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UNIQUENESS OF HYPERSPACES
FOR PEANO CONTINUA

RODRIGO HERNÁNDEZ-GUTIÉRREZ, ALEJANDRO ILLANES

AND VERÓNICA MARTÍNEZ-DE-LA-VEGA

ABSTRACT. For a metric continuum X and a positive
integer n, let Cn(X) be the hyperspace of nonempty closed
subsets of X with at most n components. We say that
X has unique hyperspace Cn(X) provided that, if Y is a
continuum and Cn(X) is homeomorphic to Cn(Y ), then X
is homeomorphic to Y . In this paper we study which Peano
continua X have a unique hyperspace Cn(X). We find some
sufficient and also some necessary conditions for a Peano
continuum X to have unique hyperspace Cn(X). Our results
generalize all the previously known results on this subject. We
also give some significant examples.

1. Introduction. A continuum is a nondegenerate compact con-
nected metric space. A Peano continuum is a locally connected con-
tinuum. For a continuum X and n ∈ N, consider the following hyper-
spaces:

2X = {A ⊂ X : A is closed and nonempty},
C(X) = {A ∈ 2X : A is connected},
Cn(X) = {A ∈ 2X : A has at most n components}.

All the hyperspaces considered are metrized by the Hausdorff metric
HX . Note that C(X) = C1(X).

We say that a continuum X has unique hyperspace Cn(X) provided
that the following implication holds: if Y is a continuum and Cn(X) is
homeomorphic to Cn(Y ), then X is homeomorphic to Y .

Given a continuum X , let

G(X) = {p ∈ X : p has a neighborhood M in X such that

M is a finite graph} and P(X) = X − G(X).
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A free arc in X is an arc α ⊂ X , with end points p and q such
that α − {p, q} is open in X . The continuum X is said to be almost
meshed provided that the set G(X) is dense inX , and an almost meshed
continuumX is meshed provided that X has a basis of neighborhoods B
such that, for each element U ∈ B, U −P(X) is connected. A dendrite
is a locally connected continuum without simple closed curves. Let D
denote the class of dendrites with a closed set of end points.

Using the results of Duda in [11, subsection 9.1], Acosta [1, Theorem
1] observed that finite graphs different from both an arc and a simple
closed curve have unique hyperspace C(X). Illanes proved in [16, 17]
that finite graphs have unique hyperspaces Cn(X), for each n ≥ 2.

In [13], Herrera-Carrasco showed that ifX is inD andX is not an arc,
then X has unique hyperspace C(X). This result was extended in [15],
where Herrera-Carrasco and Maćıas-Romero proved that if X ∈ D,
then X has a unique hyperspace Cn(X) for every n ≥ 3. The case
n = 2 has also been solved. It was more difficult so the two papers [14,
18] were needed to complete its solution. Acosta and Herrera-Carrasco
[2] have shown that if X is a dendrite and X /∈ D, then there are
uncountable many non-homeomorphic continua Y such that C(X) is
homeomorphic to C(Y ). Thus, a dendrite X that is not an arc belongs
to D if and only if X has unique hyperspace C(X).

Recently [3], Acosta, Herrera-Carrasco and Maćıas-Romero have
proved that if X is a locally D-continuum (that is, X is a continuum
such that each point has a basis of neighborhoods B such that each
element in B is an element of D) that is not an arc, then X has unique
hyperspace C(X).

On the other hand, the well known Curtis-Schori theorem (see [9,
10]) states that if X is a Peano continuum containing no free arcs, then
C(X) is homeomorphic to the Hilbert cube. This is why the problem
of determining whether a Peano continuum X has unique hyperspace
is open only when X contains free arcs.

In this paper we are interested in studying which Peano continua X
have a unique hyperspace Cn(X). The main results are the following.

A. If a Peano continuum has a nonempty open subset without free
arcs (that is, X is not almost meshed), then X does not have unique
hyperspace Cn(X) for any n ∈ N (Theorem 20). Thus, for a Peano
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continuum X to have unique hyperspace, we at least need X to be
almost meshed.

B. If X is meshed, we obtain a completely opposite result (Theorem
37). For n �= 1, X has a unique hyperspace Cn(X). If, further, X is
neither an arc nor a simple closed curve, then X has unique hyperspace
C(X) (Theorem 37). Recall that if X is either an arc or a simple closed
curve, then C(X) is a 2-cell. Thus, the problem of determining if a
Peano continuum X has unique hyperspace Cn(X) is open only when
X is almost meshed but not meshed.

C. The class of meshed continua contains the following classes:
(a) finite graphs, (b) D, (c) locally D continua. Hence, Theorem 37
covers all the known cases of continua X having a unique hyperspace
Cn(X).

D. If X is almost meshed and X − P(X) is disconnected, then X
does not have a unique hyperspace C(X) (Corollary 23).

E. Let Z0 = ([−1, 1]×{0})∪ (
⋃{{1/m}× [0, (1/m)] : m ≥ 2}). Then

Z0 plays an important role in this topic:

(a) if a dendrite X contains Z0, then X /∈ D and X does not have a
unique hyperspace C(X) [2];

(b) Z0 is almost meshed, P(Z0) = {(0, 0)}, Z0 − P(Z0) is discon-
nected;

(c) Z0 is not meshed (Lemma 3);

(d) the dendrite Z3 = Z0 ∪ (
⋃{{−1/m} × [0, (1/m)] : m ≥ 2}) has a

unique hyperspace C2(Z3) (Example 39);

(e) if we add the segment {0} × [0, 1] to Z3, that is, if Z1 =
Z3 ∪ ({0} × [0, 1]), then Z1 does not have a unique hyperspace C2(Z1)
(Example 43);

(f) if we add the arc L = ({−1, 1}× [0, 1])∪ ([−1, 1]×{1}), that is, if
Z2 = Z0 ∪ L, then Z2 − P(Z2) is connected, Z2 is not meshed and Z2

has a unique hyperspace C(Z2) (Example 38).

A discussion about uniqueness of other hyperspaces can be found in
the introduction of [18].

2. Meshed and almost meshed continua. Given a continuum X
and a subset A of X , we denote the interior of A in X by Ao or intX(A).
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For ε > 0, p ∈ X and A ⊂ X , let B(ε, p) denote the ε-ball around p
in X , and let N(ε, A) =

⋃{B(ε, a) : a ∈ A}. Given A ∈ Cn(X),
we denote by dimA[Cn(X)] the dimension of the space Cn(X) at the
element A. Let

FA(X) =
⋃

{Jo : J is a free arc J in X}.

Given n ∈ N and a continuum X , let

Fn(X) = {A ∈ Cn(X) : dimA[Cn(X)] is finite}.

The set F1(X) is simply denoted by F(X).

Given subsets U1, . . . , Um of X , let 〈U1, . . . , Um〉 = {A ∈ Cn(X) :
A ⊂ U1 ∪ · · · ∪ Um and A ∩ Ui �= ∅ for each i ∈ {1, . . . ,m}}. It is
known (see [23, subsection 4.24]) that the family of all sets of the form
〈U1, . . . , Um〉, where m ∈ N and each Ui is open in X , is a basis for
the topology in Cn(X).

We describe some examples in the Euclidean plane R2. Given two
different points p, q ∈ R2, let pq denote the convex segment joining
them.
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Let Z0 = ([−1, 1] × {0}) ∪ (
⋃{{1/m} × [0, (1/m)] : m ≥ 2}). Then

Z0 is a dendrite, Z0 /∈ D, P(Z0) = {(0, 0)}, Z0 is almost meshed but
Z0 is not meshed.

Let Fω =
⋃{(0, 0)((1/m), (1/m2)) : m ∈ N}. Then Fω is a dendrite,

Fω /∈ D, P(Fω) = {(0, 0)}, Fω is almost meshed but Fω is not meshed.

In [5] it was proved that a dendrite X is in D if and only if X does
not contain a topological copy of neither Z0 nor Fω.

Note that meshed continua do not need to be local dendrites. For
example, the continuum X described in [23, Example 10.38, Figure
10.38 (a)] is meshed and P(X) is the segment A0 = [0, 1]× {0}.
The following lemma is easy to prove.

Lemma 1. Let X be a continuum. Then clX(G(X)) = clX(FA(X)).
Therefore, X is almost meshed if and only if FA(X) is dense in X.

Lemma 2. If X is a meshed continuum, then X is a Peano
continuum.

Proof. Let B be a basis of neighborhoods of X such that, for each
element U ∈ B, U − P(X) is connected. Since X is almost meshed,
(P(X))o = ∅. Thus, for each U ∈ B, intX(U) ⊂ clX(U − P(X)).
Therefore, the family {clX(U −P(X)) : U ∈ B} is a basis of connected
neighborhoods for X . Hence, X is connected almost certainly and then
X is locally connected.

Lemma 3. Let X be a continuum. Then X is meshed if and only if
X is almost meshed, and X has a basis D of open connected subsets of
X such that, for each element U ∈ D, U − P(X) is connected.

Proof. The sufficiency is immediate from the definition of meshed
continuum. Now, suppose that X is meshed. Let B be a basis of
neighborhoods of X such that, for each element U ∈ B, U − P(X) is
connected. Let p ∈ X and W be an open subset of X such that p ∈ W .
Let U ∈ B be such that p ∈ intX(U) ⊂ U ⊂ W . By Lemma 2, there
exists an open connected subset Z of X such that p ∈ Z ⊂ intX(U).
Since P(X) is a closed subset of X , for each x ∈ U−P(X), there exists
an open and connected subset of Vx ofX such that x ∈ Vx ⊂ W−P(X).
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Let V = Z ∪ (
⋃{Vx : x ∈ U −P(X)}). Clearly, V is an open subset of

X such that p ∈ V ⊂ W . Since (U−P(X))∪(⋃{Vx : x ∈ U−P(X)}) is
a connected subset of V −P(X) and Z−P(X) ⊂ U −P(X), we obtain
that V − P(X) = (U − P(X)) ∪ (

⋃{Vx : x ∈ U − P(X)}) is an open
connected subset of X . Since V − P(X) ⊂ V ⊂ clX(V − P(X)), we
conclude that V is connected. This completes the proof of the lemma.

Theorem 4. Let X be a Peano continuum, n ∈ N and A ∈ Cn(X).
Then the following are equivalent.

(a) dimA[Cn(X)] is finite,

(b) there exists a finite graph D contained in X such that A ⊂ Do,

(c) A ∩ P(X) = ∅.

Proof. (a) ⇒ (b). Let k be the number of components of A. In
the case that k = 1, since dimA[C(X)] ≤ dimA[Cn(X)], we obtain
that dimA[C(X)] is finite. Thus, [18, Lemma 2.2, Claim 1] guarantees
the existence of D. Suppose then that k > 1. Let A1, . . . , Ak be the
components of A. Let Z1, . . . , Zk be pairwise disjoint subcontinua of
X such that Ai ⊂ Zo

i for each i ∈ {1, . . . , k}.
Let ϕ : C(Z1) × · · · × C(Zk) → 〈Z1, . . . , Zk〉 ∩ Ck(X) be given by

ϕ(B1, . . . , Bk) = B1 ∪ . . . ∪ Bk. Notice that ϕ is a homeomorphism.
Given i ∈ {1, . . . , k}, dimAi [C(Zi)] ≤ dim(A1,... ,Ak)[C(Z1) × · · · ×
C(Zk)] = dimA[〈Z1, . . . , Zk〉 ∩ Ck(X)] ≤ dimA[Cn(X)] < ∞. Since
C(Zi) is a neighborhood of Ai in C(X), dimAi [C(X)] = dimAi [C(Zi)].
Since Ai is connected, by the first case we considered (k = 1), there
exists a finite graph Di, contained in X , such that Ai ⊂ Do

i . We
may assume that Di ⊂ Zi. Since the finite graphs D1, . . . , Dk are
pairwise disjoint and X is arcwise connected [23, subsection 8.23], it is
possible to construct a finite number of arcs α1, . . . , αr in X such that
D = D1 ∪ · · · ∪Dk ∪ α1 ∪ · · · ∪ αr is a finite graph. Since A ⊂ Do, the
proof of (a) ⇒ (b) is finished.

(b) ⇒ (a). Suppose that A ⊂ Do for some finite graph D in X .
Then Cn(D) is a neighborhood of A in Cn(X). Thus, dimA[Cn(X)] =
dimA[Cn(D)]. By the main result in [21], dimA[Cn(D)] is finite (in
fact, in [21, Theorem 2.4] there is an explicit formula for computing
dimA[Cn(D)]).



UNIQUENESS OF HYPERSPACES FOR PEANO CONTINUA 1589

(b) ⇒ (c) is immediate from the definition of P(X).

(c) ⇒ (b). Suppose that A∩P(X) = ∅. For each point a ∈ A, let Da

be a finite graph inX such that a ∈ intX(Da). Then there exists a finite
graph Fa in X such that a ∈ intX(Fa) ⊂ Fa ⊂ intX(Da) − P(X). By
the compactness of A, there exist m ∈ N and a1, . . . , am ∈ A such that
A ⊂ intX(Fa1)∪ · · · ∪ intX(Fam). Let F = Fa1 ∪ · · · ∪Fam . Notice that
F has a finite number of components and A ⊂ F o. Since each point
p ∈ F belongs to the interior in X of a finite graph contained in X , it
is easy to check that each component of F satisfies conditions (1) and
(2) of [23, Theorem 9.10]. Thus, each component of F is a finite graph.
Joining the components of F by appropriate arcs in X , we obtain the
required graph D. This completes the proof of the theorem.

Theorem 5. For a Peano continuum X, the following are equivalent.

