k2 ≡ 2 (mod p), 48k3 ≡ 6 (mod p),

48k4 ≡ 3 (mod p), 64k5 ≡ 2 (mod p), 64k6 ≡ 1 (mod p).

Therefore, again from (2.4):

N ≡ 1 + 2− 3− 6 + (2− k2) + 4 + 1 ≡ 1− k2 (mod p),

and we know that N ≡ 0 (mod p), which implies 1 − k2 ≡ 0
(mod p), and this is equivalent to

(2.8) 4k2 ≡ 4 (mod p).

Combining (2.8) with 4k2 ≡ 1 (mod p) gives p = 3. Notice that
1 is the highest power of 3 contained in m because 3n with n ≥ 2
cannot divide both 4k2−1 and 4k2−4. Additionally, p = 3 cannot
divide 2k− 1 and 2k+1 at the same time, and it does not divide
other factors of (2.7), as well.

It is thus clear that m = 2a3b, where a ≤ 4, b ≤ 1 so d2 can be one
of {1, 4, 16}. Firstly, we will show that the case d2 = 4 cannot appear.
Namely, in that case, the system (2.3) and (2.4) becomes

64k6 − 64k5 − 48k4 + 48k3 + 7k2 − 8k + 1 = 4(a4 + 2a3b),

64k6 + 64k5 − 48k4 − 48k3 + 7k2 + 8k + 1 = 4(b4 + 2ab3),

so the left hand sides must be divisible by 4, and that is possible only
if 7k2 + 1 ≡ 0 (mod 4), which implies 7k2 + 1 ≡ 0 (mod 8). Hence,
the left hand sides are divisible by 8, so the right hand sides must be
divisible by 8 as well, which is only possible for even a and b. However,
a and b are coprime, and therefore the case d2 = 4 is impossible. In
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the two remaining cases note that d2 ≡ 1 (mod 5). Hence, our system
implies:

M = (k − 1)(64k5 − 48k3 + 7k − 1) ≡ a4 + 2a3b (mod 5),

N = (k + 1)(64k5 − 48k3 + 7k + 1) ≡ b4 + 2ab3 (mod 5).

We shall now observe congruences modulo 5 and consequently conclude
that this system does not have a solution in integers. When k ≡ 0
or 2 or 3 (mod 5) the left hand sides of this system are either both
congruent to 1 or 2 modulo 5. In cases k ≡ 1 or 4 (mod 5), one of them
is congruent to 0, and the other to 3 modulo 5. However, by listing all
possible remainders modulo 5 for a and b, we easily verify that none of
these combinations can appear on the right hand sides of this system.
Hence, there is no solution in integers. A contradiction. �

Next, we will prove the same result for the family {k−1, k+1, c4(k)}.

Theorem 2.2. E4(k)(Q)tors ≃ Z/2Z× Z/2Z.

Proof. Like in the previous proof, let us assume that the torsion
group is isomorphic to Z/2Z× Z/6Z. With similar reasoning, we get:

E4(k)
′′ : y2 = x

(
x+ (k − 1)(256k7 − 320k5 + 112k3 − 9k − 1)

)
×
(
x+ (k + 1)(256k7 − 320k5 + 112k3 − 9k + 1)

)
and

(2.9) M = (k − 1)(256k7 − 320k5 + 112k3 − 9k − 1) = d2(a4 + 2a3b),

(2.10) N = (k + 1)(256k7 − 320k5 + 112k3 − 9k + 1) = d2(b4 + 2ab3).

Here, we will observe congruences modulo 3. Naturally, there are
three possibilities:

(i) k ≡ 2 (mod 3). The left hand side of (2.9) is congruent to 2
modulo 3, and the left hand side of (2.10) is congruent to 0
modulo 3. Thus, the right hand side of (2.10) must also be
divisible by 3. This implies one of the following:
(a) d ≡ 0 (mod 3). The right hand side of (2.9) is divisible by 3,

a contradiction.
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(b) b ≡ 0 (mod 3). The right hand side of (2.9) is congruent to
d2a3(a + 2b) modulo 3, which further gives d2a3(a + 2b) ≡
d2a4 ≡ (da2)2 (mod 3). This is impossible since the right
hand side of (2.9) is congruent to 2 modulo 3, and 2 is not
quadratic residue modulo 3.

(c) a ≡ b (mod 3). The right hand side of (2.9) is divisible by 3,
a contradiction.

