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A MULTIPLICATIVE ANALOGUE OF THE
REYNOLDS OPERATOR AND
CONSTRUCTION OF INVARIANTS

STEVEN DECKELMAN, JENNIFER GRAETZ AND TYLER RUSSELL

ABSTRACT. We explore a multiplicative analogue of the
Reynolds operator that first arose in CR geometry. Compar-
isons with the classical Reynolds operator are made in con-
nection with the problem of computing algebra generators in
invariant rings over C.

1. Introduction. Let I" be a finite group of unitary matrices on C™.
For z € C™, the Hermitian symmetric polynomial

(1.1) O(z,7) =1-[] (01— (72,2))

yel’

was introduced by D’Angelo in [3] to construct group-invariant CR
mappings from the sphere to hyperquadrics in CR geometry. CR map-
pings are mappings between CR manifolds, manifolds that contain
some of the structure of complex manifolds. A typical example arises
from the restriction of holomorphic mappings to a real submanifold of
Euclidean space. The term CR stands for “Cauchy-Riemann” or, alter-
natively, “complex-real,” see [1, 2, 3]. In [5], it was shown that the ring
of all ' invariant polynomials is generated as an algebra by the compo-
nents of F @ G where &(z,z) = ||F(2)||*> — ||G(2)||*. Here FP G is a
holomorphic polynomial map (f1, f2,..., f~n,,91,92,...,9n_) formed
from two maps F' = (fi, f2,...,fn,) and G = (g1,92,...,9n_) de-
termined by ®. The process of writing ®(z,%z) as a difference of two
squared norms of polynomial maps with linearly independent compo-
nents is called holomorphic decomposition and amounts to diagonalizing
an Hermitian matrix. See [3, 4] for more on holomorphic decomposi-
tion. In [5], it was asserted without proof that the result about genera-
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tors should generalize to arbitrary non-unitary finite groups. Our main
result is to give a proof of this and describe the algorithm it suggests
for the computation of algebra generators in invariant rings. We do this
by essentially reducing the general case to the unitary case. This result
takes an especially simple form in the case of finite abelian groups.

2. Background and definitions. Let GL(n,C) denote the group
of n x n nonsingular matrices. By a representation of a finite group G
we mean a homomorphism

p:G— GL(n,C).

In this paper we will always work with the image of such a representa-
tion, a finite matrix group we will usually denote by I' = p(G). Such a
representation or matrix group induces an invariant ring that we denote
by

Clz]" ={f €Clz] | f(v2) = f(2), forallyel}.

Note that v is a matrix, z = (21, 22, ..., 2,) and C[z] is a polynomial
ring. [9] is a good reference on these ideas. These rings are actually
algebras and are finitely generated by the Hilbert finiteness theorem.
By a set of generators for C[z]", we mean a finite set of polynomials

(2.1) fiofor o fr € Cl]"

such that
(C[Z]F = C[f17f27' . '7fk]-

In other words, for each g € C[2]'" there exists an integer k and a
complex polynomial p in k variables such that

9(2) = p(f1(2), f2(2), ., fu(2))-

In the older literature, such sets of algebra generators (2.1) were called
complete fundamental systems of invariants or an integrity basis. We
emphasize that our definition does not require (2.1) to be minimal. Nei-
ther do the polynomials in (2.1) need to be algebraically independent.
The polynomials (2.1) simply generate the algebra C[z]'" in an anal-
ogous manner to the way that a (potentially non-minimal) spanning
set of vectors might span a vector space. It is well known in invariant
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theory, however, that any such set of generators will contain a minimal
generating set. See [9] for more details.

One of the classical problems is, given an invariant ring C[2]!, how
to find or compute a set of generators such as (2.1). Historical studies
of this problem centered on rings over fields of characteristic zero (e.g.,
C). A good deal of modern research studies the modular case. In this
paper all of our invariant rings are over the complex field C. Our results
do not apply to the modular case.