(a) X is meshed,

(b) for each n ∈ N, Fn(X) is dense in Cn(X),

(c) there exists an n ∈ N such that Fn(X) is dense in Cn(X).

Proof. (a) ⇒ (b). Suppose that X is meshed. Let n ∈ N, A ∈ Cn(X)
and ε > 0. Let A1, . . . , Ak be the components of A. We assume
that N(ε, A1), . . . , N(ε, Ak) are pairwise disjoint. For each a ∈ A,
by Lemma 3, there exists an open connected subset Ua of X such that
a ⊂ Ua ⊂ B(ε, a) and the open set Va = Ua−P(X) is connected. Notice
that Va is nonempty. Fix a point b(a) in Va. Given i ∈ {1, . . . , k}, by
the compactness of Ai, there exist m ∈ N and a1, . . . , am ∈ Ai such
that Ai ⊂ Ua1 ∪ · · · ∪ Uam ⊂ N(ε, Ai). Let U = Ua1 ∪ · · · ∪ Uam and
V = Va1 ∪ · · · ∪ Vam . Notice that U is connected. We see that V is
connected. Suppose to the contrary that V is disconnected. Then,
we may assume that there exists an r ∈ {1, . . . ,m − 1} such that
(Va1 ∪ · · · ∪ Var ) ∩ (Var+1 ∪ · · · ∪ Vam) = ∅. Since U is connected, the
open set W = (Ua1 ∪· · ·∪Uar )∩ (Uar+1 ∪· · ·∪Uam) is nonempty. Since
intX(P(X)) = ∅, (Va1 ∪ · · · ∪ Var ) ∩ (Var+1 ∪ · · · ∪ Vam) = W − P(X)
is nonempty, a contradiction. Therefore, V is connected. By [23,
Theorem 8.26], V is arcwise connected. Hence, there exists a tree
Ti ⊂ V such that {b(a1), . . . , b(am)} ⊂ Ti. Clearly, HX(Ai, Ti) < 2ε
and Ti ∩ P(X) = ∅. Let T = T1 ∪ · · · ∪ Tk ∈ Cn(X). Then
HX(A, T ) < 2ε and T ∩ P(X) = ∅. By Theorem 4, dimT [Cn(X)]
is finite, so T ∈ Fn(X).
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(b) ⇒ (c) is immediate.

(c) ⇒ (a). Suppose that Fn(X) is dense in Cn(X). First, we see
that G(X) is dense in X . Let p ∈ X and ε > 0. Then there exists
an A ∈ Fn(X) such that HX({p}, A) < ε. By Theorem 4, there
exists a finite graph D contained in X such that A ⊂ Do. Fix a
point a ∈ A. Then a ∈ B(ε, p) and D is a neighborhood of a. Thus,
a ∈ B(ε, p) ∩ G(X). Therefore, G(X) is dense in X .

Now suppose that X is not meshed. Then there exist p ∈ X and a
neighborhood W of p such that, for each open subset U of X such that
p ∈ U ⊂ W , U−P(X) is not connected. Since X is a Peano continuum,
there exists an open connected subset V of X such that p ∈ V ⊂ W .
Then V− P(X) = S ∪ T , where S and T are disjoint open nonempty
subsets of X . Fix x ∈ T and pairwise different points p1, . . . , pn ∈ S.
Since V is arcwise connected, there exists an arc α ⊂ V such that α
joins x to a point pi and α∩{p1, . . . , pn} = {pi}. We may suppose that
i = n. Let A = {p1, . . . , pn−1} ∪ α ∈ Cn(X). Let ε > 0 be such that
B(ε, p1), . . . , B(ε, pn−1), N(ε, α) are pairwise disjoint, B(ε, p1) ∪ · · · ∪
B(ε, pn) ⊂ S, B(ε, x) ⊂ T and N(ε, α) ⊂ V . By the density of Fn(X),
there exists a B ∈ Fn(X) such that HX(B,A) < ε. Notice that B is
contained in the union of the sets B(ε, p1), . . . , B(ε, pn−1), N(ε, α) and
intersects each one of them. Thus, the components of B are the sets
B1 = B ∩B(ε, p1), . . . , Bn−1 = B ∩B(ε, pn−1) and Bn = B ∩N(ε, α).
Notice that Bn ∩ B(ε, pn) �= ∅ and Bn ∩ B(ε, x) �= ∅. Thus, Bn is
connected, Bn ⊂ V and Bn intersects S and T . This implies that
Bn ∩P(X) �= ∅ and, by Theorem 4, B /∈ Fn(X), a contradiction. This
proves that X is meshed and completes the proof of the theorem.

Theorem 6. The class of meshed continua contains the following
classes.

(a) Finite graphs,

(b) D,

(c) locally D continua.

Proof. Since the class of locally D continua contains class D and
all the finite graphs, we only need to check that locally D continua
are meshed. Let X be a locally D continuum. Clearly, X is a Peano
continuum. By [3, Theorem 3.9], F(X) is dense in C(X), so Theorem 5
implies that X is meshed.
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3. Free arcs. A free circle S, in a continuum X , is a simple closed
curve S in X such that there exists a p ∈ S such that S − {p} is open
in X . A maximal free arc is a free arc in X which is maximal with
respect to inclusion. Let

A(X) = {J ⊂ X : J is a maximal free arc in X}

and

AS(X) = A(X) ∪ {S ⊂ X : S is a free circle in X}.

A simple triod is a continuum T homeomorphic to the cone over the
discrete space {1, 2, 3}. The point of T corresponding to the vertex of
the cone is called the vertex of T .

Given an arc J in a continuum X and points x, y in J , let [x, y]J be
the subarc of J joining x and y, if x �= y, and [x, y]J = {x}, if x = y.
We also define [x, y)J = [x, y]J − {y} and (x, y)J = [x, y]J − {x, y}.
The following lemma is easy to prove.

Lemma 7. Let X be a continuum, and let J be a free arc in X.
Then:

(a) no point of Jo can be the vertex of a simple triod in X ,

(b) if J and K are free arcs in X and Jo ∩Ko �= ∅, then J ∪K is a
free arc or a free circle in X.

Lemma 8. For a Peano continuum X, let {Jm}∞m=1 be a sequence of
pairwise different elements of AS(X) and xm ∈ Jm, for each m ∈ N.
If limxm = x for some x ∈ X, then lim Jm = {x} (in C(X)).

Proof. Note that X is neither an arc nor a simple closed curve. For
each m ∈ N, xm ∈ clX(Jo

m), so we may assume that xm ∈ Jo
m. For

each m ∈ N, FrX(Jm) is a nonempty subset of X with at most two
elements. Thus, we can put FrX(Jm) = {pm, qm}. Suppose that the
sequence {Jm}∞m=1 does not converge to {x} in C(X). Since C(X)
is compact, there exists a subsequence of {Jm}∞m=1 that converges to
some A ∈ C(X), where A �= {x}. We may assume that lim Jm = A,
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lim pm = p and lim qm = q, for some p, q ∈ X . Note that p, q, x ∈ A.
Since A �= {x}, we can choose an element y ∈ A − {p, q}. Then there
exists a sequence {ym}∞m=1 in X such that ym ∈ Jm, for each m ∈ N
and lim ym = y. By [14, Lemma 3], Jo

m ∩ Jo
k = ∅, if m �= k. Thus,

y /∈ Jo
m for every m ∈ N. Let U be an open connected (then arcwise

connected) set in X such that y ∈ U and p, q /∈ clX(U). Let m0 ∈ N
be such that, for each m ≥ m0, ym ∈ U . For each m ≥ m0, let αm be
an arc in U with end points ym and y. Since y /∈ Jo

m, αm contains one
of the points pm or qm. This implies that p ∈ clX(U) or q ∈ clX(U), a
contradiction. This completes the proof of the lemma.

Lemma 9. Let X be a Peano continuum and J a free arc with an
end point e such that e ∈ Jo. Then there exists a free arc K such that
J ⊂ K, e is an end point of K, e ∈ Ko and K contains every free arc
in X containing J .

Proof. We may assume that X is not an arc. Let F = {L ⊂ X : L be
a free arc in X such that J ⊂ L}. Given L ∈ F , let pL and qL be the
end points of L. We claim that e ∈ {pL, qL}. Suppose to the contrary
that e /∈ {pL, qL}. Since e ∈ Jo, there exist points x, y ∈ L such that
e ∈ (x, y)L ⊂ J . This is a contradiction since e is an end point of J .
Hence, e ∈ {pL, qL}, and we may assume that the end points of L are
pL and e. Since e ∈ Jo, we have that e ∈ Lo. Thus, L − {pL} is open
in X .

By Lemma 7 (a), it follows that if L,M ∈ F , then L ⊂ M or M ⊂ L.

Let U = ∪{L − {pL} : L ∈ F} and K = clX(U). We claim that
K �= U . Suppose to the contrary that K = U . Since K is compact
and L−{pL} is open for each L ∈ F , by the previous paragraph, there
exists an L ∈ F such that K = L − {pL}. This is impossible since
L−{pL} is not compact. Hence, K �= U . Fix a point p ∈ K−U . Since
X is arcwise connected, there exists an arc M in X joining p and e.

We see that K = M . Let L ∈ F and z ∈ L − {e, pL}. Then
X − {z} = (X − [z, e]L) ∪ (z, e]L is a separation of X − {z}. Thus,
z separates p and e in X . Hence, z ∈ M . We have shown that
L − {e, pL} ⊂ M . Therefore, U ⊂ M and K ⊂ M . Since p, e ∈ K, we
conclude that K = M . Thus, U is a connected subset of the arc M ,
e ∈ U and p ∈ clX(U). This implies that U = M − {p} = K − {p}.
Since U is open in X , we have that K is a free arc. Thus, K ∈ F .
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Given L ∈ F , since K is closed in X and L − {pL} ⊂ K, we have
L ⊂ K. This completes the proof of the lemma.

Lemma 10. Let X be a Peano continuum, and let J be a free arc.
Then there exists a K ∈ AS(X) such that J ⊂ K.

Proof. We may assume that X is not a simple closed curve and J is
not contained in a free circle in X . Let x, y be the end points of J . Fix
points p, q ∈ (x, y)J such that [x, p]J ∩ [q, y]J = ∅. Let Y = X−(p, q)J .
Then Y is a compact subset of X . Let Xp and Xq be the components
of Y containing p and q, respectively. Notice that FrX(Y ) = {p, q},
[x, p]J ⊂ Xp and [q, y]J ⊂ Xq. By the boundary bumping theorem
([23, Theorem 5.4]), each component of Y contains either p or q. This
implies that Y = Xp ∪ Xq, and we have that either Xp = Xq = Y
or Xp ∩ Xq = ∅. Clearly, Y is locally connected and each Xp and
Xq are Peano continua. Notice that [x, p]J is a free arc of Xp and
p ∈ intXp([x, p]J ). By Lemma 9, there exists a free arc Kp of Xp such
that [x, p]J ⊂ Kp, p is an end point of Kp, p ∈ intXp(Kp) and Kp

contains every free arc in Xp containing [x, p]J . Similarly, [q, y]J is a
free arc of Xq, q ∈ intXq ([q, y]J), and there exists a free arc Kq of Xq

such that [q, y]J ⊂ Kq, q is an end point of Kq, q ∈ intXq (Kq) and Kq

contains every free arc in Xq containing [q, y]J . Let p0 (respectively,
q0) be the other end point of Kp (respectively, Kq).

Since [x, p]J is a free arc of Xp and p ∈ intXp([x, p]J ), p is an
end point of each arc in Xp containing p. If p ∈ (q, q0)Kq , then
p ∈ Xp ∩ Xq and Xp = Xq. This implies that p is not an end point
of the arc [q, q0]Kq ⊂ Xp, a contradiction. Hence, p /∈ (q, q0)Kq . Since
FrX(Xq) ⊂ {p, q}, we have that (q, q0)Kq is an open set in Xq such
that (q, q0)Kq ⊂ IntX(Xq). Hence, (q, q0)Kq is open in X . Similarly,
(p, p0)Kp is open in X . Thus, Kp and Kq are free arcs in X . Since
∅ �= (x, p)J ⊂ Kp ∩ [x, q]J and J is not contained in a free circle in
X , by Lemma 7 (b), Kp ∪ [x, q]J = Kp ∪ [p, q]J is a free arc in X .
Similarly, Kq ∪ [p, q]J is a free arc in X . Applying again Lemma 7 (b),
Kp ∪ [p, q]J ∪Kq = Kp ∪ J ∪Kq is a free arc in X with end points p0
and q0.

Suppose that L is a free arc in X such that Kp∪J∪Kq ⊂ L. Suppose
that the end points of L are u and v and [u, p0]L ∩ [q0, v]L = ∅. Then
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[u, p]L ⊂ X − (p, q)J and [u, p]L ⊂ Xp. By the maximality of Kp,
[u, p]L = Kp = [p0, p]L. This implies that u = p0. Similarly, v = q0.
Hence, L = Kp∪J ∪Kq. We have shown that Kp ∪J ∪Kq is maximal.
This ends the proof of the lemma.

Lemma 11. Let X be a Peano continuum and A ∈ Cn(X). Then
dimA[Cn(X)] ≥ 2n and, if dimA[Cn(X)] = 2n, then there exist k ∈ N
and elements J1, . . . , Jk ∈ AS(X) such that A ∈ 〈Jo

1 , . . . , J
o
k 〉, where

each component of A is contained in some Jo
i .