(ii) k ≡ 1 (mod 3). The left hand side of (2.10) is congruent to
2 modulo 3 and the left hand side of (2.9) is congruent to 0
modulo 3. Thus, the right hand side of (2.9) must also be
divisible by 3. This case is hence analogous to the previous one,
a contradiction.

(iii) k ≡ 0 (mod 3). The left hand sides of both (2.9) and (2.10)
are congruent to 1 modulo 3. This implies d2 ≡ 1 (mod 3)
and a3(a + 2b) ≡ b3(b + 2a) ≡ 1 (mod 3), which is impossible.
Namely, if either a or b is divisible by 3, then at least one of
the previous expression will be divisible by 3. If a and b are
congruent modulo 3, then the factors (a + 2b) and (b + 2a) will
be divisible by 3. Therefore, the only possible combination is
that one of them is congruent 1 modulo 3, and the other is
congruent 2 modulo 3. But, that does not satisfy the requirement
a3(a+ 2b) ≡ b3(b+ 2a) ≡ 1 (mod 3). �

The following result is substantially wider since it covers all elliptic
curves induced by the triples {k − 1, k + 1, cl(k)}, where l ≡ 1 or 2
(mod 4).

Theorem 2.3. El(k)(Q)tors ≃ Z/2Z × Z/2Z for all l = 4m − 2 and
l = 4m− 3 where m ∈ N.

Proof. We know the exact formulas for c1(k) and c2(k), combining
them with (2.2) gives the following sequence of congruences modulo 8:

c1(k) ≡ 4k (mod 8)

c2(k) ≡ 4k (mod 8),

c3(k) ≡ 0 (mod 8),

c4(k) ≡ 0 (mod 8),

c5(k) ≡ 4k (mod 8),

c6(k) ≡ 4k (mod 8),

· · · .
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Hence, we conclude that

c4m−2(k) ≡ c4m−3(k) ≡ 4k (mod 8),(2.11)

c4m(k) ≡ c4m−1(k) ≡ 0 (mod 8),(2.12)

for m ∈ N. From (2.1), with the coordinate transformation x 7→
x− (k − 1)cl(k), we get the following curve:

El(k)
′′ : y2 = x(x+ (k − 1)(k + 1− cl(k)))(x+ 2cl(k)).

As in the proofs of the two previous theorems, we will assume the
opposite, that the torsion group is isomorphic to Z/2Z × Z/6Z. This
brings the system of equations:

M = (k − 1)(k + 1− cl(k)) = d2(a4 + 2a3b),(2.13)

N = 2cl(k) = d2(b4 + 2ab3).(2.14)

From (2.14), it follows that at least one of b or d is even.

(i) b is even and d is odd. The right hand side of (2.14) is divisible
by 16, so the left hand side must be divisible by 16 as well, which
implies that k is even (see (2.11)). Then, from (2.13), it follows
that a is odd. By adding (2.13) and (2.14), we get

(2.15) k2 − 1 + (3− k)cl(k) = d2
(
(a2 + ab+ b2)2 − 3a2b2

)
.

Since d is odd, it must be d2 ≡ 1 (mod 8), which implies that the
right hand side of (2.15) is congruent to 1 or 5 modulo 8. On the
left hand side there is cl(k) ≡ 0 (mod 8) and k is even, so the left
hand side is congruent to 3 or 7 modulo 8, a contradiction.

(ii) b is odd and d is even. From (2.13), it follows that k is odd. It
means that the left hand side of (2.14) is divisible by 8 but is not
divisible by 16. This is a contradiction with the right hand side
which is, depending on d, either divisible by 4 or 16.

(iii) Both b and d are even. From (2.13), it follows that k is odd and
from (2.14) that k is even, which is obviously impossible. �

Remark 2.4. For other l, the torsion group can still be either Z/2Z×
Z/2Z or Z/2Z × Z/6Z, even though we have not found any example
of the latter. Namely, the proof provided is not valid when l ≡ 0 or 3
(mod 4), because then we have unconditionally cl(k) ≡ 0 (mod 8) and



ELLIPTIC CURVES FROM DIOPHANTINE TRIPLES 1575

thus we cannot eliminate cases (ii) and (iii) in the proof like we did
when l ≡ 1 or 2 (mod 4) and cl(k) ≡ 4k (mod 8).

3. Rank of El(k). Beside the points A′, B′, C ′, there are also two
additional rational points on El(k)

′:

P ′ =
(
0, (k2 − 1)cl(k)

)
,

R′ =
(
sl(k)tl(k) + k(sl(k) + tl(k)) + 1,

(sl(k) + k)(tl(k) + k)(sl(k) + tl(k))
)
.

