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ABSTRACT. For a metric continuum X and a positive
integer n, let Cp(X) be the hyperspace of nonempty closed
subsets of X with at most n components. We say that
X has unique hyperspace Cp(X) provided that, if YV is a
continuum and Cp(X) is homeomorphic to Cpn(Y'), then X
is homeomorphic to Y. In this paper we study which Peano
continua X have a unique hyperspace Cp(X). We find some
sufficient and also some necessary conditions for a Peano
continuum X to have unique hyperspace Cy (X). Our results
generalize all the previously known results on this subject. We
also give some significant examples.

1. Introduction. A continuum is a nondegenerate compact con-
nected metric space. A Peano continuum is a locally connected con-
tinuum. For a continuum X and n € N, consider the following hyper-
spaces:

2% = {A C X : Ais closed and nonempty?},
C(X)={Aec2%: Ais connected},
Cpn(X) ={A € 2% : A has at most n components}.

All the hyperspaces considered are metrized by the Hausdorff metric
Hx. Note that C(X) = C1(X).

We say that a continuum X has unique hyperspace C,(X) provided
that the following implication holds: if Y is a continuum and C,,(X) is
homeomorphic to Cp,(Y), then X is homeomorphic to Y.

Given a continuum X, let

G(X) = {p € X : p has a neighborhood M in X such that
M is a finite graph} and P(X) = X — G(X).
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A free arc in X is an arc a« C X, with end points p and ¢ such
that « — {p, ¢} is open in X. The continuum X is said to be almost
meshed provided that the set G(X) is dense in X, and an almost meshed
continuum X is meshed provided that X has a basis of neighborhoods B
such that, for each element U € B, U — P(X) is connected. A dendrite
is a locally connected continuum without simple closed curves. Let ©
denote the class of dendrites with a closed set of end points.

Using the results of Duda in [11, subsection 9.1], Acosta [1, Theorem
1] observed that finite graphs different from both an arc and a simple
closed curve have unique hyperspace C'(X). Illanes proved in [16, 17]
that finite graphs have unique hyperspaces Cy,(X), for each n > 2.

In [13], Herrera-Carrasco showed that if X isin ® and X is not an arc,
then X has unique hyperspace C(X). This result was extended in [15],
where Herrera-Carrasco and Macias-Romero proved that if X € D,
then X has a unique hyperspace C,,(X) for every n > 3. The case
n = 2 has also been solved. It was more difficult so the two papers [14,
18] were needed to complete its solution. Acosta and Herrera-Carrasco
[2] have shown that if X is a dendrite and X ¢ D, then there are
uncountable many non-homeomorphic continua Y such that C(X) is
homeomorphic to C(Y). Thus, a dendrite X that is not an arc belongs
to © if and only if X has unique hyperspace C(X).

Recently [3], Acosta, Herrera-Carrasco and Macias-Romero have
proved that if X is a locally D-continuum (that is, X is a continuum
such that each point has a basis of neighborhoods B8 such that each
element in B is an element of D) that is not an arc, then X has unique
hyperspace C(X).

On the other hand, the well known Curtis-Schori theorem (see [9,
10]) states that if X is a Peano continuum containing no free arcs, then
C(X) is homeomorphic to the Hilbert cube. This is why the problem
of determining whether a Peano continuum X has unique hyperspace
is open only when X contains free arcs.

In this paper we are interested in studying which Peano continua X
have a unique hyperspace C,,(X). The main results are the following.

A. If a Peano continuum has a nonempty open subset without free
arcs (that is, X is not almost meshed), then X does not have unique
hyperspace C,,(X) for any n € N (Theorem 20). Thus, for a Peano
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continuum X to have unique hyperspace, we at least need X to be
almost meshed.

B. If X is meshed, we obtain a completely opposite result (Theorem
37). For n # 1, X has a unique hyperspace C,(X). If, further, X is
neither an arc nor a simple closed curve, then X has unique hyperspace
C(X) (Theorem 37). Recall that if X is either an arc or a simple closed
curve, then C(X) is a 2-cell. Thus, the problem of determining if a
Peano continuum X has unique hyperspace Cy,(X) is open only when
X is almost meshed but not meshed.

C. The class of meshed continua contains the following classes:
(a) finite graphs, (b) ©, (c) locally © continua. Hence, Theorem 37
covers all the known cases of continua X having a unique hyperspace
Chn(X).

D. If X is almost meshed and X — P(X) is disconnected, then X
does not have a unique hyperspace C(X) (Corollary 23).

E. Let Zy = ([—1,1] x {0}) U(U{{1/m} x [0, (1/m)] : m > 2}). Then
Zy plays an important role in this topic:

(a) if a dendrite X contains Zy, then X ¢ © and X does not have a
unique hyperspace C(X) [2];

(b) Zy is almost meshed, P(Zy) = {(0,0)}, Zo — P(Zo) is discon-
nected;

(¢) Zy is not meshed (Lemma 3);

(d) the dendrite Z3 = Zo U (U{{—1/m} x [0, (1/m)] : m > 2}) has a
unique hyperspace C2(Z3) (Example 39);

(e) if we add the segment {0} x [0,1] to Zs, that is, if Z; =
Z3 U ({0} x [0,1]), then Z; does not have a unique hyperspace Ca(Z1)
(Example 43);

(f) if we add the arc L = ({—1,1} x [0,1]) U ([-1,1] x {1}), that is, if
Zy = Zp U L, then Zy — P(Zs) is connected, Zs is not meshed and Zs
has a unique hyperspace C(Z2) (Example 38).

A discussion about uniqueness of other hyperspaces can be found in
the introduction of [18].

2. Meshed and almost meshed continua. Given a continuum X
and a subset A of X, we denote the interior of A in X by A° or intx (A4).
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Fore > 0,p € X and A C X, let B(g,p) denote the e-ball around p
in X, and let N(e,4) = U{B(g,a) : a € A}. Given A € C,(X),
we denote by dim4[C),(X)] the dimension of the space C),(X) at the
element A. Let

FAX) = LJ{JO : J is a free arc J in X}.

Given n € N and a continuum X, let

Fn(X) ={A € Cp(X): dimus[C,(X)] is finite}.

The set §1(X) is simply denoted by F(X).

Given subsets Uy, ..., Uy, of X, let (Ui,... ,Up) = {4 € C(X) :
ACUU---UUy, and ANU; # @ for each i € {1,... ,m}}. Itis
known (see [23, subsection 4.24]) that the family of all sets of the form
(Uy,...,Up), where m € N and each U; is open in X, is a basis for
the topology in C,,(X).

We describe some examples in the Euclidean plane R2. Given two
different points p,q € R2, let pg denote the convex segment joining
them.
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Let Zo = ([-1,1] x {0}) U (U{{1/m} x [0,(1/m)] : m > 2}). Then
Zy is a dendrite, Zy ¢ D, P(Zo) = {(0,0)}, Zo is almost meshed but
Zy is not meshed.

Let F,, = J{(0,0)((1/m), (1/m?)) : m € N}. Then F, is a dendrite,
F, ¢ 9, P(F,) ={(0,0)}, F, is almost meshed but F,, is not meshed.

In [5] it was proved that a dendrite X is in © if and only if X does
not contain a topological copy of neither Zy nor F,.

Note that meshed continua do not need to be local dendrites. For
example, the continuum X described in [23, Example 10.38, Figure
10.38 (a)] is meshed and P(X) is the segment Ay = [0, 1] x {0}.

The following lemma is easy to prove.

Lemma 1. Let X be a continuum. Then clx(G(X)) = clx (FA(X)).
Therefore, X is almost meshed if and only if FA(X) is dense in X.

Lemma 2. If X is a meshed continuum, then X is a Peano
continuum.

Proof. Let B be a basis of neighborhoods of X such that, for each
element U € B, U — P(X) is connected. Since X is almost meshed,
(P(X))° = @. Thus, for each U € B, intx(U) C clx(U — P(X)).
Therefore, the family {clx (U —P(X)) : U € B} is a basis of connected
neighborhoods for X. Hence, X is connected almost certainly and then
X is locally connected. u]

Lemma 3. Let X be a continuum. Then X is meshed if and only if
X is almost meshed, and X has a basis D of open connected subsets of
X such that, for each element U € D, U — P(X) is connected.

Proof. The sufficiency is immediate from the definition of meshed
continuum. Now, suppose that X is meshed. Let B be a basis of
neighborhoods of X such that, for each element U € B, U — P(X) is
connected. Let p € X and W be an open subset of X such that p € W.
Let U € B be such that p € intx(U) C U C W. By Lemma 2, there
exists an open connected subset Z of X such that p € Z C intx(U).
Since P(X) is a closed subset of X, for each x € U —P(X), there exists
an open and connected subset of V,, of X such that x € V, C W—-P(X).
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Let V=ZU(J{Vy:2€U—-P(X)}). Clearly, V is an open subset of
X such thatp e V.C W. Since (U—-P(X))U(U{Vy : 2 € U-P(X)}) is
a connected subset of V —P(X) and Z — P(X) C U —"P(X), we obtain
that V —P(X) = (U -PX)U(U{Vy : 2 € U —-P(X)}) is an open
connected subset of X. Since V — P(X) C V C clx(V — P(X)), we
conclude that V' is connected. This completes the proof of the lemma. O

Theorem 4. Let X be a Peano continuum, n € N and A € C,(X).
Then the following are equivalent.

(a) dima[C,,(X)] is finite,
(b) there exists a finite graph D contained in X such that A C D°,
(¢c) ANP(X)=2.

Proof. (a) = (b). Let k be the number of components of A. In
the case that k = 1, since dim4[C(X)] < dima[C,(X)], we obtain
that dim4[C(X)] is finite. Thus, [18, Lemma 2.2, Claim 1] guarantees
the existence of D. Suppose then that &k > 1. Let Ay,..., Ar be the
components of A. Let Z,...,Z; be pairwise disjoint subcontinua of
X such that A; C Z2 for each i € {1,... ,k}.

Let ¢ : C(Z1) x -+ x C(Zy) — (Z1,...,Zk) N Cr(X) be given by
¢(B1,...,Br) = By U...U Byg. Notice that ¢ is a homeomorphism.
Given i € {1, . ,k}, lelA1 [C(Zi)] < dim(Al,...,Ak)[C(Zl) X oo X
C(Zy)] = dima[(Z1,...,Zk) N Cr(X)] < dima[Cp(X)] < oo. Since
C(Z;) is a neighborhood of 4; in C(X), dim4,[C(X)] = dimu, [C(Z;)].
Since A; is connected, by the first case we considered (k = 1), there
exists a finite graph D;, contained in X, such that A, C Df{. We
may assume that D; C Z;. Since the finite graphs Dy,..., Dy are
pairwise disjoint and X is arcwise connected [23, subsection 8.23], it is
possible to construct a finite number of arcs «aq, ..., a, in X such that
D=DyU---UDyUay U---Uaq, is a finite graph. Since A C D°, the
proof of (a ) (b) is finished.

(b) = (a). Suppose that A C D° for some finite graph D in X.
Then C, (D) is a neighborhood of A in C,,(X). Thus, dima[C,(X)] =
dima[Cp(D)]. By the main result in [21], dlmA[Cn(D)] is finite (in
fact, in [21, Theorem 2.4] there is an explicit formula for computing
dim4[C (D)]).



UNIQUENESS OF HYPERSPACES FOR PEANO CONTINUA 1589

(b) = (c) is immediate from the definition of P(X).

