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COTORSION PAIRS IN C(R-Mod)

DIEGO BRAVO, EDGAR E. ENOCHS, ALINA C. IACOB

OVERTOUN M.G. JENDA AND JUAN RADA

ABSTRACT. In [8] Salce introduced the notion of a co-
torsion pair (A,B) in the category of abelian groups. But his
definitions and basic results carry over to more general abelian
categories and have proved useful in a variety of settings. In
this article we will consider complete cotorsion pairs (C,D) in
the category C(R-Mod) of complexes of left R-modules over
some ring R. If (C,D) is such a pair, and if C is closed un-
der taking suspensions, we will show when we regard K(C)
and K(D) as subcategories of the homotopy category K(R-
Mod), then the embedding functors K(C) → K(R-Mod) and
K(D) → K(R-Mod) have left and right adjoints, respectively.
In finding examples of such pairs, we will describe a procedure
for using Hoveys results in [5] to find a new model structure
on C(R-Mod).

1. Introduction. Let R be a ring, and let C(R-Mod) denote the
category of complexes of left R-modules. This category has enough
injectives and projectives so we can compute derived functors. We let
Extn denote the nth derived functor of Hom in the category of these
complexes. We identify the elements of Ext1(C,D) with the equivalence
classes of short exact sequences

0 −→ D −→ U −→ C −→ 0

in C(R-Mod).

If C ∈ C(R-Mod), let S(C) denote the suspension of the complex
C. So S(C)n = Cn+1 for all n, and the differential of S(X) is d where
d is the differential of C (with an appropriate change in subscripts).
We then can define Sk(C) for any k ∈ Z. A class C of objects of C(R-
Mod) will be said to be closed under suspensions if Sk(C) ∈ C whenever
C ∈ C and k ∈ Z.
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In later sections we will be concerned with the categories C(R-Mod)
and the homotopy categories K(R-Mod). These categories have the
same objects. To distinguish sets of morphisms, we will let Hom (C,D)
denote the set of morphisms C → D in C(R-Mod), and then we let
HomK(R-Mod)(C,D) denote the morphisms C → D in K(R-Mod).

We recall that, if f : C → D is a morphism in C(R-Mod), then we
have the mapping cone c(f) of f . We have that c(f)n = Dn ⊕ Cn+1,
and the differential d is such that d(y, x) = (d(y) + f(x), d(x)). We
have the short exact sequence

0 −→ D −→ c(f) −→ S(C) −→ 0,

where the maps D → c(f) and c(f) → S(C) are given by y �→ (y, 0)
and (y, x) �→ x, respectively.

Given f, g ∈ Hom(C,D), we will let f ∼= g mean that f and g are

homotopic. If we want to indicate the homotopy s, we write f
s∼= g.

A pair (C,D) of classes of objects of C(R-Mod) is said to be a
cotorsion pair in C(R-Mod) if

D = C⊥ = {D | Ext1(C,D) = 0 for all C ∈ C}

and if

C = ⊥D = {C | Ext1(C,D) = 0 for all D ∈ D}.

For objects C and D of C(R-Mod), the groups Ext1(Sk(C), D) and
Ext1(C, Sk(D)) are isomorphic. So if (C,D) is a cotorsion pair, C is
closed under suspensions if and only if D is closed under suspensions.

The cotorsion pair (C,D) will be said to be complete if, for every
X ∈ C(R-Mod), there are exact sequences

a) 0 → D → C → X → 0

b) 0 → X → D′ → C′ → 0

where C,C′ ∈ C and D,D′ ∈ D.

If there is a set S of objects of C(R-Mod) such that S⊥ = D for
some cotorsion pair (C,D), then the pair is said to be cogenerated by
a set. If this is the case, then the pair is known to be complete; see
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Theorem 3.2.1 of [4] where the proof is given for cotorsion pairs in the
category R-Mod. It carries over directly to the category C(R-Mod).
The proof there shows that sequences a) and b) above can be chosen
functorially. This is what is meant by saying the pair is functorially
complete. So, when the pair (C,D) is cogenerated by a set, it is a
functorially complete cotorsion pair.

If we have sequences a) and b) as above for a complete pair (C,D),
and if C ∈ C, then we have the exact sequence

Hom (C,C) −→ Hom(C,X) −→ Ext1(C,D) = 0.

This gives that C → X is a C-precover. Similarly, we get that X → D′

is a D-preenvelope.

If C is a complex, then x ∈ C will mean that x ∈ Cn for some unique
n ∈ Z. A cotorsion pair (C,D) is said to be hereditary if Extn(C,D) = 0
for all n ≥ 1 and all C ∈ C and D ∈ D. The pair is hereditary if and
only if, for every short exact sequence 0 → D′ → D → D′′ → 0 where
D′, D ∈ D. Then D′′ ∈ D.

We will also consider cotorsion pairs (A,B) in the category R-Mod.
The definitions and terminology are essentially the same as those above.

2. Two lemmas. In this and the following sections we will be
concerned with C(R-Mod) and K(R-Mod) for some ring R. We prove
two lemmas. The first of the two is known (see Lemma 3.2 of [4]). But,
for the reader’s convenience, we include the short proof.