Proof. We may assume that dimA[Cn(X)] is finite. Let A1, . . . , Ak

be the components of A. By Theorem 4, there exists a finite graph D
contained in X such that A ⊂ Do. Then Cn(D) is a neighborhood of
A in Cn(X). Thus, dimA[Cn(X)] = dimA[Cn(D)]. By [21, Theorem
2.4],

dimA[Cn(D)] = 2n+
∑

x∈R(D)∩A

(ordD(x)− 2),

where R(D) is the set of ramification points of the graphD and ordD(x)
is the order of the point x in D. Since ordD(x) ≥ 3 for each x ∈ R(D),
dimA[Cn(X)] ≥ 2n and, if dimA[Cn(X)] = 2n, then R(D) ∩ A = ∅.
Now, assume that dimA[Cn(X)] = 2n. Then, for each i ∈ {1, . . . , k},
there exists a free arc Li in D such that Ai ⊂ intD(Li). Since A ⊂ Do,
Ai ⊂ intX(Li) so we may assume that Li ⊂ Do. This implies that Li

is a free arc in X . By Lemma 10, there exists a Ji ∈ AS(X) such that
Li ⊂ Ji. Therefore, A ∈ 〈Jo

1 , . . . , J
o
k 〉.

4. Continua that are not almost meshed. Given a continuum
X and a nonempty closed subset K of X , let

CK
n (X) = {A ∈ Cn(X) : K ⊂ A},

and

Cn(X,K) = {A ∈ Cn(X) : A ∩K �= ∅}.

Given A, B ∈ 2X such that A � B, an order arc from A to B is
a continuous function α : [0, 1] → 2X such that α(0) = A, α(1) = B
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and, if 0 ≤ s < t ≤ 1, then α(s) � α(t). It is known (see [19, Lemma
15.2]) that if A � B, then there exists an order arc from A to B if
and only if each component of B intersects A. Given a closed subset
G of 2X , we call G a growth hyperspace provided that, for every A ∈ G
and B ∈ 2X such that A � B and each component of B intersects
A, we have B ∈ G (equivalently, there is an order arc from A to B).
Note that the sets Cn(X), CK

n (X) = {A ∈ Cn(X) : K ⊂ A} and
Cn(X,K) = {A ∈ Cn(X) : A ∩ K �= ∅} are growth hyperspaces. By
the comments at the end of Section 2 of [8, Section 2], if X is a Peano
continuum and G ⊂ 2X is a growth hyperspace, then G is an AR.

A compactum is a compact metric space. A map is a continuous
function. Given a compactum Y with metric d, a closed subset A of
Y is said to be a Z-set in Y provided that, for each ε > 0, there is a
continuous function fε : Y → Y − A such that d(fε(y), y) < ε for all
y ∈ Y . A continuous function between compacta f : Y1 → Y2 is called
a Z-map provided that f(Y1) is a Z-set in Y2.

Given two disjoint continua X and Y , and points p ∈ X and y ∈ Y ,
let X∪pY be the continuum obtained by attaching X to Y (identifying
p to y).

Given a continuum X , a metric d for X is said to be convex provided
that, for each of two points p, q ∈ X , there exists an isometry γ :
[0, d(p, q)] → X such that γ(0) = p and γ(d(p, q)) = q. It is known that
X is a Peano continuum if and only if X admits a convex metric (see
[6, 22]).

Given a continuum X , ε > 0 and A ∈ 2X , define Cd(ε, A), the
generalized closed d-ball in X of radius ε about A, by Cd(ε, A) = {x ∈
X : d(x,A) ≤ r}. If X is a Peano continuum with a convex metric d,
then for every A ∈ Cn(X) and ε > 0, Cd(ε, A) ∈ Cn(X).

Definition 12. Given a Peano continuum X with convex metric d
and ε > 0, define Φε : 2

X → 2X by Φε(A) = Cd(ε, A).

Remark 13. By [19, Proposition 10.5], Φε is a map within ε of the
identity map. Also notice that, if G is a growth hyperspace, A ∈ G
and ε > 0, then Φε(A) ∈ G.
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We will use the following characterization by Toruńczyk of the Hilbert
cube ([24], see also [19, Theorem 9.3]).

Theorem 14 (Toruńczyk’s theorem). Let Y be an AR. If the identity
map on Y is a uniform limit of Z-maps, then Y is a Hilbert cube.

Lemma 15. Let X be a Peano continuum, R a closed subset of
P(X) and K ∈ C(X) such that intX(K) ∩ R �= ∅. Then CK

n (X) is a
Z-set of Cn(X,R).

Proof. Notice that CK
n (X) is a closed subset of Cn(X,R). We show

that, for each ε > 0, there is a map, gε : Cn(X,R) → Cn(X,R) −
CK

n (X) such that HX(gε(A), A) < ε for all A ∈ Cn(X,R).

Let ε > 0, and fix a point p ∈ intX(K) ∩ R. We may assume
that X �= B(ε, p) ⊂ intX(K). By [23, Theorem 8.10], there exist
an m ∈ N and Peano subcontinua X1, . . . , Xm of X such that, for
each i ∈ {1, . . . ,m}, diameter (Xi) < ε/4 and X = X1 ∪ · · · ∪ Xm.
We may assume that {i ∈ {1, . . . ,m} : p ∈ Xi} = {1, . . . , r} where
r < m. Define the star of p by St(p) = X1 ∪ · · · ∪ Xr. Notice that
St (p) ⊂ intX(K).

Let F = {j ∈ {1, . . . ,m} : p /∈ Xj and Xj ∩ St (p) �= ∅}. Since
St (p) �= X and X = X1 ∪ · · · ∪ Xm is connected, it follows that
F �= ∅. For each j ∈ F , fix a point pj ∈ Xj ∩ St (p). Note that,
by [19, Proposition 10.7], St (p) is a locally connected continuum, and
therefore it is arcwise connected. Thus, it is possible to construct a tree
T ⊂ St (p) such that {pj : j ∈ F} ⊂ T and p ∈ T . Hence, T ∩Xj �= ∅
for each j ∈ F .

Let Y = T ∪ (
⋃ {Xj : j ∈ F}). By [19, Proposition 10.7], Y is a

Peano continuum, since C(Y ) is a growth hyperspace, C(Y ) is an AR.
Notice that Y ⊂ intX(K).

Let Z = Y ∩R. Notice that p ∈ Z and C(Y, Z) is an AR (C(Y, Z) is
a growth hyperspace).

Define α : Y → C(Y ) by α(y) = {y}, and let β : Z → C(Y, Z) be
given by β(z) = {z}. By [19, Theorem 9.1], β can be extended to a
map β : (St (p)∪ Y )∩R → C(Y, Z). Notice that β|Z = α|Z . Thus, the
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function α ∪ β : ((St (p) ∪ Y ) ∩R) ∪ Y → C(Y ) defined by

(α ∪ β)(x) =

{
α(x) if x ∈ Y ,

β(x) if x ∈ (St (p) ∪ Y ) ∩R,

is a well-defined map.

By [19, Theorem 9.1], we can extend α∪β to a map α : St (p)∪Y →
C(Y ).

Now extend α to a function γ : X → C(X) by the formula

γ(x) =

{
α(x) if x ∈ St (p) ∪ Y ,

{x} if x ∈ X − (St (p) ∪ Y ).

Since clX(X − (St (p) ∪ Y )) ∩ (St (p) ∪ Y ) ⊂ ⋃{Xj : j ∈ F} ⊂ Y , γ
is a well-defined map.

Notice that, if x ∈ R∩ (St (p)∪ Y ), then γ(x) = α(x) = (α∪ β)(x) =
β(x) ∈ C(Y, Z). Therefore, γ has the following property:

(∗) For every x ∈ R ∩ (St (p) ∪ Y ), γ(x) ∩R �= ∅.

Define gε : Cn(X) → Cn(X) as gε(A) =
⋃{γ(x) : x ∈ A}. Using [7,

Lemma 2.2], it is easy to see that gε is a well-defined map.

Given x ∈ St (p) ∪ Y , since diameter (St (p) ∪ Y ) < ε and γ(x) ⊂ Y ,
we have that HX({x}, γ(x)) < ε. This implies that HX(A, gε(A)) < ε
for each A ∈ Cn(X).

Now we prove that gε maps Cn(X,R) into Cn(X,R) − CK
n (X). Let

A ∈ Cn(X,R), and fix a point a ∈ A ∩ R. If a ∈ X − (St(p) ∪ Y ),
then γ(a) = {a} ⊂ R, so gε(A) ∈ Cn(X,R). If a ∈ St (p) ∪ Y ,
then a ∈ R ∩ (St (p) ∪ Y ). By property (∗), γ(a) ∩ R �= ∅, so
gε(A) ∈ Cn(X,R).

Notice that, by definition of P(X), p does not have a neighborhood
homeomorphic to a finite graph. Since St(p) − (

⋃{Xj : j ∈ F}) is
an open subset of X that contains p and is contained in intX(K),
we conclude that there exists a point s ∈ (St (p) − (

⋃{Xj : j ∈
F})) − T ⊂ (St (p) − Y ) ∩ K. Thus, for every x ∈ X , we have
that s /∈ γ(x). Therefore, K � gε(B) for any B ∈ Cn(X). Hence,
gε|Cn(X,R) : Cn(X,R) → Cn(X,R) − CK

n (X) is the desired map, and
the lemma is proved.
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Theorem 16. Let X be a Peano continuum and R a nonempty
closed subset of P(X). Then Cn(X,R) is a Hilbert cube.

Proof. The proof is based on Toruńczyk’s theorem (Theorem 14).
Since Cn(X,R) is a growth hyperspace, Cn(X,R) is an AR. We verify
the second assumption of Theorem 14 for Cn(X,R). For this purpose,
we assume that the metric for X is convex.

Let ε > 0. By Remark 13, Φε|Cn(X,R) : Cn(X,R) → Cn(X,R) is a
map within ε of the identity on Cn(X,R). We only need to show that
Φε|Cn(X,R) is a Z-map.

Since R is compact, there are finitely many points p1, . . . , ps of
R such that R ⊂ Cd((ε/2), {p1}) ∪ · · · ∪ Cd((ε/2), {ps}). For each
i ∈ {1, . . . , s}, let Ki = Cd((ε/2), {pi}). Since d is convex, Ki

is a continuum and pi ∈ intX(Ki) ∩ R. Applying Lemma 15, we
obtain that CKi

n (X) is a Z-set in Cn(X,R). By [19, Exercise 9.4],
the set G = CK1

n (X) ∪ · · · ∪ CKs
n (X) is a Z-set in Cn(X,R). By

the choice of Ki, it is easy to see that, for each A ∈ Cn(X,R),

there exists a j ∈ {1, . . . , s} such that Φε(A) ∈ C
Kj
n (X). Therefore,

Φε(Cn(X,R)) ⊂ G.
Since a closed subset of a Z-set is a Z-set, we conclude that Φε|Cn(X,R)

is a Z-map within ε of the identity map. Therefore, the second
assumption of Theorem 14 has been verified, and we obtain that
Cn(X,R) is a Hilbert cube.

Theorem 17 (Anderson’s homogenetity theorem). If h : A → B is
a homeomorphism between Z-sets in a Hilbert cube Q, then h extends
to a homeomorphism of Q onto Q.

The proof of the following lemma is similar to the proof of Theo-
rem 5.1 of [2].

Theorem 18. Let X be a Peano continuum and p ∈ X. Then
there exists an uncountable family D of pairwise non homeomorphic
dendrites such that:

(a) for each D ∈ D, D does not contain free arcs,
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(b) the Peano continuum X ∪p D is not homeomorphic to X, and

(c) if B �= D are elements of D, then X ∪p B and X ∪p D are not
homeomorphic.

Lemma 19. Let X, Y and D be continua and p a point of Y such
that Y = X ∪D and X ∩D = {p}. Suppose that E is a closed subset of
X that contains p. Then FrCn(X)(Cn(X,E)) = FrCn(Y )(Cn(Y,E∪D)).

Proof. It follows from the easy-to-prove following facts: Cn(Y ) −
Cn(Y,E ∪D) = Cn(X)− Cn(X,E) ⊂ Cn(X) and Cn(X) ∩ Cn(Y,E ∪
D) = Cn(X,E).

Now, we are ready to prove the main results of this section.

Theorem 20. Let X be a Peano continuum that is not almost
meshed. Then, for every n ∈ N, X does not have unique hyperspace
Cn(X).

Proof. We assume that the metric for X is convex. Since X is not
almost meshed, there exist a point p ∈ P(X) and an ε > 0 such that
B2ε(p) ⊂ P(X). Let E = Cd(ε, {p}). Notice that E is a continuum with
the properties that E = clX(intX(E)) and E ⊂ P(X). By Theorem 16,
Cn(X,E) is a Hilbert cube.

Let Y = X ∪p D, where D is a locally connected continuum without
free arcs. By Theorem 18 we can choose D in such a way that X and
Y are not homeomorphic.

We show that Cn(X) is homeomorphic to Cn(Y ). First notice that
E ∪ D and Y satisfy the hypothesis of Lemma 16, and therefore
Cn(Y,E ∪ D) is a Hilbert cube. Assume also that the metric for Y
is convex.

Claim 1. FrCn(X)(Cn(X,E)) is a Z-set of Cn(X,E) and FrCn(Y )

(Cn(Y,E ∪D)) is a Z-set of Cn(Y,E ∪D).