(¢) = (b). Suppose that ANP(X) = @. For each point a € A, let D,
be a finite graph in X such that a € intx (D,). Then there exists a finite
graph Fy, in X such that a € intx(F,) C F, C intx(D,) — P(X). By
the compactness of A, there exist m € N and aq, ... ,a, € A such that
A Cintx(Fg,)U---Uintx (F,,, ). Let F = Fy, U---UF,, . Notice that
F has a finite number of components and A C F°. Since each point
p € F belongs to the interior in X of a finite graph contained in X, it
is easy to check that each component of F satisfies conditions (1) and
(2) of [23, Theorem 9.10]. Thus, each component of F is a finite graph.
Joining the components of F' by appropriate arcs in X, we obtain the
required graph D. This completes the proof of the theorem. O

Theorem 5. For a Peano continuum X , the following are equivalent.
(a) X is meshed,

(b) for each n € N, §,(X) is dense in Cp(X),

(¢) there exists an m € N such that §,(X) is dense in Cp(X).

Proof. (a) = (b). Suppose that X is meshed. Let n € N, A € C,,(X)
and ¢ > 0. Let Ay,...,A; be the components of A. We assume
that N(e, A1),...,N(e, Ag) are pairwise disjoint. For each a € A,
by Lemma 3, there exists an open connected subset U, of X such that
a C U, C B(e,a) and the open set V,, = U, —P(X) is connected. Notice
that V, is nonempty. Fix a point b(a) in V,. Given i € {1,... ,k}, by
the compactness of A;, there exist m € N and a1, ... ,a,, € A; such
that A; C Ug, U---UU,,, C N(g,4;). Let U =U,, U---UU,,, and
V=V, U---UV, . Notice that U is connected. We see that V is
connected. Suppose to the contrary that V is disconnected. Then,
we may assume that there exists an r € {1,...,m — 1} such that
Vo, U---UVe )N (Vg U---UV,, ) = @. Since U is connected, the
open set W = (Uy, U---UU,, )N (Uq,, U---UU,,,) is nonempty. Since
intx(P(X)) =@, (Vo, U---UVo )N (Vo ., U---UV,, ) =W —P(X)
is nonempty, a contradiction. Therefore, V' is connected. By [23,
Theorem 8.26], V is arcwise connected. Hence, there exists a tree
T; C V such that {b(a1),...,b(amn)} C T;. Clearly, Hx(A;,T;) < 2e
and T;, N P(X) = @ Let T =Ty U---UT, € Cp(X). Then
Hx(A,T) < 2¢ and TNP(X) = @. By Theorem 4, dimy[C,(X)]
is finite, so T € §n(X).
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(b) = (c) is immediate.
=

(c) (a). Suppose that §,(X) is dense in C,(X). First, we see
that G(X) is dense in X. Let p € X and € > 0. Then there exists
an A € F,(X) such that Hx({p}, A) < e. By Theorem 4, there
exists a finite graph D contained in X such that A C D°. Fix a
point a € A. Then a € B(e,p) and D is a neighborhood of a. Thus,
a € B(e,p) NG(X). Therefore, G(X) is dense in X.

Now suppose that X is not meshed. Then there exist p € X and a
neighborhood W of p such that, for each open subset U of X such that
peU C W,U—-P(X) is not connected. Since X is a Peano continuum,
there exists an open connected subset V' of X such that p € V. C W.
Then V— P(X) = SUT, where S and T are disjoint open nonempty
subsets of X. Fix x € T and pairwise different points p1,... ,p, € S.
Since V is arcwise connected, there exists an arc o C V such that «
joins x to a point p; and «N{p1,... ,pn} = {p;}. We may suppose that
i=mn. Let A={p1,...,pn1}Ua € Cp(X). Let £ > 0 be such that
B(e,p1),...,B(e,pn-1), N(g, ) are pairwise disjoint, B(e,p1) U --- U
B(e,pn) C S, B(e,z) C T and N(eg,a) C V. By the density of §,(X),
there exists a B € §,(X) such that Hx (B, A) < e. Notice that B is
contained in the union of the sets B(e,p1), ... ,B(g,pn-1), N(g, ) and
intersects each one of them. Thus, the components of B are the sets
B =BnNB(eg,p1),... ,Bn-1=BNB(g,pp—1) and B,, = BN N (e, a).
Notice that B, N B(e,pn) # @ and B, N B(e,x) # &. Thus, B, is
connected, B, C V and B, intersects S and T. This implies that
B, NP(X) # @ and, by Theorem 4, B ¢ §,(X), a contradiction. This
proves that X is meshed and completes the proof of the theorem. ]

Theorem 6. The class of meshed continua contains the following
classes.

(a) Finite graphs,

(b) @,

(¢) locally ® continua.

Proof. Since the class of locally ® continua contains class ® and
all the finite graphs, we only need to check that locally © continua
are meshed. Let X be a locally ® continuum. Clearly, X is a Peano

continuum. By [3, Theorem 3.9], §(X) is dense in C'(X), so Theorem 5
implies that X is meshed. i
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3. Free arcs. A free circle S, in a continuum X, is a simple closed
curve S in X such that there exists a p € S such that S — {p} is open
in X. A mazimal free arc is a free arc in X which is maximal with
respect to inclusion. Let

A(X)={J C X :J is a maximal free arc in X}
and
As(X) =A(X)U{S C X : S is a free circle in X}.

A simple triod is a continuum 7" homeomorphic to the cone over the
discrete space {1,2,3}. The point of T corresponding to the vertex of
the cone is called the vertex of T.

Given an arc J in a continuum X and points z,y in J, let [z,y]; be
the subarc of J joining = and y, if z # y, and [z,y]; = {z}, if z = y.
We also define [z,y); = [z,y]; — {y} and (z,y)s = [z,y]s — {z,y}.

The following lemma is easy to prove.

Lemma 7. Let X be a continuum, and let J be a free arc in X.
Then:

(a) no point of J° can be the vertex of a simple triod in X,

(b) if J and K are free arcs in X and J°NK® # &, then JUK is a
free arc or a free circle in X.

Lemma 8. For a Peano continuum X, let {Jn}50_1 be a sequence of
pairwise different elements of As(X) and xn, € Jpm, for each m € N.
Iflimx,, = x for some x € X, then lim J,,, = {z} (in C(X)).

Proof. Note that X is neither an arc nor a simple closed curve. For
each m € N, z,, € clx(JS,), so we may assume that x,, € J2,. For
each m € N, Frx(J,,) is a nonempty subset of X with at most two
elements. Thus, we can put Frx(Jmn) = {pPm,qm}. Suppose that the
sequence {J,}>_; does not converge to {z} in C(X). Since C(X)
is compact, there exists a subsequence of {J,,,}5°_; that converges to
some A € C(X), where A # {z}. We may assume that lim .J,,, = A,
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limp,, = p and lim ¢, = ¢, for some p,q € X. Note that p,q,z € A.
Since A # {z}, we can choose an element y € A — {p, ¢}. Then there
exists a sequence {ym, }5°_; in X such that y,, € J,,, for each m € N
and limy,, = y. By [14, Lemma 3], J3, N Jp = @, if m # k. Thus,
y & JS, for every m € N. Let U be an open connected (then arcwise
connected) set in X such that y € U and p,q ¢ clx(U). Let mg € N
be such that, for each m > mg, y., € U. For each m > mg, let a,,, be
an arc in U with end points y,, and y. Since y ¢ J2,, oy, contains one
of the points p,, or ¢,,. This implies that p € clx (U) or ¢ € clx(U), a
contradiction. This completes the proof of the lemma. o

Lemma 9. Let X be a Peano continuum and J a free arc with an
end point e such that e € J°. Then there exists a free arc K such that
J C K, e is an end point of K, e € K° and K contains every free arc
i X containing J.

Proof. We may assume that X is not an arc. Let F = {L C X : L be
a free arc in X such that J C L}. Given L € F, let py, and qr, be the
end points of L. We claim that e € {pr,qr}. Suppose to the contrary
that e ¢ {pr,qr}. Since e € J°, there exist points z,y € L such that
e € (x,y)r C J. This is a contradiction since e is an end point of J.
Hence, e € {pr,qr}, and we may assume that the end points of L are
pr, and e. Since e € J°, we have that e € L°. Thus, L — {pr} is open
in X.

By Lemma 7 (a), it follows that if L, M € F, then L C M or M C L.

Let U = U{L —{pr} : L € F} and K = clx(U). We claim that
K # U. Suppose to the contrary that K = U. Since K is compact
and L — {pr} is open for each L € F, by the previous paragraph, there
exists an L € F such that K = L — {pr}. This is impossible since
L —{pr} is not compact. Hence, K # U. Fix a point p € K — U. Since
X is arcwise connected, there exists an arc M in X joining p and e.

We see that K = M. Let L € F and z € L — {e,pr}. Then
X —{z} = (X — [z,€]r) U (2,€]L is a separation of X — {z}. Thus,
z separates p and e in X. Hence, z € M. We have shown that
L —{e,pr} C M. Therefore, U C M and K C M. Since p,e € K, we
conclude that K = M. Thus, U is a connected subset of the arc M,
e € U and p € clx(U). This implies that U = M — {p} = K — {p}.
Since U is open in X, we have that K is a free arc. Thus, K € F.
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Given L € F, since K is closed in X and L — {pr} C K, we have
L C K. This completes the proof of the lemma. o

Lemma 10. Let X be a Peano continuum, and let J be a free arc.
Then there exists a K € Ag(X) such that J C K.

Proof. We may assume that X is not a simple closed curve and J is
not contained in a free circle in X. Let x,y be the end points of J. Fix
points p, q € (z,y)s such that [z,p];N[q,y]; = . Let Y = X —(p,q) ;.
Then Y is a compact subset of X. Let X, and X, be the components
of Y containing p and g, respectively. Notice that Frx(Y) = {p, ¢},
[z,p]s C X, and [¢,y]; C X,. By the boundary bumping theorem
([23, Theorem 5.4]), each component of ¥ contains either p or ¢. This
implies that ¥ = X, U X, and we have that either X, = X, =Y
or X, N X, = &. Clearly, Y is locally connected and each X, and
X, are Peano continua. Notice that [z,p]s is a free arc of X, and
p € intx, ([z,p]s). By Lemma 9, there exists a free arc K, of X, such
that [z,p]; C Kp, p is an end point of K, p € intx, (K,) and K,
contains every free arc in X, containing [x,p]s. Similarly, [¢,y]s is a
free arc of X, q € intx,([¢,y]s), and there exists a free arc K, of X,
such that [q,y]; C K, ¢ is an end point of Ky, ¢ € intx, (K,) and K,
contains every free arc in X, containing [g,y]s. Let po (respectively,
¢o) be the other end point of K, (respectively, K).

Since [z,p]s is a free arc of X, and p € intx, ([z,p]s), p is an
end point of each arc in X, containing p. If p € (q,q0)x,, then
p € X, N X, and X, = X,;. This implies that p is not an end point
of the arc [g, qo]x, C Xp, a contradiction. Hence, p ¢ (q,qo0)k,. Since
Frx(X,) C {p.q}, we have that (¢,qo0)k, is an open set in X, such
that (¢,q0)k, C Intx(X,). Hence, (¢,q0)k, is open in X. Similarly,
(p,po)k, is open in X. Thus, K, and K, are free arcs in X. Since
& # (z,p); C K, N[z,q]; and J is not contained in a free circle in
X, by Lemma 7 (b), K, U[z,q]ls = K, U [p,q]s is a free arc in X.
Similarly, K, U [p, q]s is a free arc in X. Applying again Lemma 7 (b),
K,Ul[p,qls UK, = K,UJUK,is a free arc in X with end points py
and q0-

Suppose that L is a free arc in X such that K, UJUK, C L. Suppose
that the end points of L are u and v and [u, po)r N [go, v] = @. Then



1594 HERNANDEZ-G., ILLANES AND MARTINEZ-DELA-V.

[u,pl. € X — (p,q)s and [u,p] C X,. By the maximality of K,
[u,p]l. = Kp = [po,p]r. This implies that u = pg. Similarly, v = go.
Hence, L = K,UJUK,. We have shown that K, UJU K, is maximal.
This ends the proof of the lemma. O

Lemma 11. Let X be a Peano continuum and A € Cp(X). Then
dima[C(X)] > 2n and, if dim4[C,(X)] = 2n, then there exist k € N
and elements Ji,...,Ji € As(X) such that A € (J7,...,J7), where
each component of A is contained in some J?.