The Reynolds operator (sometimes called the averaging operator) is
defined as

(2.2) R:Clel —Cll,  f(2) — ﬁ S f2).

yel’

By a result of Emmy Noether, it is possible to find a generating set
of polynomials for C[z]" by applying the Reynolds operator to the set
of all monomials f € C[z] with deg (f) < |T'|. However, the set of these
polynomials need not be a minimal set of invariants.

3. Main result.

Theorem 3.1. Let " be a finite subgroup of GL(n,C). Then there
exists a T € GL(n,C) such that the polynomial defined by

(3.1) O(z,2) =1- ] (1 - (TyzT2))
yel’

has the property that the components of the map F @@ G arising from
the holomorphic decomposition of ® into ||F||?> — ||G||* with linearly
independent components generate the invariant ring C[z]".

Proof. For T unitary, this result was proved in [5] with T' = Id. In
case I' is nonunitary, there exists a T € GL(n,C) so that
I'=71r7""

is unitary. We recall the proof of this basic fact from linear algebra.
See [10] for more details. Define

B(evw) = 15y Y02 ).

T
yel’
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Then B(z,w) will be a T' invariant inner product in the sense
B(yz,yw) = B(z,w)

for all vy € T'. Assume {ey, eq,..., ey} is the standard orthonormal basis
for C™ equipped with (-, -). Let {f1, fa, ..., fn} be an orthonormal basis
for C™ equipped with B(z,w). Define the linear map T : C* — C" by
T(e;) = fi, and let P be its transition matrix, i.e.,

Ploly = [v]e
where [v]f, [v]e are coordinates of v € C™ in the two bases. Then
B(z,w) = ([z]y, [wly)
with [z]f = P7Yz]. = P72z and [w]f = P~ w. In particular,
B(z,w) = (P72, P"'w),
so we take T'= P~!. That P~!4P is unitary follows from
(P71yPz, P71y Pw) = (z,w).

Thus, the holomorphic decomposition into linearly independent com-
ponents of

(32) L-T - @7 22) = |F1° - 6P
¥
yields components of F @ G as a set of algebra generators for C[2]T.
Since T' and IT' are equivalent representations, the invariant rings
C[z]" and C[2z]™" will be isomorphic with canonical isomorphism

7: Clz]" = C[o]"

defined by f+ foT~! (ie., fo P~ above). See [9] for more details.
Of course, 77 (f) = foT. So

(FoT)@(GoT)
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will contain algebra generators for C[z]". Equation (3.1) then follows
by making a change of variables in equation (3.2), z — T'z:

I(FoT))I = (G e D)) =1 =[] (1~ (T72,T2)

B!
= ®(z,2). O

Theorem (3.1) now yields an algorithm for computing a set of
generators for C[z]". This follows from the properties of holomorphic
decomposition and is described in greater detail in [5].

By a monomial in C[z], we mean a polynomial of the form

2% =2z

where a = (ay, ..., ) and || = a3 + a2+ - - - + @, is the usual multi-
index or exponent sequence notation as in [9]. We say z® appears in
angzazﬂ if cqp # 0 for some «.

Algorithm 3.2. 1. Expand (3.1) into the form Y capz®Z".

2. Form the vector of appearing monomials X .

3. Compute the orthonormal eigenvectors v; of the Hermitian matriz
(cap). (Unitarily diagonalize (cqp).)

4. The set, (X,v;), for all eigenvectors v; whose corresponding eigen-
values are nonzero give the algebra generators.

As an example of Algorithm 1, consider the following representation
of the dihedral group of order 6. This group is generated by

(5.) ()

where w is a primitive cube root of unity. Since the group is unitary
we may take T to be the identity. In [7], Dusty Grundmeier used
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Mathematica to compute

(3.3) O(z2) =1- ] (1 - (r2,2))
yel
= 2?713 + zgﬁ?’ — zi’zg’ZTG
+ 621297172 — 3212071 %3 — 3212371 B2

2,2525-2 | .33 323
— 921257217 %2° + 2122° + 2572

-5 - St

— 324112221224 — 321232;12;21 — zi)’zg@(i.
The appearing monomials are 23, 23, 2323, 2120, 2120, 2125, 2323,
28,28, Ordering these lexicographically, we form the vector of appear-
1>7~2 )
ing monomials