We will prove that P ′ and R′ are independent for all l ≥ 2, which,
together with the fact that torsion group can be either Z/2Z × Z/2Z
or Z/2Z × Z/6Z consequently gives that the rank of El(k)

′ over Q is
greater than or equal to two for all l ≥ 2.

Lemma 3.1. P ′, P ′ +A′, P ′ +B′, P ′ + C ′ /∈ 2El(k)
′(Q).

Proof. We have:

x(P ′) = 0,

x(P ′ +A′) = cl(k)
2 − 2kcl(k),

x(P ′ +B′) = 2k + 2− (k + 1)cl(k),

x(P ′ + C ′) = −2k + 2− (k − 1)cl(k).

If P ′ ∈ 2El(k)
′(Q), then the 2-descent proposition [10, Proposition

4.2, page 85] (we will use it through the rest of the paper without
mentioning it explicitly) implies that k2 − 1 is a square, which is
impossible. Similarly, if P ′+B′ ∈ 2El(k)

′(Q), then x(P ′+B′)+k2−1 =
(k + 1)(k + 1 − cl(k)) = �, and if P ′ + C ′ ∈ 2El(k)

′(Q), then
x(P ′ + C ′) + k2 − 1 = (k − 1)(k − 1 − cl(k)) = �. Because of
k ≥ 2 and cl(k) ≥ c1(k) = 4k, both expressions are negative and
thus cannot be a square. Finally, if P ′ + A′ ∈ 2El(k)

′(Q), then
x(P ′ + A′) + k2 − 1 = (cl(k) − k)2 − 1 = �, which is impossible as
well. �

Lemma 3.2. R′, R′ +A′, R′ +B′, R′ + C ′ /∈ 2El(k)
′(Q) for l ≥ 2.
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Proof. We have:

x(R′) = sl(k)tl(k) + k(sl(k) + tl(k)) + 1,

x(R′ +A′) = sl(k)tl(k)− k(sl(k) + tl(k)) + 1,

x(R′ +B′) = (tl(k) + k)(tl(k)− sl(k))− (k + 1)cl(k),

x(R′ + C ′) = (sl(k) + k)(sl(k)− tl(k))− (k − 1)cl(k).

If R′ + B′ ∈ 2El(k)
′(Q), then x(R′ + B′) + k2 − 1 = (tl(k) + k)(k −

sl(k)) = �, and if R′ + C ′ ∈ 2El(k)
′(Q), then x(R′ + C ′) + k2 − 1 =

(sl(k) + k)(k − tl(k)) = �. Because k ≥ 2, sl(k) ≥ s1(k) = 2k − 1 and
tl(k) ≥ t1(k) = 2k + 1, both expressions are negative and thus cannot
be a square.

If R′ ∈ 2El(k)
′(Q), we have the following system of equations:

(sl(k) + k)(tl(k) + k) = �,

(sl(k) + tl(k))(sl(k) + k) = �,

(sl(k) + tl(k))(tl(k) + k) = �.

Let d = gcd(sl(k)+tl(k), tl(k)+k, sl(k)+k). Then, d | tl(k)+k+sl(k)+
k − (sl(k) + tl(k)), or d | 2k. If d | k, then also d | sl(k) and d | tl(k),
but from (1.3) and (1.4) we have cl(k) =

1
2 (tl(k)− sl(k))(tl(k)+ sl(k)),

which implies d | cl(k). However, d | cl(k), d | sl(k) and (1.3) give
d = 1, therefore d ∈ {1, 2}. This implies

sl(k) + k = �, tl(k) + k = �, sl(k) + tl(k) = �

or

sl(k) + k = 2�, tl(k) + k = 2�, sl(k) + tl(k) = 2�.

Let us define a new sequence {al(k)} as sl(k) + tl(k) = 2al+1(k).
Because of the recurrence relations (1.7) and (1.8), it follows that

al(k) = 2kal−1(k)− al−2(k), a0(k) = 0, a1(k) = 1.

It is easy to prove that the explicit formula of the sequence {al(k)} is

(3.1) al(k) =
(k +

√
k2 − 1)l − (k −

√
k2 − 1)l

2
√
k2 − 1

.
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al(k) is obviously of the form

αl − βl

α− β
,

where

α =
1

2
(2k +

√
(2k)2 − 4)

and

β =
1

2
(2k −

√
(2k)2 − 4).