Proof. We may assume that dim4[C),(X)] is finite. Let Ay,..., A
be the components of A. By Theorem 4, there exists a finite graph D
contained in X such that A C D°. Then C, (D) is a neighborhood of
A in Cp(X). Thus, dima[Cy(X)] = dima[C,(D)]. By [21, Theorem
2.4],

dima[Cy(D)] =2n+ > (ordp(z) —2),
z€ER(D)NA

where R(D) is the set of ramification points of the graph D and ordp(z)
is the order of the point x in D. Since ordp(z) > 3 for each € R(D),
dim4[Cr(X)] > 2n and, if dima[C,(X)] = 2n, then R(D)N A = @.
Now, assume that dim4[C),(X)] = 2n. Then, for each i € {1,...,k},
there exists a free arc L; in D such that A; C intp(L;). Since A C D°,
A; C intx(L;) so we may assume that L; C D°. This implies that L;
is a free arc in X. By Lemma 10, there exists a J; € 2g(X) such that
L; C J;. Therefore, A € (J7,...,Jp). o

4. Continua that are not almost meshed. Given a continuum
X and a nonempty closed subset K of X, let

CE(X)={AcC,(X): K C A},
and
Co(X,K)={AcC,(X): ANK # o}.

Given A, B € 2% such that A C B, an order arc from A to B is
a continuous function « : [0,1] — 2% such that «(0) = 4, (1) = B
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and, if 0 < s <t <1, then a(s) C a(t). It is known (see [19, Lemma
15.2]) that if A C B, then there exists an order arc from A to B if
and only if each component of B intersects A. Given a closed subset
& of 2%, we call & a growth hyperspace provided that, for every A € &
and B € 2% such that A C B and each component of B intersects
A, we have B € ® (equivalently, there is an order arc from A to B).
Note that the sets Cn(X), CEX(X) = {A € Cn(X) : K C A} and
Cr(X,K)={A e C,(X): AN K # @} are growth hyperspaces. By
the comments at the end of Section 2 of [8, Section 2], if X is a Peano
continuum and & C 2% is a growth hyperspace, then & is an AR.

A compactum is a compact metric space. A map is a continuous
function. Given a compactum Y with metric d, a closed subset A of
Y is said to be a Z-set in Y provided that, for each £ > 0, there is a
continuous function f. : ¥ — Y — A such that d(f:(y),y) < e for all
y € Y. A continuous function between compacta f : Y7 — Y3 is called
a Z-map provided that f(Y7) is a Z-set in Ya.

Given two disjoint continua X and Y, and points p € X and y € Y,
let X U,Y be the continuum obtained by attaching X to Y (identifying
p toy).

Given a continuum X, a metric d for X is said to be convex provided
that, for each of two points p,q € X, there exists an isometry =y :
[0,d(p, q)] = X such that v(0) = p and v(d(p, q)) = ¢. It is known that
X is a Peano continuum if and only if X admits a convex metric (see
(6, 22]).

Given a continuum X, ¢ > 0 and A € 2%, define Cy(e, A), the
generalized closed d-ball in X of radius € about A, by Cqy(e, A) = {z €

X :d(z,A) <r}. If X is a Peano continuum with a convex metric d,
then for every A € C,,(X) and € > 0, Cy(e, A) € C (X).

Definition 12. Given a Peano continuum X with convex metric d
and € > 0, define @, : 2% — 2% by ®_(A) = Cy(e, A).

Remark 13. By [19, Proposition 10.5], ®. is a map within e of the
identity map. Also notice that, if & is a growth hyperspace, A € &
and € > 0, then ®.(A4) € &.
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We will use the following characterization by Toruniczyk of the Hilbert
cube ([24], see also [19, Theorem 9.3]).

Theorem 14 (Toruniczyk’s theorem). Let Y be an AR. If the identity
map on Y is a uniform limit of Z-maps, then Y is a Hilbert cube.

Lemma 15. Let X be a Peano continuum, R a closed subset of
P(X) and K € O(X) such that intx(K)N R # @. Then CK(X) is a
Z-set of Cpr (X, R).

Proof. Notice that CX(X) is a closed subset of C,,(X, R). We show
that, for each ¢ > 0, there is a map, g. : Ch,(X,R) = Cp(X,R) —
CE(X) such that Hx(g-(A),A) < e for all A € C,,(X,R).

Let ¢ > 0, and fix a point p € intx(K) N R. We may assume
that X # B(e,p) C intx(K). By [23, Theorem 8.10], there exist
an m € N and Peano subcontinua Xi,...,X,, of X such that, for
each i € {1,...,m}, diameter (X;) < ¢/4 and X = X3 U - U X,,.
We may assume that {i € {1,...,m} : p € X;} = {1,...,r} where
r < m. Define the star of p by St(p) = X; U---U X,. Notice that
St (p) C intx (K).

Let F = {j € {1,...,m} : p ¢ X; and X; N St(p) # @}. Since
St(p) # X and X = X; U---U X, is connected, it follows that
F # @. For each j € F, fix a point p; € X; N St(p). Note that,
by [19, Proposition 10.7], St (p) is a locally connected continuum, and
therefore it is arcwise connected. Thus, it is possible to construct a tree
T C St (p) such that {p; : j € F} CT and p € T. Hence, T N X, # &
for each j € F.

Let Y =T U (U {X, : j € F}). By [19, Proposition 10.7], Y is a
Peano continuum, since C(Y') is a growth hyperspace, C(Y) is an AR.
Notice that ¥ C intx (K).

Let Z =Y N R. Notice that p € Z and C(Y, Z) is an AR (C(Y,Z) is
a growth hyperspace).

Define o : Y — C(Y) by a(y) = {y}, and let 8 : Z — C(Y, Z) be
given by 3(z) = {z}. By [19, Theorem 9.1], 3 can be extended to a
map (3 : (St(p)UY)NR — C(Y, Z). Notice that 8|z = «|z. Thus, the
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function a U B : ((St(p) UY)NR)UY — C(Y) defined by

_ - a(x) ifzeY,
(aUpB)(x) = {B(x) if z € (St(p) UY)NR,

is a well-defined map.

By [19, Theorem 9.1], we can extend U to a map @ : St (p)UY —
C(Y).

Now extend @ to a function v : X — C'(X) by the formula

B a(x) ifxeSt(p)UY,
V(x)—{{x} ifz€ X —(St(p)UY).

Since clx (X — (St (p)UY)N(St(p)UY) C U{X;:jeF} CY,~
is a well-defined map.

_ Notice that, if z € RN (St (p) UY), then y(x) = a(x) = (« UB)(z) =
B(x) € C(Y,Z). Therefore, v has the following property:

(%) For every x € RN (St (p) UY),v(z) N R # @.

Define g : Cp(X) — Cp(X) as g:(A) = U{y(z) : = € A}. Using [7,
Lemma 2.2], it is easy to see that g. is a well-defined map.

Given z € St (p) UY, since diameter (St (p) UY) < € and v(x) C Y,
we have that Hx ({z},y(z)) < e. This implies that Hx (4, g-(A)) < ¢
for each A € Cp,(X).

Now we prove that g. maps C,, (X, R) into C,,(X, R) — CE(X). Let
A € Ch(X,R), and fix a point a € ANR. Ifa € X — (St(p) UY),
then v(a) = {a} C R, so g.(A) € C,(X,R). If a € St(p) UY,
then a € RN (St(p) UY). By property (x), v(a) N R # &, so
g:(A) € Cr (X, R).

Notice that, by definition of P(X), p does not have a neighborhood
homeomorphic to a finite graph. Since St(p) — (UH{X; : j € F}) is
an open subset of X that contains p and is contained in intx (K),
we conclude that there exists a point s € (St(p) — (U{X, : j €
F}) =T c (St(p) —Y)n K. Thus, for every © € X, we have
that s ¢ ~(z). Therefore, K ¢ g.(B) for any B € C,(X). Hence,
gele,(x.r) 1 Cn(X,R) = Cr(X,R) — CX(X) is the desired map, and
the lemma is proved. a
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Theorem 16. Let X be a Peano continuum and R a nonempty
closed subset of P(X). Then C,(X,R) is a Hilbert cube.

Proof. The proof is based on Torunczyk’s theorem (Theorem 14).
Since C), (X, R) is a growth hyperspace, C,, (X, R) is an AR. We verify
the second assumption of Theorem 14 for C,, (X, R). For this purpose,
we assume that the metric for X is convex.

Let ¢ > 0. By Remark 13, ®.|¢, (x,r) : Cn(X, R) — Cp(X,R) is a
map within ¢ of the identity on C,, (X, R). We only need to show that
@ |c, (x,r) is a Z-map.

Since R is compact, there are finitely many points pi,...,ps of
R such that R C Cy((/2),{p1}) U -+ U Cq((e/2),{ps}). For each
i € {1,...,s}, let K; = Cq((¢/2),{pi}). Since d is convex, K;
is a continuum and p; € intx(K;) N R. Applying Lemma 15, we
obtain that CXi(X) is a Z-set in C,,(X,R). By [19, Exercise 9.4],
the set G = CEY(X)U--- U CK:(X) is a Z-set in C,(X,R). By
the choice of K, it is easy to see that, for each A € C,(X,R),
there exists a j € {1,...,s} such that ®.(A) € C(X). Therefore,
o.(C,(X,R)) CG.

Since a closed subset of a Z-set is a Z-set, we conclude that ®.|c, (x, r)
is a Z-map within € of the identity map. Therefore, the second
assumption of Theorem 14 has been verified, and we obtain that
Cn(X, R) is a Hilbert cube. o

Theorem 17 (Anderson’s homogenetity theorem). If h: A — B is
a homeomorphism between Z-sets in a Hilbert cube Q, then h extends
to a homeomorphism of Q onto Q.

The proof of the following lemma is similar to the proof of Theo-
rem 5.1 of [2].

Theorem 18. Let X be a Peano continuum and p € X. Then
there exists an uncountable family D of pairwise non homeomorphic
dendrites such that:

(a) for each D € D, D does not contain free arcs,
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(b) the Peano continuum X U, D is not homeomorphic to X, and

(c) if B # D are elements of D, then X U, B and X U, D are not
homeomorphic.

Lemma 19. Let X, Y and D be continua and p a point of Y such
that Y = X UD and X ND = {p}. Suppose that E is a closed subset of
X that contains p. Then Fre, (x)(Cn(X, E)) = Fre, (v)(Cn (Y, EUD)).

Proof. Tt follows from the easy-to-prove following facts: C,(Y) —
CpnY,EUD)=Cph(X)—-ChX,E) C C(X) and Cp,(X)NC,(Y,E U
D)=C,(X,E). O

Now, we are ready to prove the main results of this section.

Theorem 20. Let X be a Peano continuum that is not almost
meshed. Then, for every n € N, X does not have unique hyperspace
Cr(X).

Proof. We assume that the metric for X is convex. Since X is not
almost meshed, there exist a point p € P(X) and an £ > 0 such that
Ba.(p) C P(X). Let E = Cqy(e, {p}). Notice that E is a continuum with
the properties that F = clx (intx (E)) and E C P(X). By Theorem 16,
Cn(X, E) is a Hilbert cube.