_ (.3 .6 4 .22 3 33 4, 6
(3.4) X = (25, 29, 2122, 2129, 21 259, 21, 21 %54 21 22, 21 )

and the 9 x 9 Hermitian matrix

10 0 0 0 1 0 0 O
o 0 0o 0 0 0 -1 0 O
o 0 6 0 0 0 O 0 O
o 0 0 -3 0 0 0 -3 O
o 0 0 0 -9 0 0 0 O
10 0 0 0 1 0 0 O
0o -1 0o 0 0 O O 0 -1
o 0 0 -3 0 0 0 =3 O
o 0 0 0 0 0 -1 0 O

The six eigenvectors of this matrix corresponding to nonzero eigenval-
ues are (0,0,0,1,0,0,0,0,1,0), (1,0,0,0,0,1,0,0,0), (0,1,0,0,0,0,v/2,
0,1), (0,1,0,0,0,0,—+/2,0, 1), (0,0,0,0,1,0,0,0,0), (0,0,1,0,0,0,0,0,
0).

Taking the inner product of (3.4) with these vectors give the invari-
ants: zl,z§1 + zfzz7 zg + zi”, zg + \/iz%zg’ + z?, zg — \/izi)’zg’ + z?, z%z;
z1%22. By inspection, it is clear the considerably smaller subset of

3., .3 6 4 6
(3.5) z122, 2] + 23, 2+ 2

will generate the ring.



CONSTRUCTION OF INVARIANTS 1113

Algorithm 3.2 has a significant simplification in the case of a diagonal
unitary group I'. In this case C[2]! will have monomial generators. To
see this, note that if

Al

Y

n

then
1= (yz,2) =1=X]|z1]* = --- = A |zn)?

o (1.1) has the form

(3.6) Z Caal?®?

Algorithm 3.3. The case where I' is a unitary diagonal group.

1. Ezpand (1.1) into the form (3.6).
2. The set of monomials z* which appear in (3.6) will be a set of
generators for C[z]'.

As an example of Algorithm 2, consider the matrix group generated
by

w 0 0
0 w? 0 ,
0 0 wt

where w is a sixth root of unity. This matrix group was examined
by Grundmeier in this doctoral thesis [6]. With z = |21]2, y = |22/?,
z = |23]?, Grundmeier computed that

O(z,7) =1-[] (1 - (y2,2))

yer
— 28 4 6ty + 92%y? + 243 — F
+ 6222 + 6yz — 622>z — 6y 2
—3z22 — 9y?22 4 223 — 2323

+ 32224 — 6yzt — 25,
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The 16 appearing terms will generate the invariant ring. By inspection,

we note that the considerably smaller subset of the seven terms 2, 3,

23, 22y, yz, 22z, x*y will also suffice.

4. Finite abelian groups. The finite abelian groups are notable
because in this case the holomorphic decomposition diagonalization
step can be eliminated. In this case our main theorem has an especially
simple form.

Theorem 4.1. LetT' < GL(n,C) be a finite abelian group. Then there
exists a T € GL(n,C) such that

1— H (1 —(Tvz,T=z)) ZC(W|T

yel’

where the set of {T(2)*} generates C[2]'.

In other words, by multiplying out
1— H (1 — (T’yT_lz,z>) = ana|z°‘|2,
el

the set {T'(2)*} gives a set of generators for the invariant ring.

Proof. Since T is finite, each of its matrix elements will be of finite
order and hence individually diagonalizable. Since I' is a commuting
family of matrices, the elements of I' may be simultaneously diagonal-
ized, see [8]. Thus, there exists a T' € GL(n,C) such that

=1717""

is a group of diagonal matrices. Since the matrices are also of finite
order, they must be unitary as well. Thus, by Theorem 3.1 and the
remarks above about unitary diagonal representations,

1= ] (0= (1T "2,2))

will be of the form of equation (3.6). The conclusion follows after
making a change of variable z — T'z. ]
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To see an example of how the invariants arise consider the abelian
group

(4.1) Vi— {j: <(1) (1)) S+ ((1) (1))} c GL(2,C),

a representation of the Klein four-group.