Let δ > 0, and consider Φδ|Cn(X,E) : Cn(X,E) → Cn(X,E)
as in Definition 12. By Remark 13, Φδ|Cn(X,E) is within δ of the
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identity map. Since E = clX(intXE), if A ∈ Cn(X,E), then
Φδ(A) ∩ intX(E) �= ∅. Therefore, Φδ(A) /∈ FrCn(X)(Cn(X,E)) and
Φδ|Cn(X,E) : Cn(X,E) → Cn(X,E) − (FrCn(X)(Cn(X,E))). We have
proved that FrCn(X)(Cn(X,E)) is a Z-set in Cn(X,E). The proof that
FrCn(Y )(Cn(Y,E ∪D)) is a Z-set of Cn(Y,E ∪D) is analogous, so the
claim is proved.

By Lemma 19, the identity map id : FrCn(X)(Cn(X,E)) → FrCn(Y )

(Cn(Y,E ∪ D)) is a well-defined homeomorphism. By Claim 1 and
Theorem 17, the identity map id can be extended to a homeomorphism
h1 : Cn(X,E) → Cn(Y,E ∪ D). We define a homeomorphism h :
Cn(X) → Cn(Y ) as follows.

h(A) =

{
h1(A) if A ∈ Cn(X,E),

A if A ∈ Cn(X)− Cn(X,E).

Hence, Cn(X) is homeomorphic to Cn(Y ), and the theorem is proved.

Corollary 21. Let X be a Peano continuum that is not almost
meshed. Then there exists an uncountable family Y of pairwise non-
homeomorphic Peano continua such that:

(a) for each Y ∈ Y, X is not homeomorphic to Y ,

(b) for each n ∈ N and each Y ∈ Y, Cn(X) is homeomorphic to
Cn(Y ).

Proof. Let D be as in Theorem 18. Fix a point p ∈ intX(P(X)). Let
Y = {X ∪p D : D ∈ D}.

5. Almost meshed continua without unique hyperspace. In
this section we show a class of almost meshed Peano continua that do
not have unique hyperspace Cn(X).

Theorem 22. Let X be an almost meshed Peano continuum and
n ∈ N. Suppose that there exist a closed subset R of P(X) and pairwise
disjoint nonempty open sets U1, . . . , Un+1 such that:

(a) X −R = U1 ∪ · · · ∪ Un+1 and

(b) for each i ∈ {1, . . . , n+ 1}, R ⊂ clX(Ui). Then X does not have
a unique hyperspace Cm(X) for every m ≤ n.

Proof. Let m ≤ n. By Theorem 16, Cm(X,R) is a Hilbert cube.
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Fix a point p ∈ R, and let Y = X∪pD, whereD is a locally connected
continuum without free arcs. By Theorem 18, we can choose D in such
a way that X and Y are not homeomorphic. We show that Cm(X)
is homeomorphic to Cm(Y ). Notice that R ∪ D is a closed subset of
P(Y ). By Theorem 16, Cm(Y,R ∪D) is a Hilbert cube. Assume that
the metrics for X and Y are convex.

Claim 2. FrCm(Y )(Cm(Y,R ∪D)) is a Z-set in Cm(Y,R ∪D).

Let ε > 0, and consider the map Φε|Cm(Y,R∪D) : Cm(Y,R ∪ D) →
Cm(Y,R ∪D) of Definition 12. By Remark 13, Φε|Cm(Y,R∪D) is within
ε of the identity map, so we only have to prove that Φε(Cm(Y,R∪D))∩
FrCm(Y )(Cm(Y,R ∪D)) = ∅.

Let A ∈ Cm(Y,R ∪D).

Case 1. A ∩ R �= ∅. By (b), Φε(A) ∩ Ui �= ∅, for every i ∈
{1, . . . , n + 1}. Consider a sequence {Aj}∞j=1 of elements of Cm(Y )
such that limAj = Φε(A). Then there exists an M ∈ N such that,
for each j ≥ M and every i ∈ {1, . . . , n + 1}, Aj ∩ Ui �= ∅. Given
j ≥ M , since Aj has at most m components and m < n + 1, we have
Aj ∩ (R ∪ D) �= ∅. Thus, Aj ∈ Cm(Y,R ∪ D) and Φε(A) cannot
be approximated by continua that do not intersect R ∪ D. Hence,
Φε(A) /∈ FrCm(Y )(Cm(Y,R ∪D)).

Case 2. A ∩R = ∅. In this case p /∈ A and Φε(A) ∩ (D − {p}) �= ∅.
Since D− {p} is open in Y , we have that Φε(A) /∈ FrCm(Y )(Cm(Y,R ∪
D)).

By Cases 1 and 2, we obtain that Φε|Cm(Y,R∪D) : Cm(Y,R ∪ D) →
Cm(Y,R ∪D)− (FrCm(Y )(Cm(Y,R ∪D))). This proves Claim 2.

Claim 3. FrCm(X)(Cm(X,R)) is a Z-set in Cm(X,R).

The proof is similar and easier to the one in Claim 2 since we only
need to consider Case 1.

By Lemma 19, the identity map id : FrCm(X)(Cm(X,R)) → FrCm(Y )

(Cm(Y,R ∪ D)) is a homeomorphism. By Claims 2, 3 and Theo-
rem 17, the identity map id can be extended to a homeomorphism
h1 : Cm(X,R) → Cm(Y, R ∪ D). We define a homeomorphism
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h : Cm(X) → Cm(Y ) as follows.

h(A) =

{
h1(A) if A ∈ Cm(X,R),

A if A ∈ Cm(X)− Cm(X,R).

Hence, Cm(X) is homeomorphic to Cm(Y ), and the theorem is
proved.

Corollary 23. Let X be an almost meshed Peano continuum such
that X − P(X) is disconnected. Then X does not have a unique
hyperspace C(X).

Proof. Suppose thatX−P(X) = U∪V , where U and V are nonempty
open disjoint subsets ofX . SinceX is almost meshed, intX(P(X)) = ∅.
Thus, X = clX(U) ∪ clX(V ) and R = clX(U) ∩ clX(V ) is a nonempty
closed subset of P(X). Let W = X − clX(U) and Z = X − clX(V ).
Hence, W and Z are nonempty open disjoint subsets of X such that
V ⊂ W , U ⊂ Z and R ⊂ clX(W ) ∩ clX(Z). By Theorem 22, the
corollary follows.

Corollary 24. Let X be an almost meshed Peano continuum satis-
fying the conditions of Theorem 22. Then there exists an uncountable
family Y of pairwise non-homeomorphic Peano continua such that:

(a) for each Y ∈ Y, X is not homeomorphic to Y ,

(b) for each Y ∈ Y and each m ≤ n, Cm(X) is homeomorphic to
Cm(Y ).

Corollary 25. Let X be a dendrite that is not a tree and k =
sup{ordX(p) : p ∈ P(X)}, notice k ∈ N ∪ {ω}. Then for every m < k,
X does not have a unique hyperspace Cm(X).

Proof. If X is not almost meshed, then by Theorem 20, X does not
have unique hyperspace Cm(X) for everym ∈ N. IfX is almost meshed
and m < k, there exists a point q ∈ P(X) such that ordX(q) ≥ m+ 1.
Hence, X and the closed subset {q} satisfy the conditions of Theorem 22
for m, and the corollary follows.
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6. Meshed continua have unique hyperspaces. Given a
continuum X and n ∈ N, let

Pn(X) = {A ∈ Cn(X) : A has a neighborhood in Cn(X) that is

a 2n-cell},

P∂
n(X) = {A ∈ Cn(X) : A has a neighborhood M in Cn(X) that

is a 2n-cell and A belongs to the manifold boundary of M},

and

Γn(X) = {A ∈ Cn(X)−Pn(X) : A has a basis of open neighbor-

hoods H in Cn(X) such that, for each U ∈ H,

dimU = 2n and U ∩Pn(X) is arcwise connected}.

As usual, we denote P(X) = P1(X) and P∂(X) = P∂
1 (X).

Define

AE(X) = {J ∈ A(X) : there exists an end point p

of J such that p ∈ Jo}.

In the case that J ∈ AE(X) and p is an end point of J such that
p ∈ Jo, p is said to be an extreme of X .

Lemma 26. Let X be a Peano continuum and A ∈ C(X). Then the
following are equivalent:

(a) A ∈ P∂(X),

(b) there is a J ∈ AS(X) such that one of the following two conditions
hold: (1) A = {p}, for some p ∈ Jo, (2) J ∈ AE(X) and there exists
an extreme p of X such that p ∈ A ⊂ Jo.

Proof. (a) ⇒ (b). Suppose that A ∈ P∂(X). Then dimA[C(X)] = 2.
Lemma 11 implies that there exists a J ∈ AS(X) such that A ⊂ Jo.
Let M be a 2-cell in C(X) such that A ∈ intC(X)(M) ⊂ intC(X)(C(J))
and A belongs to the boundary, as manifold, of M. Thus, M is a
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neighborhood of A in C(J). Since J is either an arc or a simple closed
curve, by the geometric models of C(J) constructed in [19, Examples
5.1 and 5.2], we obtain that one of the conditions (1) or (2) holds.

(b) ⇒ (a). Let J ∈ AS(X) be such that A ⊂ Jo. Then C(J) is a
neighborhood of A in C(X). By the models in [19, Examples 5.1 and
5.2], in both cases, (1) and (2), there exists a neighborhood M of A in
C(J) such that M is a 2-cell, A belongs to the boundary, as a manifold,
of M and M ⊂ intC(X)(C(J)). Then M is a neighborhood of A in

C(X). Therefore, A ∈ P∂(X).

Theorem 27. Let X be a Peano continuum that is not an arc. Then
there exists a homeomorphism h : clX(FA(X)) → clC(X)(P

∂(X)) such
that h(p) = {p} for each p ∈ clX(FA(X))−⋃{Jo : J ∈ AE(X)} and,
if h(p)∩P(X) �= ∅, then p ∈ P(X) or p is an end point of J , for some
J ∈ AE(X), where J ∩ P(X) �= ∅ and p ∈ Jo.

Proof. By [19, Example 5.2], we can assume that X is not a simple
closed curve.

Given J ∈ AE(X), let pJ and qJ be the end points of J , where
pJ ∈ Jo. Since X is not an arc, qJ /∈ Jo. Fix a homeomorphism
hJ : [0, 1] → J such that hJ (0) = qJ and hJ(1) = pJ .

Let
W =

⋃
{J − {qJ} : J ∈ AE(X)}.

Then W is an open subset of X and W ⊂ FA(X).

Define h : clX(FA(X)) → clC(X)(P
∂(X)) as follows:

h(p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{p} if p ∈ clX(FA(X))−W ,

{hJ(2s)} if p ∈ J ∈ AE(X), p = hJ (s)

and s ∈ [0, 1/2],

hJ ([−2s+ 2, 1]) if p ∈ J ∈ AE(X), p = hJ (s)

and s ∈ [1/2, 1].

Using Lemma 26 it can be shown that h is a well-defined function.
Clearly, h is continuous at each point of W . Thus, in order to conclude
that h is continuous, take a sequence {xm}∞m=1 of points ofW such that
limxm = x for some x /∈ W . We need to show that limh(xm) = {x}.
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For each m ∈ N, let Jm ∈ AE(X) be such that xm ∈ Jm. We may
assume that Jm �= Jk, if m �= k, and that lim pJm = q, for some q ∈ X .
By Lemma 8, lim Jm = {q}. Since h(xm) ⊂ Jm and xm ∈ Jm for each
m ∈ N, we have that limh(xm) = {q} and lim xm = q. Therefore,
q = x and lim h(xm) = {x}. This completes the proof that h is
continuous.

It is easy to see that h is one-to-one. In order to show that h is
onto, note that, by Lemma 26, P∂(X) ⊂ h(clX(FA(X))). Hence,
clC(X)(P

∂(X)) ⊂ h(clX(FA(X))). Thus, h is onto.

Finally, take p ∈ clX(FA(X)) such that h(p)∩P(X) �= ∅. In the case
that h(p) = {p}, we obtain that p ∈ P(X). In the case that h(p) �= {p},
then p ∈ J − {qJ} = Jo for some J ∈ AE(X). Since h(p) ∩ P(X) �= ∅,
h(p) � Jo. Hence, h(p) = J = hJ([0, 1]) and we are done.

Lemma 28. Let X be a Peano continuum and n ≥ 3. Then
Γn(X) = {A ∈ Cn(X) : A is connected and there exists a J ∈ AS(X)
such that A ⊂ Jo} = P(X).

Proof. Let A ∈ Γn(X). By Lemma 11 and Theorem 4, dimA[Cn(X)] =
2n, there exist a k ∈ N, elements J1, . . . , Jk ∈ AS(X) such that
A ∈ 〈Jo

1 , . . . , J
o
k 〉 and a finite graph D in X such that A ⊂ Do. Then

Cn(D) is a neighborhood of A in Cn(X). Thus, we may assume that
the basis of open neighborhoods H in the definition of Γn(X) satisfies
that, for each U ∈ H, U ⊂ Cn(D). Hence, H is a basis of neighborhoods
of A in Cn(D) such that, for each U ∈ H, dimU = 2n and U ∩Pn(X)
is arcwise connected. Given U ∈ H and B ∈ U ∩ Pn(X), B has a
neighborhood M in Cn(X) that is a 2n-cell. Then there exists an 2n-
cell N ⊂ M such that B ∈ intCn(X)(N ) ⊂ N ⊂ U ∩ M ⊂ Cn(D).
Thus, N is a 2n-cell that is a neighborhood of B in Cn(D). Hence,
B ∈ U ∩Pn(D). We have shown that U ∩Pn(X) ⊂ U ∩Pn(D). The
other inclusion is easy to prove. Hence, U ∩Pn(X) = U ∩Pn(D) and
U ∩Pn(D) is arcwise connected. Since A ∈ U −Pn(X) = U −Pn(D),
we have proved that A ∈ Γn(D). By [17, Lemma 3.6], A is connected,
and we may assume that A ⊂ Jo

1 .