Let Y = X U, D, where D is a locally connected continuum without
free arcs. By Theorem 18 we can choose D in such a way that X and
Y are not homeomorphic.

We show that C),(X) is homeomorphic to C,,(Y). First notice that
E U D and Y satisfy the hypothesis of Lemma 16, and therefore
Cn(Y,E U D) is a Hilbert cube. Assume also that the metric for YV
is convex.

Claim 1. Fre,(x)(Cn(X, E)) is a Z-set of Cn(X, E) and Frg, (v)
(Cr(Y,EUD)) is a Z-set of C,,(Y,EU D).

Let > 0, and consider ®s|c, (x,m) : Cn(X,E) — Cn(X,E)
as in Definition 12. By Remark 13, ®s|¢, (x ) is within § of the
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identity map. Since E = clx(intxE), if A € C,(X,E), then
®5(A) Nintx (E) # @. Therefore, ®5(A) ¢ Fro, (x)(Cn(X, E)) and
(I)5|Cn(X,E) : Cn(X, E) — Cn(X, E) - (FrCn(X)(Cn(Xv E))) We have
proved that Fre, (x)(Cn (X, E)) is a Z-set in C,,(X, E). The proof that
Fro, (vy(Cn(Y, EU D)) is a Z-set of C,,(Y, E'U D) is analogous, so the
claim is proved.

By Lemma 19, the identity map id : Fre, (x)(Cn(X, E)) = Fre, (v)
(Co(Y,E U D)) is a well-defined homeomorphism. By Claim 1 and
Theorem 17, the identity map id can be extended to a homeomorphism
hi @ Co(X,E) — Cn(Y,E U D). We define a homeomorphism h :
Cr(X) = Cu(Y) as follows.

hi(A) if A€ Cy(X,E),
= {3 IS

Hence, C,,(X) is homeomorphic to Cy,(Y'), and the theorem is proved. O

Corollary 21. Let X be a Peano continuum that is not almost
meshed. Then there exists an uncountable family Y of pairwise non-
homeomorphic Peano continua such that:

(a) for eachY € Y, X is not homeomorphic to Y,
(b) for each n € N and each Y € Y, Cp(X) is homeomorphic to
Cr(Y).

Proof. Let D be as in Theorem 18. Fix a point p € intx (P(X)). Let
Y={XU,D:DeD}. o

5. Almost meshed continua without unique hyperspace. In
this section we show a class of almost meshed Peano continua that do
not have unique hyperspace Cy, (X).

Theorem 22. Let X be an almost meshed Peano continuum and
n € N. Suppose that there exist a closed subset R of P(X) and pairwise
disjoint nonempty open sets Uy, ... ,U,11 such that:

(a) X —R=U1U---UU,41 and

(b) for each i € {1,... ,n+1}, R C clx(U;). Then X does not have
a unique hyperspace Cp,(X) for every m < n.

Proof. Let m < n. By Theorem 16, C,,(X, R) is a Hilbert cube.
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Fixapointp € R, andlet Y = XU, D, where D is a locally connected
continuum without free arcs. By Theorem 18, we can choose D in such
a way that X and Y are not homeomorphic. We show that C,,(X)
is homeomorphic to C,,(Y). Notice that R U D is a closed subset of
P(Y). By Theorem 16, Cy, (Y, RU D) is a Hilbert cube. Assume that
the metrics for X and Y are convex.

Claim 2. Fre,, (vy(Cm(Y, RUD)) is a Z-set in Cpn (Y, RU D).

Let ¢ > 0, and consider the map ®.|c, (v,rup) : Cm(Y,RU D) —
Cm(Y, RU D) of Definition 12. By Remark 13, ®.|¢, (v,rup) is within
¢ of the identity map, so we only have to prove that ®.(C,,(Y, RUD))N
Frcm(y)((]m(Y, RU D)) = .

Let A € Cp,(Y,RUD).

Case 1. ANR # @. By (b), ®.(4) NU; # @, for every i €
{1,...,n+1}. Consider a sequence {A;}22; of elements of Cp,(Y)
such that lim A; = ®.(A). Then there exists an M € N such that,
for each j > M and every i € {1,... ,n+ 1}, A; NU; # @. Given
Jj > M, since A; has at most m components and m < n + 1, we have
AiN(RUD) # @. Thus, A; € Cp,(Y,RU D) and ®.(A) cannot
be approximated by continua that do not intersect R U D. Hence,
®.(A) ¢ Fre,, (v)(Crn (Y, RUD)).

Case 2. ANR =@. In this case p ¢ A and ®.(A) N (D — {p}) # 2.
Since D — {p} is open in Y, we have that ®.(A) ¢ Fr¢, (v)(Cn(Y,RU
D)).

By Cases 1 and 2, we obtain that ®.|¢,,(v,rup) : Cm(Y,RU D) —
Cm(Y,RUD) — (Fre,, (v)(Crn (Y, RU D))). This proves Claim 2. o

Claim 3. Fr¢,, (x)(Crn (X, R)) is a Z-set in Cy,, (X, R).

The proof is similar and easier to the one in Claim 2 since we only
need to consider Case 1.

By Lemma 19, the identity map id : Fre,, (x)(Cm (X, R)) = Fre, (v)
(Cm(Y,R U D)) is a homeomorphism. By Claims 2, 3 and Theo-

rem 17, the identity map id can be extended to a homeomorphism
hi : Cn(X,R) —» Cpn(Y, RU D). We define a homeomorphism
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h:Cn(X) = Crn(Y) as follows.

hi(A) if A€ Cpn(X,R),
h(A) = {A if A€ Cp(X)—Cn(X,R).

Hence, C,,(X) is homeomorphic to Cp,(Y), and the theorem is
proved. ]

Corollary 23. Let X be an almost meshed Peano continuum such
that X — P(X) is disconnected. Then X does not have a unique
hyperspace C(X).

Proof. Suppose that X —P(X) = UUV, where U and V are nonempty
open disjoint subsets of X. Since X is almost meshed, intx (P(X)) = @.
Thus, X =clx(U)Uclx (V) and R = clx(U) Nclx (V) is a nonempty
closed subset of P(X). Let W = X —clx(U) and Z = X — clx (V).
Hence, W and Z are nonempty open disjoint subsets of X such that
VcW,UcCZand R C clx(W)Nneclx(Z). By Theorem 22, the
corollary follows. O

Corollary 24. Let X be an almost meshed Peano continuum satis-
fying the conditions of Theorem 22. Then there exists an uncountable
family YV of pairwise non-homeomorphic Peano continua such that:

(a) for eachY € Y, X is not homeomorphic to Y,

(b) for each Y € Y and each m < n, Cp,(X) is homeomorphic to
Cn(Y).

Corollary 25. Let X be a dendrite that is not a tree and k =
sup{ordx(p) : p € P(X)}, notice k € NU{w}. Then for every m <k,
X does not have a unique hyperspace Cp,(X).

Proof. If X is not almost meshed, then by Theorem 20, X does not
have unique hyperspace C,,, (X) for every m € N. If X is almost meshed
and m < k, there exists a point ¢ € P(X) such that ordx(¢) > m + 1.
Hence, X and the closed subset {q} satisfy the conditions of Theorem 22
for m, and the corollary follows. i
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6. Meshed continua have unique hyperspaces. Given a
continuum X and n € N, let

B (X) = {A € Cr,(X) : A has a neighborhood in C,,(X) that is
a 2n-cell},

P2(X) ={A € C,(X) : A has a neighborhood M in C,(X) that
is a 2n-cell and A belongs to the manifold boundary of M},

and

(X)) ={A € Ch(X)—Pn(X) : A has a basis of open neighbor-
hoods $ in C),(X) such that, for each U € 9,
dimU = 2n and U NP, (X) is arcwise connected}.

As usual, we denote P(X) =P, (X) and P?(X) = PI(X).
Define

Ar(X) ={J € A(X) : there exists an end point p
of J such that p € J°}.

In the case that J € Ag(X) and p is an end point of J such that
p € J°, pis said to be an extreme of X.

Lemma 26. Let X be a Peano continuum and A € C(X). Then the
following are equivalent:

(a) A € PO(X),
(b) there is a J € Ag(X) such that one of the following two conditions

hold: (1) A = {p}, for some p € J°, (2) J € Ag(X) and there exists
an extreme p of X such thatp € A C J°.

Proof. (a) = (b). Suppose that A € P?(X). Then dim4[C(X)] = 2.
Lemma 11 implies that there exists a J € Ag(X) such that A C J°.
Let M be a 2-cell in C(X) such that A € inte(x)(M) C intex)(C(J))
and A belongs to the boundary, as manifold, of M. Thus, M is a
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neighborhood of A in C(J). Since J is either an arc or a simple closed
curve, by the geometric models of C(J) constructed in [19, Examples
5.1 and 5.2], we obtain that one of the conditions (1) or (2) holds.

(b) = (a). Let J € As(X) be such that A C J°. Then C(J) is a
neighborhood of A in C'(X). By the models in [19, Examples 5.1 and
5.2], in both cases, (1) and (2), there exists a neighborhood M of A in
C(J) such that M is a 2-cell, A belongs to the boundary, as a manifold,
of M and M C intg(x)(C(J)). Then M is a neighborhood of A in
C(X). Therefore, A € RI(X). O

Theorem 27. Let X be a Peano continuum that is not an arc. Then
there exists a homeomorphism h : clx (FA(X)) — clo(x)(B2(X)) such
that h(p) = {p} for each p € clx (FA(X))—U{J°:J € Ar(X)} and,
if h(p)NP(X) # @, then p € P(X) or p is an end point of J, for some
J e Ap(X), where JNP(X) # @ and p € J°.

Proof. By [19, Example 5.2], we can assume that X is not a simple
closed curve.

Given J € 2Ag(X), let p; and ¢; be the end points of J, where
ps € J°. Since X is not an arc, q; ¢ J°. Fix a homeomorphism
hjy:[0,1] — J such that h;(0) = g5 and h;(1) = py.

Let
W= J{J —{as} : J € Ap(X)}.
Then W is an open subset of X and W C FA(X).
Define h : clx (FA(X)) — clox)(B2(X)) as follows:

) it p € g (FA(X)) — W,
{hs(29)} ifpeJeAr(X), p="hs(s)

h(p) = and s € [0,1/2],
hJ([—28+2,1]) iprJEQ[E(X),thJ(S)

and s € [1/2,1].

Using Lemma 26 it can be shown that h is a well-defined function.
Clearly, h is continuous at each point of W. Thus, in order to conclude
that h is continuous, take a sequence {x,, }°°_; of points of W such that
lim z,,, = x for some x ¢ W. We need to show that lim h(x,,) = {z}.
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For each m € N, let J,, € Ag(X) be such that z,, € J,,. We may
assume that J,,, # Ji, if m # k, and that limp; = ¢, for some ¢ € X.
By Lemma 8, lim J,,, = {¢}. Since h(z,,) C Jy, and x,, € J,, for each
m € N, we have that lim h(z,,) = {¢} and limz,, = ¢q. Therefore,
g = z and limh(z,,) = {z}. This completes the proof that h is
continuous.

It is easy to see that h is one-to-one. In order to show that h is
onto, note that, by Lemma 26, P?(X) C h(clx(FA(X))). Hence,
clo(x)(PB2(X)) C h(clx (FA(X))). Thus, h is onto.

Finally, take p € clx (F.A(X)) such that h(p)NP(X) # @. In the case
that h(p) = {p}, we obtain that p € P(X). In the case that h(p) # {p},
then p € J — {qs} = J° for some J € Ap(X). Since h(p) NP(X) # 2,
h(p) ¢ J°. Hence, h(p) = J = hy([0,1]) and we are done. O

Lemma 28. Let X be a Peano continuum and n > 3. Then
I (X) ={A € Cp(X) : A is connected and there exists a J € Ag(X)
such that A C J°} = PB(X).