Together with k ≥ 2, this implies that the sequence {al(k)} satisfies
the conditions of the theorem of Mignotte and Pethő [13] and thus
al(k) = �, 2�, 3� or 6� implies l < 4. Cases l ∈ {2, 3} were checked
in [14], so we conclude that, if sl(k) + tl(k) = 2� or sl(k) + tl(k) = �,
then l = 1. Otherwise, we have a contradiction and R′ /∈ 2El(k)

′(Q).

If R′ +A′ ∈ 2El(k)
′(Q), we have the following system of equations:

(sl(k)− k)(tl(k)− k) = �,

(sl(k) + tl(k))(sl(k)− k) = �,

(sl(k) + tl(k))(tl(k)− k) = �.

Using the same reasoning, it follows that sl(k) + tl(k) = 2� or
sl(k) + tl(k) = �, which is only possible for l = 1, and thus R′ + A′ /∈
2El(k)

′(Q) for l ≥ 2. �

Proposition 3.3. t2l(k)− s2l(k) = cl(k)− cl−1(k) = 2a2l(k).

Proof. From (1.5) and (1.6), we find that t2l(k)− s2l(k) equals to:

(k +
√
k2 − 1)2l+1(2k − 2

√
k2 − 1)

2
√
k2 − 1

+
(k −

√
k2 − 1)2l+1(−2k − 2

√
k2 − 1)

2
√
k2 − 1

=
(k +

√
k2 − 1)2l − (k −

√
k2 − 1)2l√

k2 − 1
.
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Because of (3.1), this is equal to 2a2l(k). On the other hand, from (1.2)
we calculate cl(k)− cl−1(k):

(k +
√
k2 − 1)2l+1 + (k −

√
k2 − 1)2l+1

2(k2 − 1)

− (k +
√
k2 − 1)2l−1 − (k −

√
k2 − 1)2l−1

2(k2 − 1)

=
(k +

√
k2 − 1)2l+1(1− (k −

√
k2 − 1)2)

2(k2 − 1)

+
(k −

√
k2 − 1)2l+1(1− (k +

√
k2 − 1)2)

2(k2 − 1)

=
(k+

√
k2−1)2l+1(k−

√
k2−1)−(k−

√
k2 − 1)2l+1(k+

√
k2−1)√

k2−1

=
(k +

√
k2 − 1)2l − (k −

√
k2 − 1)2l√

k2 − 1
. �

Proposition 3.4.

t2l(k) + k = (k + 1)

(
cl(k)−

cl(k) + cl−1(k)

2k
+ 1

)
.

Proof. We will calculate

−k + (k + 1)(cl(k)−
cl(k) + cl−1(k)

2k
+ 1) :

− k +
k + 1

2k
(cl(k)(2k − 1)− cl−1(k) + 2k)

=
4k − 4k2 + (k +

√
k2 − 1)2l+1(2k − 1− (k −

√
k2 − 1)2)

4k(k − 1)

+
(k −

√
k2 − 1)2l+1(2k − 1− (k +

√
k2 − 1)2)

4k(k − 1)
+ 1

=
(k +

√
k2 − 1)2l+1(

√
k + 1−

√
k − 1)

2
√
k − 1

− (k −
√
k2 − 1)2l+1(

√
k + 1 +

√
k − 1)

2
√
k − 1

= t2l(k). �
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Remark 3.5. Both factors on the right hand side of the equality in
Proposition 3.3 are integers. Namely, from the first two elements of
{cl(k)} and (2.2) it follows that cl(k) is divisible by 2k for all k and l.

Along the same lines as in the proof of Proposition 3.4, we can prove
the next three identities:

Proposition 3.6.

s2l(k)− k = (k − 1)

(
cl(k) +

cl(k) + cl−1(k)

2k
− 1

)
.

Proposition 3.7.

s2l+1(k)− k = (k − 1)

(
cl+1(k) + cl(k)

2k
+ cl(k)− 1

)
.

Proposition 3.8.

t2l+1(k)− k = (k + 1)

(
cl+1(k) + cl(k)

2k
− cl(k)− 1

)
.

From Propositions 3.7 and 3.8, we get:

t2l+1(k)− s2l+1(k) =
cl+1(k) + cl(k)

k
− 2kcl(k)− 2,(3.2)

t2l+1(k) + k = k − 1 +
(k + 1)(cl+1(k) + (1− 2k)cl(k))

2k
,(3.3)

s2l+1(k) + k = k + 1 +
(k − 1)(cl+1(k) + (1 + 2k)cl(k))

2k
.(3.4)

To prove Lemma 3.10, we will need three more sequences, {dl(k)},
{el(k)} and {fl(k)}, defined as:

dl(k) =
cl(k)

k
(k − 1) + 1,(3.5)

el(k) =
cl(k)

k
(k + 1)− 1,(3.6)

fl(k) =
cl(k)

2k
(k2 − 1).(3.7)
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From (2.2), it follows that

dl+2(k) = (4k2 − 2)dl+1(k)− dl(k) + 4k − 4k2,(3.8)

el+2(k) = (4k2 − 2)el+1(k)− el(k) + 4k + 4k2,

fl+2(k) = (4k2 − 2)fl+1(k)− fl(k) + 2(k2 − 1).