Now suppose that A ∈ Cn(X) is such that A is connected and
there exists a J ∈ AS(X) such that A ⊂ Jo. By [17, Lemma 3.6],
A ∈ Cn(J)−Pn(J) and A has a basis of open neighborhoods H in Cn(J)
such that, for each U ∈ H, dimU ≤ 2n (then dimU = 2n, by Lemma 11)
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and U∩Pn(J) is arcwise connected. Since A ∈ intCn(X)(Cn(J)), we can
take U ⊂ intCn(X)(Cn(J)) so that U is open in Cn(X) for each U ∈ H.
Proceeding as in the previous paragraph, U ∩Pn(X) = U ∩Pn(J) for
each U ∈ H. This implies that A ∈ Γn(X).

The equality P(X) = {A ∈ Cn(X) : A is connected, and there exists
a J ∈ AS(X) such that A ⊂ Jo} follows from [19, Examples 5.1 and
5.2] and Lemma 11.

Theorem 29. If X and Y are almost meshed Peano continua, n ≥ 3
and Cn(X) is homeomorphic to Cn(Y ), then X is homeomorphic to Y .

Proof. By [17, Theorem 3.8], we may assume that X and Y are
not arcs. Let h : Cn(X) → Cn(Y ) be a homeomorphism. Notice
that the definition of Γn(X) is given in terms of topological concepts
that are preserved under homeomorphisms. Thus, h(Γn(X)) = Γn(Y )
and h(P(X)) = P(Y ). Note that P(X) is an open subset of C(X)
and P∂(X) ⊂ P(X). Thus, P∂(X) = {A ∈ P(X) : A has a neigh-
borhood M in P(X) that is a 2-cell and A belongs to the mani-
fold boundary of M}. It follows that h(P∂(X)) = P∂(Y ). Hence,
h|clC(X)(P

∂(X)) : clC(X)(P
∂(X)) → clC(Y )(P

∂(Y )) is a homeomor-
phism. Theorem 27 implies that clX(FA(X)) is homeomorphic to
clY (FA(Y )). By Lemma 1, clX(G(X)) is homeomorphic to clY (G(Y )).
Since X and Y are almost meshed, we conclude that X is homeomor-
phic to Y .

Theorem 30. If X and Y are almost meshed Peano continua
which are not arcs and C(X) is homeomorphic to C(Y ), then X is
homeomorphic to Y .

Proof. Let h : C(X) → C(Y ) be a homeomorphism. Notice that
h(P(X)) = P(Y ). Proceeding as in the proof of Theorem 29, we
conclude that X is homeomorphic to Y .

In Theorem 35 we will extend the conclusions of Theorems 29 and
30 to the case n = 2. As in the previous results on finite graphs and
class D, this case is more difficult and requires a different technique.
We will use the following conventions.

Given a continuum X that is not a simple closed curve and J,K ∈
AS(X), let

D(J,K) = clC2(X)(P
∂
2 (X) ∩ 〈Jo,Ko〉) ∩ clC2(X)(P

∂
2 (X)− 〈Jo,Ko〉).
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In the case that J is an arc, let pJ and qJ be its end points, where
qJ ∈ FrX(J). If J is a simple closed curve, let qJ be the unique point
in J such that J − {qJ} is open. Since X is not a simple closed curve,
qJ /∈ Jo. Given J ∈ AS(X), define E(J) in the following way: If J is
an arc, let E(J) = C(J). In the case that J is a simple closed curve, let
E(J) = {A ∈ C(J) : A = J or A = {p} for some p ∈ J or A is a subarc
of J such that qJ /∈ A or A is a subarc of J such that qJ is one of its
end points}. Note that, in both cases, E(J) = clC(X)(〈Jo〉 ∩ C(X)).
Let W0 be the continuum obtained as W0 = D − intR2(E), where D
and E are discs in the plane R2, E � D, and E and D are tangents.
The following lemma can be easily proved from [19, Examples 5.1 and
5.2].

Lemma 31. Let X be a continuum that is not a simple closed curve
and J ∈ AS(X). Then:

(a) if J is an arc, then E(J) is a 2-cell,

(b) if J is a simple closed curve, then E(J) is homeomorphic to W0

(where the point of tangency corresponds to {qJ}).

Lemma 32. Let X be a Peano continuum. Then P∂
2 (X) = {A ∈

P2(X) : A is connected or A has a degenerate component or A contains
an extreme of X}.

Proof. By Lemma 11, P2(X) ⊂ ⋃{〈Jo,Ko〉 : J,K ∈ AS(X)}, and by
[18, Lemma 2.1], for every J,K ∈ AS(Y ), 〈Jo,Ko〉 is a component of
P2(X). Using Lemma 7, it can be shown that if J,K,L,M ∈ AS(X)
and {J,K} �= {L,M}, then 〈Jo,Ko〉 ∩ 〈Lo,Mo〉 = ∅. Thus, the
components of P2(X) are sets of the form 〈Jo,Ko〉, where J,K ∈
AS(X).

Given J ∈ AS(X), let C(Jo) = C(X) ∩ 〈Jo〉 and P∂(Jo) = {A ∈
C(Jo) : A has a neighborhood M in C(Jo) such that M is a 2-
cell and A is in the manifold boundary of M}. Notice that Jo is
homeomorphic to (0, 1) when J /∈ AE(X) and Jo is homeomorphic to
[0, 1) when J ∈ AE(X). By [19, Example 5.1], C(Jo) is homeomorphic
to [0, 1)× [0, 1). In the case that J /∈ AE(X), P∂(Jo) = {{p} : p ∈ Jo}
and, in the case that J ∈ AE(X) and pJ is the extreme of X contained
in J , P∂(Jo) = {{p} : p ∈ Jo} ∪ {A ∈ C(Jo) : pJ ∈ A}.
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If J �= K, then Jo ∩Ko = ∅. Let ϕ : C(Jo)× C(Ko) → 〈Jo,Ko〉 be
given by ϕ(B,C) = B∪C. It is easy to show that ϕ is a homeomorphism
and P∂

2 (X)∩ 〈Jo,Ko〉 = ϕ((P∂(Jo)×C(Ko))∪ (C(Jo)×P∂(Ko))) =
{A ∈ 〈Jo,Ko〉 : A ∩ Jo ∈ P∂(Jo) or A ∩ Ko ∈ P∂(Ko)} = {A ∈
〈Jo,Ko〉: A has a degenerate component or A contains an extreme of
X}.
If J = K, 〈Jo,Ko〉 = 〈Jo〉 = {A ∈ C2(J) : A ⊂ Jo}. In [16,

Lemma 2.2], the following model (due to R.M. Schori) for C2([0, 1])
was constructed. Let C0 = {A ∈ C2([0, 1]) : 0 ∈ A} and C1

0 =
{A ∈ C2([0, 1]) : {0, 1} ⊂ A} = {[0, a] ∪ [b, 1] : 0 ≤ a ≤ b ≤ 1}.
Then C1

0 is homeomorphic to the space obtained by identifying the
diagonal of the triangle {(a, b) ∈ R2 : 0 ≤ a ≤ b ≤ 1} to a point.
Thus, C1

0 is a 2-cell, and the manifold boundary of C1
0 is the set

∂(C1
0) = {{0} ∪ [b, 1] : 0 ≤ b ≤ 1} ∪ {[0, a] ∪ {1} : 0 ≤ a ≤ 1} ∪ {[0, 1]}.

The function η : cone (C1
0) → C0 given by η((A, t)) = (1 − t)A is a

homeomorphism. Thus, C0 is a 3-cell, and its manifold boundary is
the set ∂(C0) = C1

0 ∪ {(1− t)A : A ∈ ∂(C1
0) and t ∈ [0, 1]}. Finally, the

function λ: cone (C0) → C2([0, 1]) given by λ((A, t)) = {t}+(1−t)A is a
homeomorphism. Thus, C2([0, 1]) is a 4-cell and its manifold boundary
is the set ∂(C2([0, 1])) = C0∪{{t}+(1− t)A : A ∈ ∂(C0) and t ∈ [0, 1]}.
Therefore, ∂(C2([0, 1])) = {A ∈ C2([0, 1]) : A is connected or A has a
degenerate component or A ∩ {0, 1} �= ∅}.
In the case that J /∈ AE(X), Jo is homeomorphic to (0, 1), so

P∂
2 (X) ∩ 〈Jo〉 = {A ∈ C2(J

o) : A is connected or A has a degenerate
component}, and in the case that J ∈ AE(X), Jo is homeomorphic to
[0, 1), so P∂

2 (X) ∩ 〈Jo〉 = {A ∈ C2(J
o) : A is connected or A has a

degenerate component or the extreme of X contained in J belongs to
A}. Therefore, for all J ∈ AS(Y ), P∂

2 (X) ∩ 〈Jo〉 = {A ∈ 〈Jo〉 : A is
connected or A has a degenerate component or A contains an extreme
of X}. This completes the proof of the lemma.

Lemma 33. Let X be a Peano continuum. Let J,K ∈ AS(X) be
such that FrX(J) ⊂ clX(FA(X)−J) and FrX(K) ⊂ clX(FA(X)−K).
Then D(J,K) = {{p} ∪ A : p ∈ FrX(J) and A ∈ E(K) or p ∈ FrX(K)
and A ∈ E(J)}.
Proof. (⊂). Let B ∈ D(J,K). Since P∂

2 (X) ∩ 〈Jo,Ko〉 ⊂ 〈J,K〉 and
〈J,K〉 is closed in C2(X), B ∈ 〈J,K〉.
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The first case we consider is when B is disconnected. Let B1 and B2

be the components of B. Given a sequence {Em}∞m=1 of elements of
C2(X) such that limEm = B, we may assume that each Em has two

components E
(1)
m and E

(2)
m , limE

(1)
m = B1 and limE

(2)
m = B2. Since

B ∈ clC2(X)(〈Jo,Ko〉), there exists a sequence Em = E
(1)
m ∪ E

(2)
m of

elements of 〈Jo,Ko〉 such that limE
(1)
m = B1 and limE

(2)
m = B2. In

the case that J = K, we have that Em ⊂ J , for each m ∈ N and B ⊂
J = K. In the case that J �= K, Jo ∩Ko = ∅, so we can assume that

E
(1)
m ⊂ Jo and E

(2)
m ⊂ Ko for each m ∈ N. This implies that B1 ⊂ J

and B2 ⊂ K. So, in both cases (J = K or J �= K), we may assume that
B1 ⊂ J and B2 ⊂ K. Since B ∈ clC2(X)(P

∂
2 (X) − 〈Jo,Ko〉), there is

also a sequence Fm = F
(1)
m ∪F

(2)
m of elements of P∂

2 (X)−〈Jo,Ko〉 such
that limF

(1)
m = B1 and limF

(2)
m = B2. Since P

∂
2 (X) ⊂ P2(X), for each

m ∈ N, there exist Lm,Mm ∈ AS(X) such that {Lm,Mm} �= {J,K}
and Fm ∈ 〈Lo

m,Mo
m〉. We may assume that F

(1)
m ⊂ Lo

m, F
(2)
m ⊂ Mo

m

and K �= Mm. Then B2 ⊂ FrX(K). Since FrX(K) has at most two
elements, we conclude that B2 is degenerate. If J is an arc, then B is
of the form B = {p} ∪ B1, where B1 ∈ E(J) and p ∈ FrX(K). If J

is a simple closed curve, since E
(1)
m ⊂ Jo = J − {qJ} for each m ∈ N,

B1 = limE
(1)
m is either equal to J or B1 = {p} for some p ∈ J or B1 is

a subarc of J that has qJ as one of its end points or B1 is a subarc of
J such that qJ /∈ J . Thus, B1 ∈ E(J).
Now, we consider the case when B is connected. If J �= K, we claim

that B ∩ Jo = ∅ or B ∩ Ko = ∅. Suppose, to the contrary, that
B ∩ Jo �= ∅ and B ∩Ko �= ∅. Since B ∈ clC2(X)(P

∂
2 (X) − 〈Jo,Ko〉),

there is a sequence {Em}∞m=1 of elements ofP∂
2 (X)−〈Jo,Ko〉 such that

limEm = B. For each m ∈ N, there exist Lm,Mm ∈ AS(X) such that
{Lm,Mm} �= {J,K} and Em ∈ 〈Lo

m,Mo
m〉. Since Jo and Ko are open

inX , there exists anm0 ∈ N such that, for eachm ≥ m0, Em intersects
Jo and Ko. Then Lm ∪Mm intersects Jo and Ko. If Lm intersects Jo,
then Lm = J . Thus, for each m ≥ m0, we may suppose that Lm = J
and Mm = K. Hence, {Lm,Mm} = {J,K}, a contradiction. We have
shown that B ∩ Jo = ∅ or B ∩Ko = ∅. Suppose, for example, that
B ∩ Jo = ∅. Since B ∈ 〈J,K〉, B = (B ∩ J)∪ (B ∩K) and ∅ �= B ∩ J .
This implies that B ∩ J is a nonempty subset of J − Jo which consists
of at most two elements. Since B∩J and B ∩K are closed in B and B
is connected, we have that B ∩J ⊂ B ∩K. Hence, B ⊂ K. Fix a point
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p ∈ B ∩ J . If K is an arc, then B is of the form B = {p} ∪ B, where
B ∈ E(K) and p ∈ FrX(J). Now suppose that K is a simple closed
curve. Since B ∈ clC2(X)(〈Jo,Ko〉), there exists a sequence {Bm}∞m=1

in 〈Jo,Ko〉 such that limBm = B. Thus, the components of Bm are
Bm ∩ Jo, Bm ∩ Ko and B = lim((Bm ∩ Jo) ∪ (Bm ∩ Ko)). We may
suppose that the sequences {Bm ∩ Jo}∞m=1 and {Bm ∩ Ko}∞m=1 are
convergent in C(X). Recall that B ∩ J has at most two elements. If
q ∈ B and q = lim qm, where qm ∈ Bm ∩ Jo, for each m ∈ N, then
q ∈ FrX(J). Thus, there are at most two points q of B of this form. So
lim(Bm ∩ Jo) is a one-point set. This implies that B = lim(Bm ∩Ko).
Given m ∈ N, since Bm∩Ko is a connected subset of Ko = K−{qK},
we have that Bm ∩ Ko is an arc such that qK /∈ Bm ∩ Ko. Hence,
B = lim(Bm∩Ko) ∈ E(K). Therefore, B = {p}∪B, where p ∈ FrX(J)
and B ∈ E(K).