Proof. Let A € T',(X). By Lemma 11 and Theorem 4, dim4[C,, (X)] =
2n, there exist a k € N, elements Ji,...,Jr € As(X) such that
A€ (J?,...,J?) and a finite graph D in X such that A C D°. Then
C (D) is a neighborhood of A in Cy(X). Thus, we may assume that
the basis of open neighborhoods §) in the definition of T',,(X) satisfies
that, for each U € 9, U C C, (D). Hence, § is a basis of neighborhoods
of A in Cp(D) such that, for each U € 9, dimU = 2n and U NP, (X)
is arcwise connected. Given U € $ and B € U N*P,(X), B has a
neighborhood M in C,,(X) that is a 2n-cell. Then there exists an 2n-
cell N' € M such that B € inte, (x)(N) C N cUNM C Cn(D).
Thus, A is a 2n-cell that is a neighborhood of B in C, (D). Hence,
B e UNP, (D). We have shown that U NP, (X) C U NP, (D). The
other inclusion is easy to prove. Hence, U NP, (X) =U NP, (D) and
U NP, (D) is arcwise connected. Since A € U — P (X) =U — P, (D),
we have proved that A € T',,(D). By [17, Lemma 3.6], A is connected,
and we may assume that A C Jp.

Now suppose that A € C,(X) is such that A is connected and
there exists a J € Ags(X) such that A C J°. By [17, Lemma 3.6],
A € C,(J)—PB,(J) and A has a basis of open neighborhoods $) in Cy,(J)
such that, for each € $, dimU < 2n (then dimU = 2n, by Lemma 11)
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and UNP,,(J) is arcwise connected. Since A € inte, (x)(Crn(J)), we can
take U C int¢, (x)(Cn(J)) so that U is open in C,(X) for each U € $.
Proceeding as in the previous paragraph, U NP, (X) = U NP, (J) for
each U € $. This implies that A € T',,(X).

The equality P(X) = {4 € C,,(X) : A is connected, and there exists
a J € As(X) such that A C J°} follows from [19, Examples 5.1 and
5.2] and Lemma 11. o

Theorem 29. If X andY are almost meshed Peano continua, n > 3
and Cp(X) is homeomorphic to Cp(Y), then X is homeomorphic to Y .

Proof. By [17, Theorem 3.8], we may assume that X and Y are
not arcs. Let h : Cp(X) — Cnh(Y) be a homeomorphism. Notice
that the definition of T',,(X) is given in terms of topological concepts
that are preserved under homeomorphisms. Thus, h(I', (X)) =T',(Y)
and h(P(X)) = P(Y). Note that P(X) is an open subset of C(X)
and P?(X) C P(X). Thus, P?(X) = {4 € P(X) : A has a neigh-
borhood M in P(X) that is a 2-cell and A belongs to the mani-
fold boundary of M}. Tt follows that h(P?(X)) = P2(Y). Hence,
hlclo(x) (B2 (X))« clox)(B2(X)) = clop)(BP(Y)) is a homeomor-
phism. Theorem 27 implies that clx(F.A(X)) is homeomorphic to
cly (FA(Y)). By Lemma 1, clx (G(X)) is homeomorphic to cly (G(Y)).
Since X and Y are almost meshed, we conclude that X is homeomor-
phic to Y. i

Theorem 30. If X and Y are almost meshed Peano continua
which are not arcs and C(X) is homeomorphic to C(Y), then X is
homeomorphic to Y .

Proof. Let h : C(X) — C(Y) be a homeomorphism. Notice that
h(P(X)) = P(Y). Proceeding as in the proof of Theorem 29, we
conclude that X is homeomorphic to Y. ]

In Theorem 35 we will extend the conclusions of Theorems 29 and
30 to the case n = 2. As in the previous results on finite graphs and
class ®, this case is more difficult and requires a different technique.
We will use the following conventions.

Given a continuum X that is not a simple closed curve and J, K €
As(X), let

D(J, K) = cle, (x) (B2 (X) N (J°, K°)) N eley (x) (B2 (X) = (J°, K°)).
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In the case that J is an arc, let p;y and ¢g; be its end points, where
qj € Frx(J). If J is a simple closed curve, let ¢; be the unique point
in J such that J — {qs} is open. Since X is not a simple closed curve,
qs ¢ J°. Given J € Ag(X), define £(J) in the following way: If J is
an arc, let £(J) = C(J). In the case that J is a simple closed curve, let
EWJ)={AeC(J): A=Jor A= {p} for some p € J or A is a subarc
of J such that ¢y ¢ A or A is a subarc of J such that ¢ is one of its
end points}. Note that, in both cases, £(J) = clgx)((J°) N C(X)).
Let Wy be the continuum obtained as Wy = D — intr2(F), where D
and F are discs in the plane R?, E C D, and F and D are tangents.
The following lemma can be easily proved from [19, Examples 5.1 and
5.2].

Lemma 31. Let X be a continuum that is not a simple closed curve
and J € As(X). Then:

(a) if J is an arc, then E(J) is a 2-cell,

(b) if J is a simple closed curve, then E(J) is homeomorphic to Wy
(where the point of tangency corresponds to {q;}).

Lemma 32. Let X be a Peano continuum. Then PI(X) = {A €
P (X) : A is connected or A has a degenerate component or A contains
an extreme of X}.

Proof. By Lemma 11, Po(X) C J{(J°, K°) : J, K € Ag(X)}, and by
[18, Lemma 2.1], for every J, K € Ag(Y), (J°, K°) is a component of
P2 (X). Using Lemma 7, it can be shown that if J, K, L, M € Ag(X)
and {J,K} # {L,M}, then (J° K°) N (L°,M°) = @. Thus, the
components of Po(X) are sets of the form (J° K°), where J K €
Ag(X).

Given J € Ag(X), let C(J°) = C(X) N (J°) and P(J°) = {A €
C(J°) : A has a neighborhood M in C(J°) such that M is a 2-
cell and A is in the manifold boundary of M}. Notice that J° is
homeomorphic to (0,1) when J ¢ Ag(X) and J° is homeomorphic to
[0,1) when J € Ag(X). By [19, Example 5.1], C(J°) is homeomorphic
to [0,1) x [0,1). In the case that J ¢ Az (X), B2 (J°) = {{p} : p € J°}
and, in the case that J € 2Ag(X) and p; is the extreme of X contained
in J, PO(J°) = {{p} : p€ J°}U{A € C(J°) :p; € A}.
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If J # K, then J°NK° =@. Let ¢ : C(J°) x C(K°) — (J°, K°) be
given by ¢(B, () = BUC. It is easy to show that ¢ is a homeomorphism
and P (X) N (J°, K°) = p((P2(J°) x C(K°)) U(C(J°) x P2 (K°))) =
{A € (J°,K°) : AnJ° € PI(J°) or ANK° € PIK°)} = {A ¢
(J°, K°): A has a degenerate component or A contains an extreme of
X}.

If J = K, (JO,K° = (J°) = {A € Co(J) : A C J°}). In [16,
Lemma 2.2], the following model (due to R.M. Schori) for C([0,1])
was constructed. Let Cop = {4 € Cs([0,1]) : 0 € A} and C} =
{A € Cx([0,1]) : {0,1} € A} = {[0,a]U[b,1] : 0 < a < b < 1}
Then Cj is homeomorphic to the space obtained by identifying the
diagonal of the triangle {(a,b) € R* : 0 < a < b < 1} to a point.
Thus, C} is a 2-cell, and the manifold boundary of C} is the set
ACH ={{0}U[b,1]:0<b<1}U{[0,adU{1}:0<a<1}U{[0,1]}.
The function 7 : cone (Cj) — Co given by n((A,t)) = (1 —t)A is a
homeomorphism. Thus, Cy is a 3-cell, and its manifold boundary is
the set 9(Co) =ClU{(1—t)A: A€ I(C}) and t € [0,1]}. Finally, the
function A: cone (Co) — C2([0,1]) given by A((A,t)) = {t}+(1—t)Aisa
homeomorphism. Thus, C3(]0, 1]) is a 4-cell and its manifold boundary
is the set 9(Ca([0,1])) = CoU{{t}+(1—¢t)A: A € J(Cy) and t € [0, 1]}.
Therefore, 9(C2([0,1])) = {4 € C2([0,1]) : A is connected or A has a
degenerate component or AN {0,1} # @}.

In the case that J ¢ RAg(X), J° is homeomorphic to (0,1), so
PI(X) N (J°) = {A € Ca(J°) : Ais connected or A has a degenerate
component}, and in the case that J € Ax(X), J° is homeomorphic to
[0,1), so PI(X) N (J°) = {A € Cy(J°) : A is connected or A has a
degenerate component or the extreme of X contained in J belongs to
A}. Therefore, for all J € Ag(Y), PI(X) N (J°) = {A € (J°) : Ais
connected or A has a degenerate component or A contains an extreme
of X}. This completes the proof of the lemma. O

Lemma 33. Let X be a Peano continuum. Let J, K € Ag(X) be
such that Frx (J) C clx (FA(X)—J) and Frx (K) C clx (FA(X) - K).
Then D(J,K) ={{p} UA :p € Frx(J) and A € E(K) orp € Frx(K)
and A€ E(J)}.

Proof. (C). Let B € D(J,K). Since BI(X) N (J°, K°) C (J,K) and
(J, K) is closed in C3(X), B € (J, K).
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The first case we consider is when B is disconnected. Let B; and By
be the components of B. Given a sequence {E,,}2_; of elements of
C3(X) such that lim E,, = B, we may assume that each F,, has two
components ESY and B, lim EYY = By and lim E?) = B,. Since
B € clg,x)((J°, K°)), there exists a sequence E,, = EWV UER of
elements of (J°, K°) such that lim ESY) = B and imE{Y) = B,. In
the case that J = K, we have that E,, C J, for each m € N and B C
J = K. In the case that J # K, J° N K° = &, so we can assume that
EWY ¢ Joand EP ¢ K° for each m € N. This implies that B; C J
and Bs C K. So, in both cases (J = K or J # K), we may assume that
By C J and By C K. Since B € clo,(x) (B3 (X) — (J°, K°)), there is
also a sequence F, = F\Y UE? of elements of PI(X) — (J°, K°) such
that lim F\) = By and lim F{2) = B,. Since PJ(X) C Pa(X), for each
m € N, there exist L,,, M,, € Ag(X) such that {L,,, M,,} # {J, K}
and F,, € (L2, M?). We may assume that FY c Ly, F? c M,
and K # M,,. Then By C Frx(K). Since Frx(K) has at most two
elements, we conclude that By is degenerate. If J is an arc, then B is
of the form B = {p} U By, where B; € £(J) and p € Frx(K). If J
is a simple closed curve, since EY cjgo=7-— {qs} for each m € N,
B; = lim E,(,%) is either equal to J or By = {p} for some p € J or B is
a subarc of J that has ¢; as one of its end points or B; is a subarc of
J such that ¢y ¢ J. Thus, B; € £(J).