Additionally, like the Fibonacci sequence satisfies the famous Cassini
identity, there are also four identities that connect two consecutive
elements of {cl(k)}, {dl(k)}, {el(k)} and {fl(k)}:

Proposition 3.9.

dl+1(k)
2 − (4k2 − 2)dl+1(k)dl(k) + dl(k)

2

+ (4k2 − 4k)(dl+1(k) + dl(k))− 4(k − 1)2 = 0,

el+1(k)
2 − (4k2 − 2)el+1(k)el(k) + el(k)

2

− (4k2 + 4k)(el+1(k) + el(k))− 4(k + 1)2 = 0,

cl+1(k)
2 − (4k2 − 2)cl+1(k)cl(k) + cl(k)

2 − 4k(cl+1(k) + cl(k)) = 0,

fl+1(k)
2−(4k2−2)fl+1(k)fl(k)+fl(k)

2−(2k2−2)(cl+1(k)+cl(k)) = 0.

Proof. We will prove only the first identity with the induction on l;
the other proofs go analogously. We have:

d1(k) = 4k − 3,

d2(k) = 16k3 − 16k2 − 4k + 5.

Thus,

d2(k)
2−(4k2−2)d2(k)d1(k)+d1(k)

2+(4k2−4k)(d2(k)+d1(k)) = 4(k−1)2,

as desired. Suppose dl+1(k)
2 − (4k2 − 2)dl+1(k)dl(k) + dl(k)

2 + (4k2 −
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4k)(dl+1(k) + dl(k)) = 4(k − 1)2. It follows from (3.8) that

dl+2(k)
2 − (4k2 − 2)dl+2(k)dl+1(k) + dl+1(k)

2

+ (4k2 − 4k)(dl+2(k) + dl+1(k))

= ((4k2−2)dl+1(k)−dl(k)+4k−4k2)2+dl+1(k)
2+(4k2−4k)dl+1(k)

+ ((4k2−2)dl+1(k)−dl(k)+4k−4k2)(4k2−4k−(4k2−2)dl+1(k))

= 4(k − 1)2. �

Lemma 3.10. R′ + P ′, R′ + P ′ + A′, R′ + P ′ + B′, R′ + P ′ + C ′ /∈
2El(k)

′(Q) for l ≥ 2.

Proof. R′ + P ′ ∈ 2El(k)
′(Q) if and only if x(R′ + P ′) + k2 − 1 = �,

x(R′ +P ′) + (k+1)cl(k) = � and x(R′ +P ′) + (k− 1)cl(k) = �. But,
with some algebraic manipulation it is not hard to verify that:

x(R′ + P ′) + k2 − 1 = (sl(k) + k)(tl(k) + k)(k2 − 1)

× (cl(k)− tl(k)− sl(k))
2

(sl(k)tl(k) + k(sl(k) + tl(k)) + 1)2
,

or, equivalently,

(3.9) x(R′ + P ′) + k2 − 1 = (sl(k) + k)(tl(k) + k)(k2 − 1)�.

Similarly, we get

(3.10) x(R′ +P ′) + (k+1)cl(k) = 2(k+1)(tl(k)− sl(k))(tl(k) + k)�,

(3.11) x(R′ +P ′)+ (k− 1)cl(k) = 2(k− 1)(tl(k)− sl(k))(sl(k)+ k)�.

(i) l is even. Using Propositions 3.3 and 3.4, we can write (3.10) for
even l (l = 2i) as

x(R′ + P ′) + (k + 1)c2i(k) = 2(ci(k)− ci−1(k))

× (ci(k)−
ci(k) + ci−1(k)

2k
+ 1)�.(3.12)

We will show that the right hand side of (3.12) cannot be a square,
which will imply that R′ + P ′ /∈ 2El(k)

′(Q) for all even l. Let

g = gcd

(
ci(k)− ci−1(k), ci(k)−

ci(k) + ci−1(k)

2k
+ 1

)
.
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It can be proved inductively that gcd(t2i(k)+k, 2k) = 1 and that
is equivalent to gcd(g, 2k) = 1. Therefore,

g | ci(k)− ci−1(k)

2k
, g | ci(k)−

ci(k) + ci−1(k)

2k
+ 1,

which implies

g | ci(k)
k

(k − 1) + 1, g | ci−1(k)

k
(k − 1) + 1.