Finally, we consider the case when B is connected and J = K. Since
B ∈ clC2(X)(P

∂
2 (X) − 〈Jo〉), B is limit of elements in P∂

2 (X) − 〈Jo〉
and B ⊂ J . Thus, B � Jo. Hence, we can fix a point p ∈ B ∩ FrX(J).
If J is an arc, B = {p} ∪ B and B ∈ E(J). If J is a simple closed
curve, let B = limEm, where Em ∈ 〈Jo〉∩P∂

2 (X) for each m ∈ N. For
each m ∈ N, by Lemma 32, Em is connected or Em has a degenerate
component. In both cases, we can write Em = {pm} ∪ Fm, where
Fm ∈ C(Jo). Note that limFm = B. Since Fm is a connected subset of
Jo = J − {qJ}, we have that Fm is an arc such that qJ /∈ Fm. Hence,
B = limFm ∈ E(J). Therefore, B = {p} ∪ B, where p ∈ FrX(J) and
B ∈ E(J).
(⊃). Let B = {p}∪A, where p ∈ FrX(J) ⊂ clX(FA(X)−J) and A ∈

E(K). Notice that, in both cases: K being an arc and K being a simple
closed curve, A = limAm, where Am ∈ Ko for each m ∈ N. Given
m ∈ N, there exists a point pm ∈ B(1/m, p) ∩ FA(X)− J . Note that
{pm}∪Am /∈ 〈Jo,Ko〉. By Lemma 32, {pm}∪Am ∈ P∂

2 (X)−〈Jo,Ko〉.
Then B = lim({pm}∪Am) ∈ clC2(X)(P

∂
2 (X)−〈Jo,Ko〉). On the other

hand, since p ∈ FrX(J), there exists a sequence {xm}∞m=1 in Jo such
that limxm = p. Then, for each m ∈ N, {xm} ∪ Am ∈ 〈Jo,Ko〉
and, by Lemma 32, {xm} ∪ Am ∈ P∂

2 (X) ∩ 〈Jo,Ko〉. Hence, B ∈
clC2(X)(P

∂
2 (X) ∩ 〈Jo,Ko〉). Therefore, B ∈ D(J,K). This completes

the proof of the lemma.

Theorem 34. Let X and Y be Peano continua. Let J,K ∈
AS(X) and L,M ∈ AS(Y ) be such that FrX(J) ⊂ clX(FA(X) −
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J), FrX(K) ⊂ clX(FA(X) − K), FrY (L) ⊂ clY (FA(Y ) − L) and
FrY (M) ⊂ clY (FA(Y ) − M). Suppose that h : C2(X) → C2(Y ) is
a homeomorphism and h(〈Jo,Ko〉) = 〈Lo,Mo〉. Then:

(1) if J = K and J is a simple closed curve, then L = M and L is a
simple closed curve,

(2) if J = K, J is an arc and J /∈ AE(X), then L = M , L is an arc
and L /∈ AE(Y ),

(3) if J = K and J ∈ AE(X), then L = M and L ∈ AE(Y ),

(4) if J �= L, then M �= N ,

(5) if J = K and p ∈ J − Jo, then h({p}) is a one-point set and
h(p) ⊂ L− Lo.

Proof. We describe models for the set D(J,K) considering all possi-
bilities for the sets J and K in AS(X). These models are illustrated in
Figure 2.

(a) J = K, J is an arc and J /∈ AE(X). According to Lemma 33,
D(J, J) = {{pJ} ∪ A : A ∈ C(J)} ∪ {{qJ} ∪ A : A ∈ C(J)}. By [19,
Example 5.1], C(J) is a 2-cell. Thus, D(J, J) is the union of two 2-cells
intersecting in the elements {pJ , qJ} and J .

(b) J = K, J ∈ AE(X). Here, D(J, J) = {{qJ} ∪ A : A ∈ C(J)} is a
2-cell.

(c) J = K and J is a simple closed curve. Here, D(J, J) = {{qJ}∪A :
A ∈ E(J)} is homeomorphic to the continuum W0 described in the
paragraph prior to Lemma 31.

From now on, we suppose that J �= K.

(d) Both J and K are arcs and J,K /∈ AE(X). Let D1 = {{pJ}∪A :
A ∈ C(K)}, D2 = {{qJ}∪A : A ∈ C(K)}, D3 = {{pK}∪A : A ∈ C(J)}
and D4 = {{qK} ∪ A : A ∈ C(J)}. Note that D1, D2, D3 and D4 are
2-cells and D(J,K) = D1 ∪ D2 ∪ D3 ∪ D4. Here, we consider three
subcases.

(d.1) J ∩ K = ∅. In this subcase, D1 ∩ D2 = ∅ = D3 ∩ D4,
D1 ∩ D3 = {{pJ , pK}}, D1 ∩ D4 = {{pJ , qK}}, D2 ∩ D3 = {{qJ , pK}}
and D2 ∩ D4 = {{qJ , qK}}.
(d.2) J ∩ K is a one-point set. In this subcase we may assume

that J ∩ K = {qJ} = {qK}. Then we have the same equalities as
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in case (d.1), that is: D1 ∩ D2 = ∅ = D3 ∩D4, D1 ∩D3 = {{pJ , pK}},
D1∩D4 = {{pJ , qK}}, D2∩D3 = {{qJ , pK}} and D2∩D4 = {{qJ , qK}}.
(d.3) J ∩ K is a set with exactly two points. We may assume that

pJ = pK and qJ = qK . Then D1 ∩ D2 = {{pJ , qJ},K}, D1 ∩ D3 =
{{pJ}, {pJ , qJ}}, D1 ∩ D4 = {{pJ , qK}}, D2 ∩ D3 = {{qJ , pK}},
D2 ∩ D4 = {{qJ}, {pJ , qK}} and D3 ∩D4 = {{pK , qK}, J}.
(e) Both J and K are arcs and J /∈ AE(X) and K ∈ AE(X). Let

D1 = {{pJ} ∪ A : A ∈ C(K)}, D2 = {{qJ} ∪ A : A ∈ C(K)} and
D3 = {{qK}∪A : A ∈ C(J)}. Note that D1, D2 and D3 are 2-cells and
D(J,K) = D1 ∪ D2 ∪ D3. Here, we consider two subcases.

(e.1) J ∩K = ∅. In this subcase, D1∩D2 = ∅, D1∩D3 = {{pJ , qK}}
and D2 ∩ D3 = {{qJ , qK}}.
(e.2) J ∩K is a one-point set. In this subcase we may assume that

J∩K = {qJ} = {qK}. Then we have the same equalities as in case (e.1),
that is, D1∩D2 = ∅, D1∩D3 = {{pJ , qK}} and D2∩D3 = {{qJ , qK}}.
(f) J is an arc, J /∈ AE(X) and K is a simple closed curve. Let

D1 = {{pJ} ∪ A : A ∈ E(K)}, D2 = {{qJ} ∪ A : A ∈ E(K)} and
D3 = {{qK}∪A : A ∈ C(J)}. Note that D(J,K) = D1∪D2∪D3, D3 is
a 2-cell while D1 and D2 are homeomorphic to the continuum W0. In
both cases, when J ∩K = ∅ or when J ∩K is a one-point set, we have
that D1 ∩D2 = ∅, D1 ∩ D3 = {{pJ , qK}} and D2 ∩ D3 = {{qJ , qK}}.
(g) J and K are arcs and J,K ∈ AE(X). Let D1 = {{qJ} ∪ A : A ∈

C(K)} and D2 = {{qK} ∪ A : A ∈ C(J)}. Then D(J,K) = D1 ∪ D2

and D1 and D2 are 2-cells. Note that D1 ∩ D2 = {{qJ , qK}}.
(h) J ∈ AE(X) and K is a simple closed curve. Let D1 = {{qJ}∪A :

A ∈ E(K)} and D2 = {{qK}∪A : A ∈ C(J)}. Then D(J,K) = D1∪D2,
D1 is a 2-cell and D2 is homeomorphic to W0. Note that D1 ∩ D2 =
{{qJ , qK}}.
(i) J andK are simple closed curves. Let D1 = {{qJ}∪A : A ∈ E(K)}

and D2 = {{qK} ∪ A : A ∈ E(J)}. Then D(J,K) = D1 ∪ D2, D1 and
D2 are homeomorphic to W0. Note that D1 ∩ D2 = {{qJ , qK}}.
We can observe, in Figure 2, that for different cases we obtain different

models.

If J = L and J is a simple closed curve, then D(J, J) is as in case (c).
Hence, D(L,M) is as in case (c). This implies that L = M and L is
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(a) (b)

(d.1), (d.2) (d.3) (e)

(f) (g)

(h) (i)

(b)(b) .A .(c)

FIGURE 2.

a simple closed curve. This proves (1). The proofs for (2), (3) and (4)
are similar.

In order to prove (5), let B = h({p}). Since p ∈ FrX(J), there
exists a sequence {pm}∞m=1 of points in Jo such that lim pm = p.
Then limh({pm}) = B and h({pm}) ⊂ Lo for each m ∈ N. Thus,
B ⊂ L. Take an open subset U of X such that p ∈ U . Since
FrX(J) ⊂ clX(FA(X) − J), U ∩ FA(X) − J �= ∅. This implies
that there exists a sequence {xm}∞m=1 of points of FA(X) − J such
that lim xm = p. For each m ∈ N, let Jm ∈ AS(X) be such that
xm ∈ Jo

m. Let Lm ∈ AS(Y ) be such that h(〈Jo
m〉) = 〈Lo

m〉. Then
Jm �= J , so Lm �= L. Since h({xm}) ⊂ 〈Lo

m〉, h({xm})∩Lo = ∅. Thus,
B = limh({xm}) ⊂ Y − Lo. We have shown that B ⊂ FrY (L).

By (1) and (3), if J is a simple closed curve or J ∈ AE(X), then L is a
simple closed curve or L ∈ AE(Y ). In these cases, FrX(J) and FrY (L)
are one-point sets. Then B is a one-point set contained in FrY (L).

Suppose now that J is an arc and J /∈ AE(X). Then L is an arc
and L /∈ AE(Y ). Let u, v be the end points of L. Then u �= v and
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FrY (L) = {u, v}. If B = {u} or B = {v}, we are done. Suppose then
that B = {u, v}. Since h(D(J, J)) = D(L,L), by the model described
in (a), we obtain that {p} is not a local cut point of D(J, J). However,
B = h(p) = {u, v} is a local cut point of D(L,L), a contradiction. This
completes the proof of (5) and ends the proof of the theorem.

Theorem 35. Let X and Y be almost meshed Peano continua. If
C2(X) and C2(Y ) are homeomorphic, then X and Y are homeomor-
phic.

Proof. By [16, Theorem 4.1], we may assume that X and Y are
neither an arc nor a simple closed curve. Let h : C2(X) → C2(Y ) be
a homeomorphism. Proceeding as in the beginning of Lemma 32, we
have that the components of P2(X) are the sets of the form 〈Jo,Ko〉
where J,K ∈ AS(X). Thus, for every J,K ∈ AS(X), there exist
L,M ∈ AS(Y ) such that h(〈Jo,Ko〉) = 〈Lo,Mo〉. Since X is almost
meshed, for each J ∈ AS(X), FrX(J) ⊂ clX(FA(X)−J) and something
similar happens for the elements in AS(Y ). Hence, we can apply
Theorem 34.

Now, take p ∈ X−⋃{Lo : L ∈ AS(X)}. We claim that h({p}) = {y}
for some y ∈ Y − ⋃{Ko : K ∈ AS(Y )}. Since X = clX(FA(X)),
there exists a sequence {pm}∞m=1 in FA(X) such that lim pm = p. For
each m ∈ N, let Jm ∈ AS(X) be such that pm ∈ Jo

m and choose a
point qm ∈ FrX(Jm). By Lemma 3, lim Jm = {p}. This implies that
lim qm = p. By Theorem 34 (5), for each m ∈ N, h({qm}) = {wm},
for some wm in the closed set Y − ⋃{Ko : K ∈ AS(Y )}. Hence,
h({p}) = {y}, for some y ∈ Y −⋃{Ko : K ∈ AS(Y )}.
We define a map g : X → Y . Let F = X − ⋃{Lo : L ∈ AS(X)}.