Now, we consider the case when B is connected. If J # K, we claim
that BN J° = @ or BN K° = @. Suppose, to the contrary, that
BNJ°# @ and BNK° # @. Since B € clo,(x)(PI(X) — (J°, K°)),
there is a sequence { E,,, }°_; of elements of Pg (X ) —(J°, K°) such that
lim E,,, = B. For each m € N, there exist L,,, M, € As(X) such that
{Lm,Mp} #{J,K} and E,, € (LS,, M2). Since J° and K° are open
in X, there exists an mg € N such that, for each m > my, F,, intersects
J° and K°. Then L,, U M,, intersects J° and K°. If L,, intersects .J°,
then L,, = J. Thus, for each m > mg, we may suppose that L,, = J
and M, = K. Hence, {L,, M;,} = {J, K}, a contradiction. We have
shown that BN J° = @ or BN K° = @. Suppose, for example, that
BnJ°=@. Since Be (J,K), B=(BNJ)U(BNK) and & # BN J.
This implies that BN J is a nonempty subset of J — J° which consists
of at most two elements. Since BNJ and BN K are closed in B and B
is connected, we have that BNJ C BN K. Hence, B C K. Fix a point
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p € BNJ. If K is an arc, then B is of the form B = {p} U B, where
B € £(K) and p € Frx(J). Now suppose that K is a simple closed
curve. Since B € clg,(x)((J°, K°)), there exists a sequence { B, }5r—;
in (J°, K°) such that lim B,,, = B. Thus, the components of B, are
B N J°, By N K° and B = lim((By, N J°) U (By N K°)). We may
suppose that the sequences {B,, N J°}>°_; and {B,, N K°}%°_, are
convergent in C(X). Recall that B N J has at most two elements. If
q € B and ¢ = limq,,, where ¢,, € B,, N J°, for each m € N, then
q € Frx(J). Thus, there are at most two points ¢ of B of this form. So
lim(B,,, N J°) is a one-point set. This implies that B = lim(B,, N K°).
Given m € N, since B,,, N K° is a connected subset of K° = K — {qx },
we have that B, N K° is an arc such that qx ¢ B,, N K°. Hence,
B =1lim(B,,NK°) € £(K). Therefore, B = {p}UB, where p € Frx(J)
and B € £(K).

Finally, we consider the case when B is connected and J = K. Since
B € cloyx)(PBI(X) — (J°)), B is limit of elements in PI(X) — (J°)
and B C J. Thus, B ¢ J°. Hence, we can fix a point p € B N Frx(J).
If Jis an arc, B = {p} UB and B € &(J). If J is a simple closed
curve, let B = lim E,,, where E,,, € (J°) NPI(X) for each m € N. For
each m € N, by Lemma 32, F,, is connected or F,, has a degenerate
component. In both cases, we can write E,, = {pm} U F,,,, where
F,, € C(J°). Note that lim F,,, = B. Since Fy, is a connected subset of
J° = J —{qs}, we have that F,, is an arc such that ¢; ¢ F,,. Hence,
B =lim F,, € £(J). Therefore, B = {p} U B, where p € Frx(J) and
Be&(J).

(D). Let B={p}UA, wherep € Frx(J) C clx(FA(X)—J)and A €
E(K). Notice that, in both cases: K being an arc and K being a simple
closed curve, A = lim A,,,, where A,, € K° for each m € N. Given
m € N, there exists a point p,,, € B(1/m,p) N FA(X) — J. Note that
{pm}UA,, ¢ (J°, K°). By Lemma 32, {p,, }UA,, € PI(X)—(J°, K°).
Then B = lim({py} U An) € clo,(x)(BY(X) — (J°, K°)). On the other
hand, since p € Frx(J), there exists a sequence {z,,}5°_; in J° such
that lim,, = p. Then, for each m € N, {z,} U 4,, € (J°, K°)
and, by Lemma 32, {z,,} U A,, € PI(X) N (J°, K°). Hence, B €
clo,(x) (BI(X) N (J°, K°)). Therefore, B € D(J,K). This completes
the proof of the lemma. u]

Theorem 34. Let X and Y be Peano continua. Let J K €
As(X) and LM € As(Y) be such that Frx(J) C clx(FAX) —
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J), Frx(K) C cx(FAX) — K), Fry(L) C cy(FAY) — L) and
Fry (M) C cly(FA(Y) — M). Suppose that h : Co(X) — Co(Y) is
a homeomorphism and h({J°, K°)) = (L°, M°). Then:

(1) if J = K and J is a simple closed curve, then L =M and L is a
simple closed curve,

(2)if J=K, Jis an arc and J ¢ Ag(X), then L =M, L is an arc
and L ¢ A (Y),

3)if J=K and J € Ar(X), then L= M and L € A(Y),

(4) if J # L, then M # N,

(5)if J =K and p € J — J°, then h({p}) is a one-point set and
h(p) C L — L°.

Proof. We describe models for the set D(J, K) considering all possi-
bilities for the sets J and K in Ag(X). These models are illustrated in
Figure 2.

(a) J = K, Jis an arc and J ¢ 2Ag(X). According to Lemma 33,
D(J,J) = {{ps} UA: A e C()}U{{as}UA: A e C)}. By [19,
Example 5.1], C(J) is a 2-cell. Thus, D(J, J) is the union of two 2-cells
intersecting in the elements {ps, ¢;} and J.

(b) J=K, J € Ar(X). Here, D(J,J) ={{qgs} UA: A C(J)} is a
2-cell.

(¢) J = K and J is a simple closed curve. Here, D(J, J) = {{qs;}UA :

A € &(J)} is homeomorphic to the continuum W, described in the
paragraph prior to Lemma 31.

From now on, we suppose that J # K.

(d) Both J and K are arcs and J, K ¢ Ag(X). Let D1 = {{ps}UA:
Ae C(K)}, Dy ={{q;}UA: Ac C(K)}, D3 ={{px}UA: A C(J)}
and Dy = {{gx} UA : A € C(J)}. Note that Dy, D2, D3 and Dy are
2-cells and D(J, K) = Dy U Dy U D3 U Dy. Here, we consider three
subcases.

(d.1) JN K = @. In this subcase, D1 N Dy = & = D3 N Dy,
DiND3 = {{ps,px}}, D1 N Ds = {{ps,qx}}, D2NDs = {{qs,px }}
and Do N Dy = {{QJ,QK}}.

(d.2) J N K is a one-point set. In this subcase we may assume
that J N K = {q;} = {¢x}. Then we have the same equalities as
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in case (d.1), that is: D1 NDy =@ = D3N Dy, D1 ND3s = {{ps,px}}
D1NDy = {{ps,ax}}, D2NDs = {{qs, px }} and DoNDy = {{qs,qx }}

(d.3) JN K is a set with exactly two points. We may assume that
ps = pr and ¢ = qx. Then Dy N Dy = {{ps,qs}, K}, D1 N D3 =
HpstArs,ast}, DN Dy = {{ps,ax}t}, D20 D3y = {{qs,rx}},
Do NDs = {{as}, {ps.ax}} and D3N Dy = {{pk,qx}, J}.

(e) Both J and K are arcs and J ¢ 2g(X) and K € 2Ax(X). Let
Dy = {{ps}UA: A e CK)}, Dy = {{gy}UA : A € C(K)} and
D3 = {{qx}UA: A€ C(J)}. Note that Dy, Dy and D3 are 2-cells and
D(J,K) = D; UDs U Ds. Here, we consider two subcases.

(e.1) JNK = @. In this subcase, D1 NDs = &, D1NDs = {{ps,qx }}
and Do NDs = {{qs,qx}}-

(e.2) JN K is a one-point set. In this subcase we may assume that
JNK = {q;} = {¢x }. Then we have the same equalities as in case (e.1),
that is, D1NDy = &, D1ND3 = {{pJ, QK}} and Do ND3 = {{QJ, qK}}.

(f) J is an arc, J ¢ Ar(X) and K is a simple closed curve. Let
Dy = {{pjJUA: Ac&K)}, Dy ={{gs/}UA: A e EK)} and
D3 = {{qK}UA :Ae C(J)} Note that D(J, K) =D1UDyUDs3, Ds3 is
a 2-cell while D; and D5 are homeomorphic to the continuum Wy. In

both cases, when J N K = @ or when JN K is a one-point set, we have
that Dy N Dy = @, D1 N D3 = {{ps, qx }} and D2 N D3 = {{qs,qr } }-

(g) J and K are arcs and J, K € Ax(X). Let D; = {{qs} UA: A€
C(K)} and Dy = {{gqx} UA : A e C(J)}. Then D(J,K) = D1 UD,
and Dy and Dy are 2-cells. Note that Dy N Ds = {{qs,qx}}

(h) J € Ag(X) and K is a simple closed curve. Let D; = {{g;} UA:
A€ &(K)}and Dy = {{gx}UA : A€ C(J)}. Then D(J, K) = D1UDs,
D, is a 2-cell and D5y is homeomorphic to Wy. Note that Dy N Dy =
Has ax}}-

(i) J and K are simple closed curves. Let D1 = {{qs}UA: A € E(K)}
and Dy = {{qx}UA: A € EJ)}. Then D(J,K) =Dy UDsy, Dy and
Dy are homeomorphic to Wy. Note that D1 N Dy = {{qs,qx }}-

We can observe, in Figure 2, that for different cases we obtain different
models.

If J = L and J is a simple closed curve, then D(J, J) is as in case (c).
Hence, D(L, M) is as in case (¢). This implies that L = M and L is
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a simple closed curve. This proves (1). The proofs for (2), (3) and (4)
are similar.

In order to prove (5), let B = h({p}). Since p € Frx(J), there
exists a sequence {p,,}°°_; of points in J° such that limp,, = p.
Then limh({pn}) = B and h({pm}) C L° for each m € N. Thus,
B C L. Take an open subset U of X such that p € U. Since
Frx(J) C cx(FAX)—J), UNnFAX)—J # @. This implies
that there exists a sequence {x,,}>°_; of points of FA(X) — J such
that limz,, = p. For each m € N, let J,, € As(X) be such that
Tm € J9. Let L, € Ag(Y) be such that h((J2)) = (LS,). Then
Im # J, 80 Ly, # L. Since h({xn}) C (L2,), h({zm})NL° = @. Thus,
B =limh({z,}) CY — L°. We have shown that B C Fry (L).

By (1) and (3), if .J is a simple closed curve or J € Ag(X), then L is a
simple closed curve or L € Ag(Y'). In these cases, Frx(J) and Fry (L)
are one-point sets. Then B is a one-point set contained in Fry (L).

Suppose now that J is an arc and J ¢ Ag(X). Then L is an arc
and L ¢ Ag(Y). Let u,v be the end points of L. Then u # v and
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Fry(L) = {u,v}. If B = {u} or B = {v}, we are done. Suppose then
that B = {u,v}. Since h(D(J,J)) = D(L, L), by the model described
in (a), we obtain that {p} is not a local cut point of D(J, J). However,
B = h(p) = {u, v} is alocal cut point of D(L, L), a contradiction. This
completes the proof of (5) and ends the proof of the theorem. O

Theorem 35. Let X and Y be almost meshed Peano continua. If
C3(X) and Co(Y) are homeomorphic, then X and Y are homeomor-
phic.

Proof. By [16, Theorem 4.1], we may assume that X and Y are
neither an arc nor a simple closed curve. Let h : C3(X) — Co(Y) be
a homeomorphism. Proceeding as in the beginning of Lemma 32, we
have that the components of P2(X) are the sets of the form (J°, K°)
where J, K € Ag(X). Thus, for every J, K € Ag(X), there exist
L, M € s(Y) such that h((J°, K°)) = (L°, M®). Since X is almost
meshed, for each J € Ag(X), Frx(J) C clx (FA(X)—J) and something
similar happens for the elements in 2g(Y). Hence, we can apply
Theorem 34.

Now, take p € X —|J{L°: L € As(X)}. We claim that h({p}) = {y}
for some y € Y — | J{K° : K € A5(Y)}. Since X = clx(FA(X)),
there exists a sequence {p,}>°_; in F.A(X) such that lim p,, = p. For
each m € N, let J,, € 2Ag(X) be such that p,, € J2, and choose a
point ¢, € Frx(Jy,). By Lemma 3, lim .J,, = {p}. This implies that
lim ¢,, = p. By Theorem 34 (5), for each m € N, h({gn}) = {wm},
for some wy, in the closed set Y — J{K° : K € 2Ag(Y)}. Hence,
h({p}) = {y}, for some y € Y — [ J{K°: K € As(Y)}.