With dl(k) defined in (3.5), it follows that g | di(k), g | di−1(k).
Our next step is to verify that g = 1. From Proposition 3.9,
g | di(k) and g | di−1(k), it follows that g | 4(k − 1)2. Formula
(3.5) and the fact that gcd(g, 2) = 1 imply that g = 1. Back
to (3.10) and (3.12), we now conclude that tl(k) − sl(k) = �
or tl(k) − sl(k) = 2�, but Proposition 3.3 and the theorem of
Mignotte and Pethő [13] eliminate that possibility, as in the proof
of Lemma 3.2. Hence, R′ + P ′ /∈ 2El(k)

′(Q) for all even l.
(ii) l is odd and k is even. We shall prove from (3.10) and (3.11)

that tl(k) + k and sl(k) + k both have to be squares. Combining
that with (3.9) will then require k2 − 1 to be a square, which
is a contradiction. Because of (3.3) and (3.4), we can write the
formulas (3.10) and (3.11) for odd l (l = 2i+ 1) as:

x(R′ + P ′) + (k + 1)c2i+1(k)(3.13)

= 2(k + 1)

(
ci+1(k) + ci(k)

k
− 2kci(k)− 2

)
×
(
k − 1 +

(k + 1)(ci+1(k) + (1− 2k)ci(k))

2k

)
,(3.14)

x(R′ + P ′) + (k − 1)c2i+1(k)(3.15)

= 2(k − 1)

(
ci+1(k) + ci(k)

k
− 2kci(k)− 2

)
×
(
k + 1 +

(k − 1)(ci+1(k) + (1 + 2k)ci(k))

2k

)
.(3.16)

It can be inductively verified from the definition of ci(k) (see (1.2))
that

(k + 1)(ci+1(k) + (1− 2k)ci(k))

2k
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is even. Since k is also even, it follows that t2i+1(k) + k is
odd. It is obvious that t2i+1(k) + k ≡ 2 (mod k + 1); hence,
gcd(t2i+1(k)+k, 2(k+1)) = 1. Now we prove that gcd(t2i+1(k)+
k, t2i+1(k)− s2i+1(k)) = 1, as well. Let

m = gcd

(
ci+1(k) + ci(k)

k
− 2kci(k)− 2,

k − 1 +
(k + 1)(ci+1(k) + (1− 2k)ci(k))

2k

)
.

Then gcd(m, 2k) = 1 because m | t2i+1(k)+ k and gcd(t2i+1(k)+
k, k) = 1 (the latter follows inductively from the definition of
tl(k)). Furthermore,

m | (k2 − 1)ci(k) + 2k,

which is equivalent to

m | k
2 − 1

2k
ci(k) + 1.

Similarly, we get

m | k
2 − 1

2k
ci+1(k) + k2.

Using the definition of fl(k) (see (3.7)) this implies m | fl(k) + 1
andmfl+1(k)+k2. Proposition 3.9 further gives thatm | (k2−1)2,
which is because of the definition of fl(k) and the fact that
m | fl(k) are possible only for m = 1. With the exact same
reasoning we obtain that gcd(s2i+1(k) + k, 2(k − 1)) = 1 and
gcd(s2i+1(k) + k, t2i+1(k) − s2i+1(k)) = 1. Hence, for even k,
both t2i+1(k) + k and s2i+1(k) + k are squares of integers. From
(3.9), it follows that k2 − 1 needs to be a square as well, which is
impossible.

(iii) l and k are odd. Both t2i+1(k)+k and s2i+1(k)+k are now even.
Let us denote

S = {gcd (t2i+1(k) + k, 2(k + 1)) ,

gcd (t2i+1(k) + k, t2i+1(k)− s2i+1(k)) ,

gcd (s2i+1(k) + k, 2(k − 1)) ,

gcd (s2i+1(k) + k, t2i+1(k)− s2i+1(k))}.
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Based on previous observations, we conclude that all elements of
S have to be powers of 2. Depending on k and i, we get the
following from (2.11), (2.12), (3.2), (3.3) and (3.4):

k t2i+1(k)− s2i+1(k) t2i+1(k) + k s2i+1(k) + k
1 2 4 2
3 2 2 0
5 2 0 6
7 2 6 4

Table 1. Remainders modulo 8 for i ≡ 0 or 2 (mod 4)

k t2i+1(k)− s2i+1(k) t2i+1(k) + k s2i+1(k) + k
1 6 0 2
3 6 2 4
5 6 4 6
7 6 6 0

Table 2. Remainders modulo 8 for i ≡ 1 or 3 (mod 4)