Given p ∈ F , let g(p) ∈ Y be such that h({p}) = {g(p)}. Given
J ∈ AS(X), let KJ ∈ AS(Y ) be such that h(〈Jo〉) = 〈Ko

J〉.
If J is a simple closed curve, by Theorem 34 (5), g(qJ) ∈ KJ −Ko

J .
Hence, g(qJ) is the only point in KJ such that KJ − {g(qJ)} is open
in Y . Fix a homeomorphism gJ : J → KJ such that gJ(qJ ) = g(qJ ).
If J ∈ AE(X), by Theorem 34, KJ ∈ AE(Y ) and g(qJ ) is the only
point in the arc KJ such that KJ − {g(qJ)} is open in Y . Fix a
homeomorphism gJ : J → KJ such that gJ(qJ ) = g(qJ). Finally, if
J is an arc and J /∈ AE(X), then KJ is an arc in AS(Y ) − AE(Y )
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and g(pJ) and g(qJ) are the end points of KJ . Fix a homeomorphism
gJ : J → KJ such that gJ(pJ) = g(pJ) and gJ(qJ) = g(qJ ).

Now, define g : X → Y as the common extension of g (defined in
F ) and the maps gJ for J ∈ AS(X). Note that g is well defined and
continuous in the open set X − F . In fact, g | J is continuous for
each J ∈ AS(X). In order to complete the proof that g is continuous,
take a sequence {pm}∞m=1 in X − F such that lim pm = p for some
p ∈ F . For each m ∈ N, let Jm ∈ AS(X) be such that pm ∈ Jo

m.
Then qJm ∈ FrX(Jm). We may assume that Jm �= Jk for m �= k.
By Lemma 8, lim Jm = {p}. Then lim qJm = p. Since qJm ∈ F
for each m ∈ N, {g(p)} = h({p}) = limh({qJm}) = lim{g(qJm)}.
Hence, lim g(qJm) = g(p). Given m ∈ N, g(pm) = gJm(pm) ∈ KJm

and g(qJm) ∈ KJm . By Lemma 8, limKJm = {g(p)}. Hence,
lim g(pm) = g(p). This completes the proof that g is continuous.

It is easy to check that g is one-to-one. In order to see that g is
onto, let K ∈ AS(Y ). Applying Theorem 34 to h−1, there exists a
J ∈ AS(X) such that 〈Jo〉 = h−1(〈Ko〉). This implies that K = KJ ,
so K ⊂ g(X). Since

⋃{K : K ∈ AS(Y )} is dense in Y , we conclude
that g is onto. Therefore, g is a homeomorphism. This ends the proof
of the theorem.

By Theorems 29, 30 and 35, we obtain the following.

Theorem 36. Suppose that X and Y are almost meshed Peano
continua and Cn(X) is homeomorphic to Cn(Y ) for some n ∈ N. Then:

(a) if n = 1 and X and Y are neither arcs nor simple closed curves,
then X is homeomorphic to Y ,

(b) if n �= 1, then X is homeomorphic to Y .

Theorem 37. Suppose that X is a meshed continuum. If n �= 1,
then X has a unique hyperspace Cn(X). If X is neither an arc nor a
simple closed curve, then X has unique hyperspace C(X).

Proof. Suppose that Cn(X) and Cn(Y ) are homeomorphic. Let
h : Cn(X) → Cn(Y ) be a homeomorphism. Since X is meshed,
by Lemma 2, X is a Peano continuum. Then (see [20, Theorem
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3.2]), Y is a Peano continuum. Note that h(Fn(X)) = Fn(Y ). By
Theorem 5, Fn(X) is dense in Cn(X). Thus, Fn(Y ) is dense in Cn(Y ).
By Theorem 5, Y is meshed. Applying Theorem 36, we conclude the
proof of the theorem.

7. An almost meshed continuum with unique hyperspace.
Consider the example Z0 = ([−1, 1]×{0})∪(

⋃{{1/m}× [0, 1/m] : m ≥
2}) mentioned at the end of the introduction and illustrated in Figure 1.
If a dendrite Z contains a topological copy of Z0, then the hyperspace
C(Z) is not unique [2]. Roughly speaking, this happens because there
is a Hilbert cube C near the element {(0, 0)} of C(Z): consider the
continuum W that is obtained by attaching a Peano continuum D
without free arcs at (0, 0) to Z, that is, W = Z ∪D. Then C(D) and
the set {A ∈ C(W ) : (0, 0) ∈ A} are Hilbert cubes whose union with C
is again a Hilbert cube and, moreover, the homeomorphism obtained
can be extended to the homeomorphism between C(Z) and C(W ). One
may think local dendrites behave in the same way.

The next example shows that this does not happen. The “simplest”
local dendrite X which is not a dendrite and contains a topological
copy of Z0 does have unique hyperspace C(X).

Example 38. There exists a local dendrite X such thatX contains a
topological copy of Z0, P(X) is a one-point set, X−P(X) is connected
and X has unique hyperspace C(X).

Let S = ({−1, 1} × [0, 1]) ∪ ([−1, 1] × {0, 1}). Then S is a simple
closed curve. Let X = Z0 ∪ S and θ = (0, 0) (X is the continuum Z2

illustrated in Figure 1). Then X is an almost meshed Peano continuum
that contains a simple closed curve S, P(X) = {θ}, X − P(X) is
connected and X is not meshed. Observe that X is a local dendrite.

For each m ≥ 2, let Bm = {1/m}× [0, 1/m], Sm = S ∪B2 ∪ · · · ∪Bm,
Am = {1/m} × [0, 1/2m] and pm = (1/m, 0) ∈ Am. We will need the
following claim.

Claim 5. Let α : [0, 1] → C(X) be a map and let m ∈ N be such that
pmpm+1 � α(0) (pmpm+1 denotes the shortest arc in X joining pm and
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pm+1) and, for each t ∈ [0, 1], {pm, pm+1} ⊂ α(t) and S � α(t). Then
pmpm+1 � α(1).

We prove Claim 5. Let M = ({−1, 1} × [0, 1]) ∪ ([−1, 1] × {1}) ∪
(([−1, 1/(m+ 1)] ∪ [(1/m), 1]) × {0}). Let J = {t ∈ [0, 1] : pmpm+1 ⊂
α(t)} and K = {t ∈ [0, 1] : M ⊂ α(t)}. Then J and K are closed
subsets of [0, 1] and 0 /∈ J . Since pmpm+1 ∪ M = S and S � α(t)
for any t ∈ [0, 1], J ∩ K = ∅. Notice that each connected subset of
X containing pm and pm+1, contains either pmpm+1 or M . Hence,
[0, 1] = J ∪K. The connectedness of [0, 1] implies that J = ∅, 1 /∈ J
and pmpm+1 � α(1). This ends the proof of Claim 5.

In order to prove that X has a unique hyperspace C(X), let Y be
a continuum such that C(X) is homeomorphic to C(Y ). Then Y is a
Peano continuum (see [20, Theorem 3.2]). Let h : C(X) → C(Y ) be a
homeomorphism.

Let hX : clX(FA(X)) → clC(X)(P
∂(X)), hY : clY (FA(Y )) →

clC(Y )(P
∂(Y )) be homeomorphisms with the properties described in

Theorem 27. Since X is almost meshed, X = clX(FA(X)). Since h
is a homeomorphism, h(P∂(X)) = P∂(Y ) and h(clC(X)(P

∂(X))) =

clC(Y )(P
∂(Y )). Thus, we can consider the map g : X → Y given

by g = h−1
Y ◦ h|(clC(X)(P

∂(X))) ◦ hX . Then g is an embedding and
g(X) = clY (FA(Y )).

In order to prove that X and Y are homeomorphic, we are going
to show that Y = clY (FA(Y )). Suppose, to the contrary, that
Y �= clY (FA(Y )). Note that Y − clY (FA(Y )) ⊂ P(Y ). We need
to show the following claim.

Claim 6. If p ∈ X and g(p) ∈ P(Y ), then p ∈ P(X).

To prove Claim 6, let y = g(p). Then y ∈ clY (FA(Y )) − ⋃{Ko :
K ∈ AE(Y )}. Thus, hY (y) = {y}. By Theorem 4, dimhY (y)[C(Y )]
is infinite. Then dimh−1(hY (y))[C(X)] is infinite. Applying again
Theorem 4, we obtain that h−1(hY (y)) ∩ P(X) �= ∅. That is, hX(p) ∩
P(X) �= ∅. Given J ∈ AE(X), J ∩P(X) = ∅. By the way the hX was
chosen as in Theorem 27, we have that p ∈ P(X). This completes the
proof of Claim 6.
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Since P(X) = {θ}, θ is the only point p in X for which g(p) ∈ P(Y ).
Thus, g(X) ∩ P(Y ) = {g(θ)}. Fix a point y0 ∈ Y − g(X), and let
β : [0, 1] → Y be a one-to-one map such that β(0) = g(θ) and β(1) = y0.
Let t0 = max{t ∈ [0, 1] : β(t) ∈ g(X)}. Then β(t0) = g(θ). Thus,
t0 = 0, β((0, 1]) ∩ g(X) = ∅ and Imβ ⊂ P(Y ).

By Theorem 4, for each m ≥ 2, dimSm [C(X)] = ∞ and Sm ∈
clC(X)(F(X)). Thus, dimh(Sm)[C(Y )] = ∞ and h(Sm) ∈ clC(Y )(F(Y )).
This implies that h(Sm) is limit of subcontinua of Y contained in
Y − P(Y ) and h(Sm) ∩ P(Y ) �= ∅. Thus, h(Sm) ⊂ g(X) and
g(θ) ∈ h(Sm). Fix m0 ∈ N such that m0 > 4 and h(Sm0) �= {g(θ)}.
Then h(Sm0) ∩ (Y − P(Y )) �= ∅.

Let L = {E ∈ C(X), g(θ) ∈ h(E)}. The uniform continuity of the
map β0 : L × [0, 1] → C(X) given by β0(E, t) = h−1(h(E) ∪ β([0, t]))
implies that there exists s0 > 0 such that, if E ∈ L and B2∪B3∪B4 ⊂
E, then for each s ∈ [0, s0], A2 ∪ A3 ∪ A4 ⊂ β0(E, s). In particular,
since B2 ∪ B3 ∪ B4 ⊂ Sm0 , for each s ∈ [0, s0], A2 ∪ A3 ∪ A4 ⊂
h−1(h(Sm0)∪β([0, s])). Let Y0 = h(Sm0)∪β([0, s0]) and X0 = h−1(Y0).
Since β(s0) ∈ P(Y ) − g(X) ⊂ intY (P(Y )), by Theorem 4, Y0 ∈
intC(Y )(C(Y ) − F(Y )). Hence, X0 ∈ intC(X)(C(X) − F(X)). This
implies that S � X0. Then we can fix a point z0 ∈ S − X0. Since
A2 ∪ A3 ∪ A4 ⊂ X0, we conclude that p2p3 ⊂ X0 or p3p4 ⊂ X0. We
consider the case that p2p3 ⊂ X0, the other one is similar. Note that
z0 /∈ p2p3.

Let ε > 0 be such that, if A ∈ C(X) and HX(A,X0) < ε, then
z0 /∈ A. Let δ > 0 be as in the definition of the uniform continuity
of h−1 for the number ε. Let x, y ∈ p2p3 − {p2, p3} be such that
x �= y, and let K be the subarc of p2p3 joining x and y; notice
Ko = K − {x, y}. We choose x and y close enough to each other
in such a way that HY (h(Sm0 − Ko), h(Sm0)) < δ, we also ask that
h(Sm0 −Ko) ∩ (Y − P(Y )) �= ∅. Since θ ∈ Sm0 −Ko, by Theorem 4,
dimSm0−Ko [C(X)] is infinite, so dimh(Sm0−Ko)[C(Y )] is infinite and
h(Sm0 −Ko)∩ P(Y ) �= ∅. Hence, g(θ) ∈ h(Sm0 −Ko).

Define α, γ : [0, 1] → C(X) by α(t) = h−1(h(Sm0 −Ko) ∪ β([0, ts0]))
and γ(t) = h−1(h(Sm0) ∪ β([0, ts0])). Then α and γ are continuous,
α(0) = Sm − Ko, α(1) = h−1(h(Sm0 − Ko) ∪ β([0, s0])), γ(0) = Sm0

and γ(1) = X0. Since HY (h(Sm0 − Ko), h(Sm0)) < δ, HY (h(Sm0 −
Ko) ∪ β([0, ts0]), h(Sm0) ∪ β([0, ts0])) < δ for each t ∈ [0, 1]. Thus,
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HX(α(t), γ(t)) < ε for each t ∈ [0, 1]. Hence, HX(α(1), X0) < ε. This
implies that z0 /∈ α(1).

By the choice of s0, since B2 ∪B3 ∪B4 ⊂ Sm0 −Ko, we obtain that
A2 ∪ A3 ∪ A4 ⊂ α(t) for each t ∈ [0, 1]. In particular, {p2, p3} ⊂ α(t)
for each t ∈ [0, 1].

Given t > 0, β(ts0) ∈ (h(Sm0 − Ko) ∪ β([0, ts0])) ∩ intY (P(Y )).
Theorem 4 implies that (h(Sm0 −Ko) ∪ β([0, ts0])) ∈ intC(Y )(C(Y )−
F(Y )). Hence, α(t) ∈ intC(X)(C(X) − F(X)). If S ⊂ α(t), then there
exists a sequence of elements in C(X) which does not contain θ and
converges to α(t), so α(t) /∈ intC(X)(C(X) − F(X)), a contradiction.
Therefore, S � α(t).

We have shown that α satisfies the hypothesis in Claim 5, so p2p3 �
α(1). But z0 is a point in S such that z0 /∈ p2p3, z0 /∈ α(1) and,
since p2, p3 ∈ α(1), we contradict the connectedness of α(1). This
contradiction completes the proof that X has a unique hyperspace
C(X).