We define amap g : X - Y. Let F = X — (J{L° : L € Ag(X)}.
Given p € F, let g(p) € Y be such that h({p}) = {g(p)}. Given
J e As(X), let Ky € Ag(Y) be such that h((J°)) = (KT).

If J is a simple closed curve, by Theorem 34 (5), g(qs) € Kj — K§9.
Hence, g(qs) is the only point in K such that K; — {g(gs)} is open
in Y. Fix a homeomorphism g; : J — K such that ¢g;(qs) = g(qJ)-
If J € Ag(X), by Theorem 34, K; € Ag(Y) and g(gs) is the only
point in the arc K; such that K; — {g(gs)} is open in Y. Fix a
homeomorphism ¢y : J — K such that g;(¢s) = ¢(¢gs). Finally, if
J is an arc and J ¢ Ag(X), then K is an arc in Ag(Y) — Ax(Y)
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and g(py) and g(qs) are the end points of K ;. Fix a homeomorphism
gy :J — Ky such that g;(ps) = g(ps) and g(qs) = 9(qs).

Now, define g : X — Y as the common extension of g (defined in
F) and the maps g; for J € Ag(X). Note that g is well defined and
continuous in the open set X — F. In fact, g | J is continuous for
each J € Ag(X). In order to complete the proof that g is continuous,
take a sequence {p,,}5°_; in X — F such that limp,, = p for some
p € F. For each m € N, let J,, € Ag(X) be such that p,, € J3,.
Then ¢, € Frx(J,). We may assume that J,, # J, for m # k.
By Lemma 8, limJ,, = {p}. Then limg;, = p. Since q;, € F
for each m € N, {g(p)} = h({p}) = limh({qs,}) = lim{g(qs,.)}-
Hence, limg(qs,,) = g(p). Given m € N, g(pm) = 94,,(m) € Ky,
and ¢g(qs,,) € Kj,. By Lemma 8, limK; = {g(p)}. Hence,
lim g(pym) = g(p). This completes the proof that g is continuous.

It is easy to check that g is one-to-one. In order to see that g is
onto, let K € Ag(Y). Applying Theorem 34 to h~!, there exists a
J € Ag(X) such that (J°) = h~1((K°)). This implies that K = K,
so K C g(X). Since |{K : K € A5(Y)} is dense in Y, we conclude
that g is onto. Therefore, g is a homeomorphism. This ends the proof
of the theorem. O

By Theorems 29, 30 and 35, we obtain the following.

Theorem 36. Suppose that X and Y are almost meshed Peano
continua and Cp (X)) is homeomorphic to Cp(Y') for somen € N. Then:

(a) if n =1 and X and Y are neither arcs nor simple closed curves,
then X is homeomorphic to 'Y,

(b) if n # 1, then X is homeomorphic to Y .

Theorem 37. Suppose that X is a meshed continuum. If n # 1,
then X has a unique hyperspace Cy,,(X). If X is neither an arc nor a
simple closed curve, then X has unique hyperspace C(X).

Proof. Suppose that C,(X) and C,(Y) are homeomorphic. Let
h : Ch(X) = Cp(Y) be a homeomorphism. Since X is meshed,
by Lemma 2, X is a Peano continuum. Then (see [20, Theorem
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3.2]), Y is a Peano continuum. Note that h(F,(X)) = §.(Y). By
Theorem 5, §,(X) is dense in Cp,(X). Thus, §,(Y) is dense in Cy, (V).
By Theorem 5, Y is meshed. Applying Theorem 36, we conclude the
proof of the theorem. a

7. An almost meshed continuum with unique hyperspace.
Consider the example Zy = ([—1,1] x {0})U(J{{1/m} x[0,1/m] : m >
2}) mentioned at the end of the introduction and illustrated in Figure 1.
If a dendrite Z contains a topological copy of Zj, then the hyperspace
C(Z) is not unique [2]. Roughly speaking, this happens because there
is a Hilbert cube € near the element {(0,0)} of C(Z): consider the
continuum W that is obtained by attaching a Peano continuum D
without free arcs at (0,0) to Z, that is, W = ZU D. Then C(D) and
the set {4 € C(W): (0,0) € A} are Hilbert cubes whose union with €
is again a Hilbert cube and, moreover, the homeomorphism obtained
can be extended to the homeomorphism between C'(Z) and C(W). One
may think local dendrites behave in the same way.

The next example shows that this does not happen. The “simplest”
local dendrite X which is not a dendrite and contains a topological
copy of Zy does have unique hyperspace C(X).

Example 38. There exists a local dendrite X such that X contains a
topological copy of Zp, P(X) is a one-point set, X —P(X) is connected
and X has unique hyperspace C(X).

Let S = ({-1,1} x [0,1]) U ([-1,1] x {0,1}). Then S is a simple
closed curve. Let X = Zy U S and 6 = (0,0) (X is the continuum Z
illustrated in Figure 1). Then X is an almost meshed Peano continuum
that contains a simple closed curve S, P(X) = {0}, X — P(X) is
connected and X is not meshed. Observe that X is a local dendrite.

For each m > 2, let B, = {1/m} x[0,1/m], Sy, = SUB2U-+-U By,
Ap, = {1/m} x [0,1/2m] and p,, = (1/m,0) € A,,. We will need the
following claim.

Claim 5. Let «: [0,1] — C(X) be a map and let m € N be such that
PmPm+1 € @(0) (Pmpm+1 denotes the shortest arc in X joining py, and
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Pm+1) and, for each t € [0,1], {pm,Pm+1} C a(t) and S € a(t). Then
PmPm+1 g a(l)

We prove Claim 5. Let M = ({—1,1} x [0,1]) U ([-1,1] x {1}) U
([-1,1/(m+1)]U[(1/m),1]) x {0}). Let J = {t € [0,1] : pmPm+1 C
a(t)} and K = {t € [0,1] : M C «a(t)}. Then J and K are closed
subsets of [0,1] and 0 ¢ J. Since pypmi1 UM = S and S ¢ a(t)
for any ¢ € [0,1], J N K = @. Notice that each connected subset of
X containing p,, and p,,+1, contains either p,,pm,+1 or M. Hence,
[0,1] = JU K. The connectedness of [0, 1] implies that J = &, 1 ¢ J
and pppm+41 € «(1). This ends the proof of Claim 5. O

In order to prove that X has a unique hyperspace C(X), let Y be
a continuum such that C'(X) is homeomorphic to C(Y). Then Y is a
Peano continuum (see [20, Theorem 3.2]). Let h: C(X) — C(Y) be a
homeomorphism.

Let hx Clx(]:A(X)) — Clc(x)(&pa(X)), hy : Cly(]:.A(Y)) —
cleyy(B2(Y)) be homeomorphisms with the properties described in
Theorem 27. Since X is almost meshed, X = clx(F.A(X)). Since h
is a homeomorphism, h(B?(X)) = P2(Y) and h(clox)(P2(X))) =
clory(B2(Y)). Thus, we can consider the map g : X — Y given
by g = hy' o hl(cle(x)(B2(X))) o hx. Then g is an embedding and
9(X) = cly (FA(Y)).

In order to prove that X and Y are homeomorphic, we are going
to show that ¥ = cly(FA(Y)). Suppose, to the contrary, that
Y # cy (FA(Y)). Note that Y — cly (FA(Y)) € P(Y). We need
to show the following claim.

Claim 6. Ifp € X and g(p) € P(Y), then p € P(X).

To prove Claim 6, let y = g(p). Then y € cly (FA®Y)) — U{K° :
K € Ag(Y)}. Thus, hy(y) = {y}. By Theorem 4, dimy, (,)[C(Y)]
is infinite. Then dimy-1(;, (,)[C(X)] is infinite. ~Applying again
Theorem 4, we obtain that h=!(hy (y)) N P(X) # @. That is, hx(p) N
P(X) # . Given J € Ag(X), JNP(X) = @. By the way the hx was
chosen as in Theorem 27, we have that p € P(X). This completes the
proof of Claim 6.
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Since P(X) = {0}, 6 is the only point p in X for which g(p) € P(Y).
Thus, g(X)NPY) = {g9(f)}. Fix a point yo € ¥ — ¢g(X), and let
B :10,1] = Y be a one-to-one map such that 5(0) = ¢g(#) and 5(1) = yo.
Let tg = max{t € [0,1] : B(¢t) € g(X)}. Then B(to) = g(#). Thus,
to =0, 8((0,1]) Ng(X) = @ and Im 3 C P(Y).

By Theorem 4, for each m > 2, dimg, [C(X)] = oo and S, €
clo(x)(§(X)). Thus, dimygs, )[C(Y)] = oo and h(S,,) € cley)(F(Y)).
This implies that hA(S,,) is limit of subcontinua of Y contained in
Y — P(Y) and h(S,) NP(Y) # @. Thus, h(S,) C ¢g(X) and
g(0) € h(Sp). Fix my € N such that mg > 4 and h(Sy,,) # {g(0)}.
Then h(Sp,) N (Y —P(Y)) # 2.

Let £ = {F € C(X),9(0) € h(E)}. The uniform continuity of the
map fp : £ x [0,1] — C(X) given by Bo(E,t) = h=1(h(E) U B(]0,1]))
implies that there exists sg > 0 such that, if F € £ and Bo U B3U By C
E, then for each s € [0,5¢], A2 U A3 U Ay C Bo(E,s). In particular,
since B U B3 U By C Sy, for each s € [0,50], A2 U A3 U Ay C
h=(R(Sm,)UB([0, 5])). Let Yo = h(Sm,)UB([0, s0]) and Xo = h~1(Yp).
Since B(sg) € P(Y) — g(X) C inty(P(Y)), by Theorem 4, Y, €
intc(y) (C( ) ( )) HGHCQ XO S lntc(X)(C(X) — S(X)) This
implies that S SZ Xo. Then we can fix a point zg € S — Xy. Since
Ay U A3 U Ay C X, we conclude that pops C Xo or psps C Xo. We
consider the case that paps C X, the other one is similar. Note that
20 ¢ p2ps.

Let € > 0 be such that, if A € C(X) and Hx(A4,Xp) < ¢, then
z0 ¢ A. Let 6 > 0 be as in the definition of the uniform continuity
of h=! for the number . Let x,y € paps — {p2,p3} be such that
x # y, and let K be the subarc of pops joining x and y; notice
K° = K — {x,y}. We choose z and y close enough to each other
in such a way that Hy (h(Sm, — K°),h(Sm,)) < 0, we also ask that
h(Sme, — K°)N (Y —P(Y)) # @. Since 0 € Sy, — K°, by Theorem 4,
dimsg,,, —k-[C(X)] is infinite, so dimys,, —xe)[C(Y)] is infinite and
h(Sm, — K°)N P(Y) # @. Hence, g(8) € h(Spm, — K°).

Define a7 : [0,1] — C(X) by a(t) = h=1(h(Sym, — K°) U B(]0,ts0]))
and y(t) = h=1(h(Sm,) U B([0,ts0])). Then « and ~ are continuous,
a(0) = Sp — K°, a(1) = b (h(Sm, — K°) U B([0, 50])), ¥(0) = S,
and (1) = Xo. Since Hy (h(Spm, — K°),h(Sm)) < 0, Hy (h(Sm,
K°) U B([0,ts0]), h(Smy) U B([0,ts0])) < 6 for each t € [0,1]. Thus,
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Hx (a(t),v(t)) < € for each ¢ € [0,1]. Hence, Hx(a(1),Xo) < e. This
implies that zo ¢ «(1).