From Tables 1 and 2 it follows that S = {2, 4, 8}. Because the
right hand sides of both (3.14) and (3.16) have to be squares,
this implies that either t2i+1(k) + k = 2� and s2i+1(k) + k = 2�
or t2i+1(k) + k = 2� and s2i+1(k) + k = � (and vice versa).
If t2i+1(k) + k = 2� and s2i+1(k) + k = 2�, then k2 − 1 = �
because the right hand side of (3.9) needs to be a square, and
that is impossible. On the other hand, if t2i+1(k) + k = 2�
and s2i+1(k) + k = � (or vice versa), then k2 − 1 = 2� and
that is possible if and only if k − 1 = �, k + 1 = 2� or
k − 1 = 2�, k + 1 = �. Putting that back in (3.10) and (3.11)
gives that tl(k) − sl(k) = � or tl(k) − sl(k) = 2� for odd l.
Because tl(k) − sl(k) = 2al(k) (it can be proved as in the proof
of Proposition 3.3) this leads to al(k) = � or al(k) = 2�, which
is again eliminated by the theorem of Mignotte and Pethő [13].
Thus, R′ + P ′ /∈ 2El(k)

′(Q) for all l ≥ 2.
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Next, we have

x(R′ + P ′ +A′) + (k2 − 1)(3.17)

= (k2 − 1)(tl(k)− k)(sl(k)− k)�,

(3.18) x(R′+P ′+A′)+(k+1)cl(k) = 2(k+1)(tl(k)−sl(k))(tl(k)−k)�,

(3.19) x(R′+P ′+A′)+(k−1)cl(k) = 2(k−1)(tl(k)−sl(k))(sl(k)−k)�.

R′ +P ′ +A′ ∈ 2El(k)
′(Q) if and only if all the right hand sides of this

system of equations are squares. Again, we will have separate strategies
depending on parity of l.

(i) l is even. Propositions 3.3 and 3.6 imply that (3.19) for even l
(l = 2i) becomes:

x(R′ + P ′ +A′) + (k − 1)c2i(k)

= 2(ci(k)− ci−1(k))(3.20)

× (ci(k) +
ci(k) + ci−1(k)

2k
− 1)�.(3.21)

Following exactly the same steps as in the proof of R′ + P ′ /∈
2El(k)

′(Q) for even l, let

h = gcd

(
ci(k)− ci−1(k), ci(k) +

ci(k) + ci−1(k)

2k
− 1

)
.

Then

h | ci(k)
k

(k + 1)− 1, h | ci−1(k)

k
(k + 1)− 1.

With el(k) defined in (3.6), it follows that h | ei(k) and h | ei−1(k).
Proposition 3.9 implies h | 4(k + 1)2, and that is impossible from
the definition of ei(k) and because all of ei(k) are odd. Hence,
h = 1 and consequently tl(k) − sl(k) = � or tl(k) − sl(k) = 2�,
which we have already shown is not possible.
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(ii) l is odd. From Propositions 3.7 and 3.8, equation (3.17) for odd
l (l = 2i+ 1) becomes:

x(R′ + P ′ +A′) + (k2 − 1)

=

(
ci+1(k) + (1− 2k)ci(k)− 2k

2k

)
×
(
ci+1(k) + (1 + 2k)ci(k)− 2k

2k

)
�.

Let

n = gcd

(
ci+1(k) + (1− 2k)ci(k)− 2k

2k
,

ci+1(k) + (1 + 2k)ci(k)− 2k

2k

)
.

It is easy to verify from the definition of cl(k) that

2k | ci+1(k) + (1− 2k)ci(k)

2k
, 2k | ci+1(k) + (1 + 2k)ci(k)

2k
.