We begin by simultaneously diagonalizing the group by means of

-1 0\ ,.(0 1\, 4
(o 9)=r(i o)

1 /1 1
r=5004):
Thus, we obtain the equivalent unitary diagonal representation of
the Klein four-group

(o) (3 D)

This gives, with = |21]? and y = |23/,

d=1—-[1-z—y)(l+z+y)l—z+y)l+z—y)
= 222 + 22 + 202y% — 2t — 4,

where

yielding the set
{a, %, 2%y, 2%y},
that is,

{21,22721227217 }

is a set of generators for the diagonal representation. By inspection,

we see
{17}

will be a minimal generating set. Composing with 7' gives as a
generating set for the original representation (4.1)

{ (21 + 22)% (21 — 22)? }

2 ’ 2

or more simply (z1 + 22)?, (21 — 22)%.
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5. Closing remarks. By standard methods, it can be shown that
the worst-case computational complexity of Algorithm 1 for computing
a generating set for an invariant ring is somewhat worse than the
classical Reynolds operator. This seems to mainly arise from the
fact that (1.1) lives in a ring with double the number of variables as
well as its fundamentally multiplicative nature. Since our main result,
Theorem 1, is independent of Algorithm 1, it is conceivable that more
efficient algorithms might exist. For example, consider our treatment
of the dihedral group in (3.3) above. Note that we can write

O = Dy + O3 + Oy + O5 + D,

where <I>2 = 0621202122, P3 = Z%ZT + 2271 + 21E + 225‘3, by =
—9z z 1 z2 Py = —3z12221 Z2—3212221 Zo— 32122,212'2 —321z2z1z24,
O = —2%23216 — 257853 — 25753 — 232350, that is, as a sum

of bihomogeneous components. We could have likewise applied Algo-
rithm 1 to each of the ®; and dealt with at worst, two 2 x 2 matrices
and three 3 x 3 matrices (as opposed to one 9 x 9 matrix). In fact,
more is true. Suppose we simplify each of the ®; by means of group-
ing and common factors as in ®3 = 2377° + zg’ﬁ?’ + 237° + z§’53 =
BEPHT)+BEE 4R = (3 4+ 23)@ZE +3:0) = |23 + 232 Like—
wise, g = 6|2122]%, Py = —9|2122|> and &5 = 3|22 + 2122\

does not simplify in quite as straightforward a way but can be handled
using the technique of analytic polarization as follows:

g = —23257° — N ;m° — 5Tt — 2580

= - [AB @ +2°) + SR’ + 5w

= (a1 + %) (@R

= —2Re {(2¥ +28)2723}

. |Z%Z§_Z?_22|2 |23 + 28 + 252
2 2

The last equality was obtained by the well-known polarization identity

[z 4w — |z —wf?
4

for complex numbers z and w. See [3, 4] for more on polarization as
a means of computing holomorphic decompositions. Collectively, these
give a holomorphic decomposition of ® and yield generating invariants
which are essentially the same as (3.5). Analytic polarization, however,

Re (zw) =
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need not give the correct invariants unless the component polynomials
are linearly independent, as is true in the above case. Its applicability
to the invariant generation problem is thus not completely understood.

We should make some remarks on the diagonalization step in Algo-
rithm 3.2. In elementary linear algebra, diagonalization is carried out
by first computing the eigenvalues of the matrix, using these eigenval-
ues to compute the eigenspaces and then converting to an orthonormal
basis using Gram-Schmidt (or some other orthogonalization algorithm)
if necessary. In practice, the characteristic equation may be of large
degree which may impede our ability to find the eigenvalues. As an
alternative approach, we could employ algorithms from numerical lin-
ear algebra to compute the eigenvalues numerically and obtain a set of
algebra generators with numerical approximations to the coefficients.
Another alternative would be carry out the diagonalization symboli-
cally, expressing the generators by allowing the eigenvalues A1, Ao, ...
to appear symbolically (i.e., as parameters) in our final output.
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