By the choice of sq, since By U B3 U By C Sp,, — K°, we obtain that
Az U A3 U Ay C aft) for each t € [0,1]. In particular, {p2,ps} C a(t)
for each ¢ € [0, 1].

Given ¢t > 0, B(tso) € (h(Sm, — K°) U B([0,ts0])) N inty (P(Y)).
Theorem 4 implies that (h(Sm,, — K°) U B([0,ts0])) € intoyy (C(Y) —
$(Y)). Hence, a(t) € inte(x)(C(X) —F(X)). If S C a(t), then there
exists a sequence of elements in C(X) which does not contain § and
converges to a(t), so a(t) ¢ inte(x)(C(X) — §(X)), a contradiction.
Therefore, S ¢ a(t).

We have shown that « satisfies the hypothesis in Claim 5, so paps €
a(l). But zp is a point in S such that zo ¢ paps, 20 ¢ a(l) and,
since pa,p3 € (1), we contradict the connectedness of a(1). This
contradiction completes the proof that X has a unique hyperspace

C(X).

8. Dendrites not in class ® and hyperspace C3(X). For a
dendrite W, it is known [2, 13] that C(WW) is unique if and only if W
is in class ®. This is not true for Co(W) as we see in this section. We
prove that the continuum Z3 = ([—1, 1] x {0}) U(U{{—-1/m} x[0,1/m] :
m > 2} U(U{{Z} x[0,1/m] : m > 2}) has unique hyperspace C2(Z3).
We emphasize that Z3 does not have unique hyperspace C(Z3) (see [2]
or Corollary 14). Let 8 = (0,0).

Example 39. The continuum Z3 has unique hyperspace Co(Z3).

Note that Z3 ¢ ©. We see that Zs has a unique hyperspace Cs(Z3).

Suppose that Y is a continuum such that C3(Z3) and Cs(Y) are
homeomorphic. Let h : Cy(Z3) — C3(Y) be a homeomorphism. By
[16, Theorem 4.1], Y is not a finite graph.

Let J,K € Ag(Z3). Notice that 6 ¢ J, K and J and K are arcs.
By Theorem 4, dim;[C2(Z3)] and dimg[C2(Z3)] are finite. By the
first paragraph in the proof of Lemma 32, there exist L, M € g(Y")
such that h((J°, K°)) = (L° M°). Thus, h(clg,(z,)((J°, K°))) =
clo,(vy((L°, M°)). Since LU M € cle,y)((L°, M®)), there exists an
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A € cloy(z,)((J°, K°)) such that h(A) = LU M. Since A C JUK,
by Theorem 4, dim4[C2(Z3)] is finite. Thus, dimpyua[C2(Y)] is finite
and (LU M)NPEY) = @. By Theorem 4 there exists a finite
graph D in Y such that L UM C inty (D). This implies that
FI‘y(L) C Cly(]:.A(Y) — L) and FI‘y(M) C Cly(]:.A(Y) — M) Since
Frz,(J) C clz,(FA(Z3) — J) and Frz, (K) C clz,(FA(Z3) — K), we
can apply Theorem 34. In particular, if J = K, then L = M and
L is an arc; moreover, for each p € J — J°, h({p}) is a one-point set
and h({p}) C L — L°. By continuity, h({6}) is also a one-point set in
Y —U{M°: M eAs(Y)}.

We define a map g: Zs = Y. Let F = Z3 — |J{L°: L € As(Z3)}.
Given p € F, let g(p) € Y be such that h({p}) = {g9(p)}, which exists
by Theorem 34. Given J € RAg(Z3), let K; € 2As(Y) be such that
h({J°)) = (K9). Note that J is not a simple closed curve.

If J € Agr(Zs), let g5 and p; be the end points of J, where
py € J° Then g; is the only point in J such that J — {gs} is
open in Zs. By Theorem 34, K; € Ag(Y). Note that ¢; € F and
g9(q7) €Y = U{K°: K € As(Y)}. Thus, {q;} € cloy(z,)((J°)) and
{9(a,)} € cloy(v)((KY)). Hence, g(qs) € Ky — K. Therefore, g(q,)
is the only point in K; such that K; — {g(¢qs)} is open in Y. Fix
a homeomorphism ¢; : J — K such that g;(qs) = g(qs). If J is
an arc and J ¢ Ag(X), let ¢y and p; be the end points of J. Then
gs and py are the only points in J such that J — {py, ¢s} is open in
X. By Theorem 34, K is an arc in Ag(Y) — Ag(Y). Proceeding as
before, g(ps) and ¢(g;) are the only points in the arc K; such that
K — {g(ps),(as)} i5 open in Y. Hence, g(ps) and g(gs) are the
end points of K;. Fix a homeomorphism g; : J — K such that
9s(ps) = g(ps) and g;(qs) = 9(qs)-

Now define g : Z3 — Y as the common extension of g (defined in F)
and the maps g; for J € Ag(Z3). Proceeding as in Theorem 35, it can
be shown that g is a well-defined embedding from Zs3 into Y. Given
J € As(Zs), g(J) C cly (FA(Y)). Then g(Zs) = g(clz,(FA(Z3))) C
cly (9(FA(Z3))) C cly (FA(Y)). Hence, g(Z3) C cly (FA(Y)). Given
K € As(Y), fix a point ¢ € K°. Then {q} € P2(Y) and h=1({q}) €
P2(Z3). Hence, there exist J,L € Ag(Z3) such that h='({q}) €
(J°,L°). If J # L, proceeding as in the first paragraph of the proof
of Theorem 32 and using Theorem 34, we obtain that there exist
M,N € As(Y) such that M # N and h({J°, L°)) = (M°, N°). Thus,
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{¢} € (M°,N°), a contradiction. Hence, J = L and K = K. This
proves that K C g(Zs), for every K € 2g(Y'). Hence, cly (FA(Y)) C
g9(Z). Therefore, g(Z) = cly (FA(Y)).

In order to prove that Zs and Y are homeomorphic, we are going
to show that ¥ = cly (FA(Y)). Suppose to the contrary that ¥ #
cly (FA(Y)). Note that Y — cly (FA(Y)) C P(Y).

We need to show the following claim.
Claim 7. Ifp € Z3 and g(p) € P(Y), then p € P(Zs).

To prove Claim 7, let y = g(p). Then y € cly(FA(Y)) — J{K° :
K € Ag(Y)}. Thus, p € Zs — | J{J° : J € Ar(Z3)}. Hence,
h({p}) = {9(p)} = {y}. By Theorem 4, dimy,({,})[C2(Y")] is infinite. So
dimy,) [C2(Z3)] is infinite. Thus, p € P(Z3). So Claim 7 is proved. O

Since P(Z3) = {0}, 0 is the only point p in X for which g(p) €
P(Y). Thus, g(Z3) N P(Y) = {g(0)}. This implies that P(Y) is a
subcontinuum of Y.

We are going to obtain a contradiction by proving that the set
Tz, = intey(z,)(C2(Z3) — F2(Z3)) is disconnected and the set Ty =
into, (v)(C2(Y) — §2(Y)) is pathwise connected.

Take A € Tz,. Then # € A. If A is connected, then A is the
limit of elements A,, in C2(Z3) such that 6 ¢ A,,. This implies that
Ay € §2(Z3) and A ¢ inte,(z,)(Ca(Z3) — F2(Z3)). This contradiction
proves that A has two components: A; and A;. We may assume that
0 € Ay. Let m: Z3 — [—1,1] be the projection on the first coordinate.
Then ‘IZS C {Al UAy € CQ(X) : Al,AQ S C(Zg), A1 NAy = J,
# € Ay and 7T(A2) C [—1,0)} @] {Al UAs € CQ(X) : A1, As € C(Zg),
AiNAs = @, 0 € A; and 7(Ay) C (0,1]}. It follows that Tz, is
disconnected.

Take B € Ty — {Y}. If B € ¢(Z3), then B Ninty (P(Y)) # @.
Let a : [0,1] — C5(Y) be an order arc from B to Y. Then, for
each t € [0,1], a(t) Ninty (P(Y)) # @. This implies that a(t) € Ty.
Therefore, B can be connected to Y by a path in Ty. Now suppose
that B C g(Z3). Since dimp[C3(Y)] is infinite, BN P(Y) # @. Thus,
g(#) € B. Let g :[0,1] — C(Y) be an order arc from {g(6)} to
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P(Y). Let o : [0,1] — C2(Y) be given by a(t) = B U 3(t). Then
a is continuous, «(0) = B, «(l) = BUP(Y) and, for each ¢t > 0,
g # B) Ninty (P(Y)) C «ft) Ninty (P(Y)). Hence, a(t) € Ty.
Therefore, B can be connected to B U P(Y) by a path in Ty. Since
P(Y)Ninty (P(Y)) # &, we have reduced the problem to the first case.
Hence, Ty is pathwise connected.

Therefore, Tz, is disconnected and Ty is connected. This contradicts
the fact that h is a homeomorphism. This contradiction completes the
proof that Z3 and Y are homeomorphic. Therefore, Z3 has unique
hyperspace Co(Z3).

Problem 40. Characterize dendrites X with unique hyperspace
Cy(X).

Problem 41. Does there exist a Peano continuum X such that X
has unique hyperspace C(X) but X does not have unique hyperspace
Cy(X)?

Problem 42. Let X be an almost meshed Peano continuum such
that X — P(X) is connected. Does X have unique hyperspace C(X)?

9. Other examples.

Example 43. Let Z; = Z3 U ({0} x [0,1]). Then Z; does not have
unique hyperspace Cy(Z1). To see this, notice that the point (0,0)
satisfies the conditions of Corollary 25. Recall that, by Example 39, Z3
has unique hyperspace Ca(Z3).

Example 44. Let X be a dendrite that contains a homeomorphic
copy of dendrite F,,. Suppose that there is a point ¢ € F,, such that
F, — {q} is open in X. Then X does not have a unique hyperspace
Cy(X) for any n € N. To see this, notice that the vertex of F,, satisfies
the conditions of Corollary 25.

Example 45. Let X be a local dendrite. Suppose that X contains
a homeomorphic copy of dendrite F,,. Then X does not have unique
hyperspace C,,(X) for any n € N.

Proof. Let d be a metric for X. Let F,, = [J{0pm : m € N}, where
0,pm € X, each Op,, is an arc in X, joining 6 and py,, lim 0p,, = {0}
(in C(X)) and Op,, N Opr, = {0}, if m # k. In order to apply
Theorem 22, we only need to prove that X — {0} has infinitely many
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components. Suppose, to the contrary, that X — {6} has only finitely
many components. Then we may suppose that there exists a component
W of X — {6} such that Op,, — {8} C W for each m € N. Let M
be a dendrite in X such that # € M°, and let ¢ > 0 be such that
B(2¢,0) € M. We may assume that F,, C B(g,0) and W — M # &.
Fix a point w € W — M. Given m € N, since W is arcwise connected,
there exists an arc «,,, C W which joins p,, and w. Then we can
choose a point ¢, € a,, such that d(0,q,,) = € and the subarc §,, of
Qyy, joining p,, and g, is contained in {x € X : d(z,0) < e}. We may
assume that lim g, = ¢ for some ¢ € X such that d(6,q) =¢. Let U
be an open connected subset of X such that g € U C M and 6 ¢ U.
Let mo € N be such that gy, gm,+1 € U. Then there exists an arc v
in U joining ¢m, and gmq+1. Thus, pm, and pm,4+1 can be joined by a
path in B, Uy U Bme+1 € M — {0}. This is a contradiction since the
unique arc in M joining p,, and pmg+1 IS OPme U Opmy+1. Therefore,
X — {0} has infinitely many components. O
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