Thus, we conclude that n and 2k are coprime. Furthermore,
n | ci+1(k) + ci(k) − 2k and n | 2ci(k), and because n is odd
it follows that n | ci(k). Moreover, we have n | ci+1(k) − 2k.
Because of n | ci(k) and Proposition 3.9 it follows that n |
ci+1(k)(ci+1(k) − 4k), so we conclude that n | 4k2 and that is
impossible for n > 1 since n and 2k are coprime. Therefore,

ci+1(k) + (1− 2k)ci(k)− 2k

2k

and
ci+1(k) + (1 + 2k)ci(k)− 2k

2k

are coprime, so they must be squares of integers. Again, from
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Propositions 3.7 and 3.8, the equations (3.18) and (3.19) become:

x(R′ + P ′ +A′) + (k + 1)c2i+1(k)

= 2(t2i+1(k)− s2i+1(k))

×
(
ci+1(k) + (1− 2k)ci(k)− 2k

2k

)
�,

x(R′ + P ′ +A′) + (k − 1)c2i+1(k)

= 2(t2i+1(k)− s2i+1(k))

×
(
ci+1(k) + (1 + 2k)ci(k)− 2k

2k

)
�.

We conclude that, for odd l, tl(k) − sl(k) = 2�, which implies
that al(k) = � and that is impossible for l ≥ 2 by a theorem of
Mignotte and Pethő [13]. Thus, R′+P ′+A′ /∈ 2El(k)

′(Q) for all
l ≥ 2.

Finally, we have

(3.22) x(R′ + P ′ +B′) + (k2 − 1)

= (k2 − 1)(tl(k) + k)(k − sl(k))�,

(3.23) x(R′+P ′+B′)+(k+1)cl(k) = 2(k+1)(tl(k)+sl(k))(tl(k)+k)�,

(3.24) x(R′+P ′+B′)+(k−1)cl(k) = 2(k−1)(tl(k)+sl(k))(k−sl(k))�.

and

(3.25) x(R′ + P ′ + C ′) + (k2 − 1) = (k2 − 1)(sl(k) + k)(k − tl(k))�,

(3.26) x(R′+P ′+C ′)+(k+1)cl(k) = 2(k+1)(tl(k)+sl(k))(tl(k)−k)�,

(3.27) x(R′+P ′+C ′)+(k−1)cl(k) = 2(k−1)(tl(k)+sl(k))(sl(k)+k)�.

The right hand sides of (3.22) and (3.25) are negative and cannot be
squares; therefore, R′ + P ′ + B′ /∈ 2El(k)

′(Q) and R′ + P ′ + C ′ /∈
2El(k)

′(Q). �

Theorem 3.11. The rank of El(k)
′ over Q is greater than or equal to

two for all l ≥ 2.
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Proof. We will prove that P ′ and R′ generate a subgroup of rank 2 in
El(k)

′(Q)/El(k)
′(Q)tors for all l ≥ 2. Assume the opposite. Then aP ′+

bR′ ∈ El(k)
′(Q)tors implies that a and b are not both zero. We know

that El(k)
′(Q)tors is either Z/2Z× Z/2Z or Z/2Z× Z/6Z. Let us first

consider the case Z/2Z × Z/2Z. Then El(k)
′(Q)tors = {A′, B′, C ′,O}.

Let aP ′ + bR′ = T ′ ∈ El(k)
′(Q)tors. If a and b are not both even,

then we have one of the following cases: P ′ + T ′ ∈ 2El(k)
′(Q),

R′+T ′ ∈ 2El(k)
′(Q), P ′+R′+T ′ ∈ 2El(k)

′(Q). Neither of these cases is
possible because of Lemmas 3.1, 3.2 and 3.10. Thus, both a and b have
to be even: a = 2a1, b = 2b1 and 2a1P

′+2b1R
′ ∈ El(k)

′(Q)tors. Because
all A′, B′, C ′ have the order two and thus cannot have the form 2T ′,
and El(k)

′(Q)tors = {A′, B′, C ′,O}, it follows that 2a1P ′ +2b1R
′ = O,

so a1P
′ + b1R

′ ∈ El(k)
′(Q)tors. Hence, the method of infinite descent

gives us a = b = 0, a contradiction.

The case Z/2Z × Z/6Z can be handled in the same way as the
previous case, due to the fact that any torsion point T ′ satisfies
T ′ ≡ O, A′, B′ or C ′ (mod 2El(k)

′(Q)). �
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8. A. Dujella and A. Pethő, Integer points on a family of elliptic curves, Publ.
Math. Debr. 56 (2000), 321–335.

9. Y. Fujita, The extensibility of Diophantine pairs {k−1, k+1}, J. Num. Theor.
128 (2008), 322–353.

10. A. Knapp, Elliptic curves, Princeton University Press, Princeton, 1992.

11. S. Kwon, Torsion subgroups of elliptic curves over quadratic extensions, J.
Num. Theor. 62 (1997), 144–162.

12. B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–
162.
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