8. Dendrites not in class D and hyperspace C2(X). For a
dendrite W , it is known [2, 13] that C(W ) is unique if and only if W
is in class D. This is not true for C2(W ) as we see in this section. We
prove that the continuum Z3 = ([−1, 1]×{0})∪(⋃{{−1/m}×[0, 1/m] :
m ≥ 2})∪ (

⋃{{ 1
m}× [0, 1/m] : m ≥ 2}) has unique hyperspace C2(Z3).

We emphasize that Z3 does not have unique hyperspace C(Z3) (see [2]
or Corollary 14). Let θ = (0, 0).

Example 39. The continuum Z3 has unique hyperspace C2(Z3).

Note that Z3 /∈ D. We see that Z3 has a unique hyperspace C2(Z3).

Suppose that Y is a continuum such that C2(Z3) and C2(Y ) are
homeomorphic. Let h : C2(Z3) → C2(Y ) be a homeomorphism. By
[16, Theorem 4.1], Y is not a finite graph.

Let J,K ∈ AS(Z3). Notice that θ /∈ J,K and J and K are arcs.
By Theorem 4, dimJ [C2(Z3)] and dimK [C2(Z3)] are finite. By the
first paragraph in the proof of Lemma 32, there exist L,M ∈ AS(Y )
such that h(〈Jo,Ko〉) = 〈Lo,Mo〉. Thus, h(clC2(Z3)(〈Jo,Ko〉)) =
clC2(Y )(〈Lo,Mo〉). Since L ∪ M ∈ clC2(Y )(〈Lo,Mo〉), there exists an
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A ∈ clC2(Z3)(〈Jo,Ko〉) such that h(A) = L ∪ M . Since A ⊂ J ∪ K,
by Theorem 4, dimA[C2(Z3)] is finite. Thus, dimL∪M [C2(Y )] is finite
and (L ∪ M) ∩ P(Y ) = ∅. By Theorem 4 there exists a finite
graph D in Y such that L ∪ M ⊂ intY (D). This implies that
FrY (L) ⊂ clY (FA(Y ) − L) and FrY (M) ⊂ clY (FA(Y ) − M). Since
FrZ3(J) ⊂ clZ3(FA(Z3) − J) and FrZ3(K) ⊂ clZ3(FA(Z3) − K), we
can apply Theorem 34. In particular, if J = K, then L = M and
L is an arc; moreover, for each p ∈ J − Jo, h({p}) is a one-point set
and h({p}) ⊂ L − Lo. By continuity, h({θ}) is also a one-point set in
Y −⋃{Mo : M ∈ AS(Y )}.
We define a map g : Z3 → Y . Let F = Z3 −

⋃{Lo : L ∈ AS(Z3)}.
Given p ∈ F , let g(p) ∈ Y be such that h({p}) = {g(p)}, which exists
by Theorem 34. Given J ∈ AS(Z3), let KJ ∈ AS(Y ) be such that
h(〈Jo〉) = 〈Ko

J〉. Note that J is not a simple closed curve.

If J ∈ AE(Z3), let qJ and pJ be the end points of J , where
pJ ∈ Jo. Then qJ is the only point in J such that J − {qJ} is
open in Z3. By Theorem 34, KJ ∈ AE(Y ). Note that qJ ∈ F and
g(qJ) ∈ Y − ⋃{Ko : K ∈ AS(Y )}. Thus, {qJ} ∈ clC2(Z3)(〈Jo〉) and
{g(qJ)} ∈ clC2(Y )(〈Ko

J 〉). Hence, g(qJ) ∈ KJ −Ko
J . Therefore, g(qJ )

is the only point in KJ such that KJ − {g(qJ)} is open in Y . Fix
a homeomorphism gJ : J → KJ such that gJ(qJ ) = g(qJ). If J is
an arc and J /∈ AE(X), let qJ and pJ be the end points of J . Then
qJ and pJ are the only points in J such that J − {pJ , qJ} is open in
X . By Theorem 34, KJ is an arc in AS(Y ) − AE(Y ). Proceeding as
before, g(pJ) and g(qJ) are the only points in the arc KJ such that
KJ − {g(pJ), g(qJ)} is open in Y . Hence, g(pJ) and g(qJ) are the
end points of KJ . Fix a homeomorphism gJ : J → KJ such that
gJ(pJ) = g(pJ) and gJ(qJ) = g(qJ ).

Now define g : Z3 → Y as the common extension of g (defined in F )
and the maps gJ for J ∈ AS(Z3). Proceeding as in Theorem 35, it can
be shown that g is a well-defined embedding from Z3 into Y . Given
J ∈ AS(Z3), g(J) ⊂ clY (FA(Y )). Then g(Z3) = g(clZ3(FA(Z3))) ⊂
clY (g(FA(Z3))) ⊂ clY (FA(Y )). Hence, g(Z3) ⊂ clY (FA(Y )). Given
K ∈ AS(Y ), fix a point q ∈ Ko. Then {q} ∈ P2(Y ) and h−1({q}) ∈
P2(Z3). Hence, there exist J, L ∈ AS(Z3) such that h−1({q}) ∈
〈Jo, Lo〉. If J �= L, proceeding as in the first paragraph of the proof
of Theorem 32 and using Theorem 34, we obtain that there exist
M,N ∈ AS(Y ) such that M �= N and h(〈Jo, Lo〉) = 〈Mo, No〉. Thus,
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{q} ∈ 〈Mo, No〉, a contradiction. Hence, J = L and K = KJ . This
proves that K ⊂ g(Z3), for every K ∈ AS(Y ). Hence, clY (FA(Y )) ⊂
g(Z). Therefore, g(Z) = clY (FA(Y )).

In order to prove that Z3 and Y are homeomorphic, we are going
to show that Y = clY (FA(Y )). Suppose to the contrary that Y �=
clY (FA(Y )). Note that Y − clY (FA(Y )) ⊂ P(Y ).

We need to show the following claim.

Claim 7. If p ∈ Z3 and g(p) ∈ P(Y ), then p ∈ P(Z3).

To prove Claim 7, let y = g(p). Then y ∈ clY (FA(Y )) − ⋃{Ko :
K ∈ AE(Y )}. Thus, p ∈ Z3 − ⋃{Jo : J ∈ AE(Z3)}. Hence,
h({p}) = {g(p)} = {y}. By Theorem 4, dimh({p})[C2(Y )] is infinite. So
dim{p}[C2(Z3)] is infinite. Thus, p ∈ P(Z3). So Claim 7 is proved.

Since P(Z3) = {θ}, θ is the only point p in X for which g(p) ∈
P(Y ). Thus, g(Z3) ∩ P(Y ) = {g(θ)}. This implies that P(Y ) is a
subcontinuum of Y .

We are going to obtain a contradiction by proving that the set
TZ3 = intC2(Z3)(C2(Z3) − F2(Z3)) is disconnected and the set TY =
intC2(Y )(C2(Y )− F2(Y )) is pathwise connected.

Take A ∈ TZ3 . Then θ ∈ A. If A is connected, then A is the
limit of elements Am in C2(Z3) such that θ /∈ Am. This implies that
Am ∈ F2(Z3) and A /∈ intC2(Z3)(C2(Z3) − F2(Z3)). This contradiction
proves that A has two components: A1 and A2. We may assume that
θ ∈ A1. Let π : Z3 → [−1, 1] be the projection on the first coordinate.
Then TZ3 ⊂ {A1 ∪ A2 ∈ C2(X) : A1, A2 ∈ C(Z3), A1 ∩ A2 = ∅,
θ ∈ A1 and π(A2) ⊂ [−1, 0)} ∪ {A1 ∪ A2 ∈ C2(X) : A1, A2 ∈ C(Z3),
A1 ∩ A2 = ∅, θ ∈ A1 and π(A2) ⊂ (0, 1]}. It follows that TZ3 is
disconnected.

Take B ∈ TY − {Y }. If B � g(Z3), then B ∩ intY (P(Y )) �= ∅.
Let α : [0, 1] → C2(Y ) be an order arc from B to Y . Then, for
each t ∈ [0, 1], α(t) ∩ intY (P(Y )) �= ∅. This implies that α(t) ∈ TY .
Therefore, B can be connected to Y by a path in TY . Now suppose
that B ⊂ g(Z3). Since dimB[C2(Y )] is infinite, B ∩ P(Y ) �= ∅. Thus,
g(θ) ∈ B. Let β : [0, 1] → C(Y ) be an order arc from {g(θ)} to
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P(Y ). Let α : [0, 1] → C2(Y ) be given by α(t) = B ∪ β(t). Then
α is continuous, α(0) = B, α(1) = B ∪ P(Y ) and, for each t > 0,
∅ �= β(t) ∩ intY (P(Y )) ⊂ α(t) ∩ intY (P(Y )). Hence, α(t) ∈ TY .
Therefore, B can be connected to B ∪ P(Y ) by a path in TY . Since
P(Y )∩ intY (P(Y )) �= ∅, we have reduced the problem to the first case.
Hence, TY is pathwise connected.

Therefore, TZ3 is disconnected and TY is connected. This contradicts
the fact that h is a homeomorphism. This contradiction completes the
proof that Z3 and Y are homeomorphic. Therefore, Z3 has unique
hyperspace C2(Z3).

Problem 40. Characterize dendrites X with unique hyperspace
C2(X).

Problem 41. Does there exist a Peano continuum X such that X
has unique hyperspace C(X) but X does not have unique hyperspace
C2(X)?

Problem 42. Let X be an almost meshed Peano continuum such
that X − P(X) is connected. Does X have unique hyperspace C(X)?

9. Other examples.

Example 43. Let Z1 = Z3 ∪ ({0} × [0, 1]). Then Z1 does not have
unique hyperspace C2(Z1). To see this, notice that the point (0, 0)
satisfies the conditions of Corollary 25. Recall that, by Example 39, Z3

has unique hyperspace C2(Z3).

Example 44. Let X be a dendrite that contains a homeomorphic
copy of dendrite Fω. Suppose that there is a point q ∈ Fω such that
Fω − {q} is open in X . Then X does not have a unique hyperspace
Cn(X) for any n ∈ N. To see this, notice that the vertex of Fω satisfies
the conditions of Corollary 25.

Example 45. Let X be a local dendrite. Suppose that X contains
a homeomorphic copy of dendrite Fω . Then X does not have unique
hyperspace Cn(X) for any n ∈ N.

Proof. Let d be a metric for X . Let Fω =
⋃{θpm : m ∈ N}, where

θ, pm ∈ X , each θpm is an arc in X , joining θ and pm, lim θpm = {θ}
(in C(X)) and θpm ∩ θpk = {θ}, if m �= k. In order to apply
Theorem 22, we only need to prove that X − {θ} has infinitely many
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components. Suppose, to the contrary, that X − {θ} has only finitely
many components. Then we may suppose that there exists a component
W of X − {θ} such that θpm − {θ} ⊂ W for each m ∈ N. Let M
be a dendrite in X such that θ ∈ Mo, and let ε > 0 be such that
B(2ε, θ) ⊂ M . We may assume that Fω ⊂ B(ε, θ) and W − M �= ∅.
Fix a point w ∈ W −M . Given m ∈ N, since W is arcwise connected,
there exists an arc αm ⊂ W which joins pm and w. Then we can
choose a point qm ∈ αm such that d(θ, qm) = ε and the subarc βm of
αm joining pm and qm is contained in {x ∈ X : d(x, θ) ≤ ε}. We may
assume that lim qm = q for some q ∈ X such that d(θ, q) = ε. Let U
be an open connected subset of X such that q ∈ U ⊂ M and θ /∈ U .
Let m0 ∈ N be such that qm0 , qm0+1 ∈ U . Then there exists an arc γ
in U joining qm0 and qm0+1. Thus, pm0 and pm0+1 can be joined by a
path in βm0 ∪ γ ∪ βm0+1 ⊂ M − {θ}. This is a contradiction since the
unique arc in M joining pm0 and pm0+1 is θpm0 ∪ θpm0+1. Therefore,
X − {θ} has infinitely many components.
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13. D. Herrera-Carrasco, Dendrites with unique hyperspace, Houston J. Math.
33 (2007), 795 805.

14. D. Herrera-Carrasco, A. Illanes, M.J. López and F. Maćıas-Romero,Dendrites
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15. D. Herrera-Carrasco and F. Maćıas-Romero, Dendrites with unique n-fold
hyperspace, Topol. Proc. 32 (2008), 321 337.

16. A. Illanes, The hyperspace C2(X) for a finite graph X is unique, Glas. Mat.
Ser. 37 (2002), 347 363.

17. , Finite graphs X have unique hyperspaces Cn(X), Topol. Proc. 27
(2003), 179 188.

18. , Dendrites with unique hyperspace C2(X) II, Topol. Proc. 34 (2009),
77 96.

19. A. Illanes and S.B. Nadler, Jr., Hyperspace fundamentals and recent advances,
Mono. Text. Pure Appl. Math. 216, Marcel Dekker, New York, 1999.

20. S. Maćıas, On the hyperspaces Cn(X)of a continuum X, Topol. Appl. 109
(2001), 237 256.

21. V. Mart́ınez-de-la-Vega, Dimension of the n-fold hyperspaces of graphs,
Houston J. Math. 32 (2006), 783 799.

22. E.E. Moise, Grille decomposition and convexification theorems for compact
metric locally connected continua, Bull. Amer. Math. Soc. 55 (1949), 1111 1121.

23. S.B. Nadler, Jr., Continuum theory, An introduction, Mono. Text. Pure Appl.
Math. 158, Marcel Dekker, New York, 1992.
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04510, Mexico
Email address: illanes@matem.unam.mx
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