Lemma 2.1. If f ∈ Hom(C,D), then the short exact sequence
0 −→ D −→ c(f) −→ S(C) −→ 0 is split exact if and only if f ∼= 0.

Proof. Assume that the sequence splits, and let u : S(C) → c(f)
be a section. Then, for x ∈ S(C), we have u(x) = (s(x), x) for
some s(x) ∈ D. Since u is a morphism of complexes, we have
(ds(x) + f(x), dx) = (sd(x), dx). So f(x) = (ds(x) + sd(x)). This
shows that s provides the desired homotopy.

If, conversely, f
s∼= 0, and if we define u by u(x) = (s(x), x), we check

that u gives the desired section.

Corollary 2.2. If C,D ∈ C(R-Mod) and if Ext1(S(C), D) = 0,
then every f : C → D is homotopic to 0.
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Proof. Immediate.

The next lemma is our main result of this section.

Lemma 2.3. Given f ∈ Hom(C,D) and the associated exact
sequence

0 −→ D −→ c(f) −→ S(C) −→ 0,

the following are equivalent:

a) D → c(f) admits a retraction in C(R-Mod).

b) D → c(f) admits a retraction in K(R-Mod).

c) c(f) → S(C) admits a section in C(R-Mod).

d) c(f) → S(C) admits a section in K(R-Mod).

Proof. The equivalence of a) and c) is standard. Clearly, a)⇒ b) and
c)⇒ d).

We now prove b) ⇒ a). Let r : c(f) → D (r a morphism in C(R-
Mod)) give a retraction of D → c(f) in K(R-Mod). Let t be the
corresponding homotopy, i.e., for y ∈ D we have (dt+td)(y) = yr(y, 0).
Define c(f) → D by (y, x) �→ y + tf(x) + r(0, x) for (y, x) ∈ c(f). If
this map is a morphism of complexes, it gives the desired retraction.
Since d(y, x) = (dy + f(x), dx) we need to show that

d(y + tf(x) + r(0, x)) = dy + f(x)− tfd(x)− r(0, dx).

Canceling dy and using the fact that df = fd in the term tfd(x), we
see that we are reduced to showing that

dtf(x) + tdf(x) = f(x)− dr(0, x) − r(0, dx).

But dtf(x) + tdf(x) = (dt + td)(f(x)) = f(x) − r(f(x), 0). So now,
canceling f(x), we need that

r(f(x), 0) = dr(0, x) + r(0, dx).

Since dr = rd, we have

dr(0, x) + r(0, dx) = rd(0, x) + r(0, dx)

= r(f(x), dx) + r(0, dx)

= r((f(x), 0) + (0, dx)) + r(0, dx)

= r(f(x), 0).
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We now prove d) ⇒ c). Let s : S(C) → c(f) be a section up
to homotopy where s(x) = (u(x), v(x)). Let w be the associated
homotopy. Then −(dw + wd)(x) = x = v(x). We have

ds(x) = d(u(x), v(x)) = (du(x) + fv(x), vd(x)).

But s is a morphism and so ds(x) = s(−dx) = (−ud(x),−vd(x)). So
we get (du+ ud)(x) = −fv(x) and dv(x) = vd(x).

We now claim that x �→ (fw(x) + u(x), x) is the desired section.
To get that the function commutes with differentials, we need that
dfw(x) + du(x) + f(x) = −fwd(x)− ud(x) or that f((dw +wd)(x)) +
(du + ud)(x) = −f(x). Since (dw + wd)(x) = v(x) − x and since
(du+ ud)(x) = −f(x), we see that the equality holds.

3. The existence of adjoints. The objective of this section is to
prove that the adjoints mentioned in the abstract exist.

Proposition 3.1. Suppose that (C,D) is a complete cotorsion
pair in C(R-Mod) where C is closed under taking suspensions. For
X ∈ C(R-Mod), let 0 → D → C → X → 0 be exact where C ∈ C and
D ∈ D. If C′ ∈ C and if fi ∈ Hom(C′, X) and gi ∈ Hom(C′, C) for
i = 1, 2 are such that

C′
�

�
���

gi

�

fi

C � X

are commutative for i = 1, 2, then f1 ∼= f2 if and only if g1 ∼= g2.

Proof. If g1 ∼= g2, then easily f1 ∼= f2. For the converse, let f = f1−f2
and g = g1 − g2. We see that we only need show that when f ∼= 0 we
have g ∼= 0. With such an f and g, we get the commutative diagram:

0 � C

�

� c(g)

�

� S(C′) � 0

0 � X � c(f) � S(C′) � 0.
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Since f ∼= 0, by Lemma 2.1 we get that the lower short exact sequence
splits. A retraction c(f) → X provides us with a commutative diagram:

C

�

� c(g)
�

�
�
��

X.

Since C is closed under extensions and suspensions, we have c(g) ∈ C.
Since C → X is a C-precover, we get a lifting c(g) → C. We now want
to apply Lemma 2.3. So we want to argue that c(g) → C provides a
retraction of C → c(g) in K(R-Mod). For this, note that the difference
of the composition C → c(g) → C and the identity map idC maps
C into the kernel of C → X , that is, into D. By Corollary 2.2, this
difference (as a map into D) is homotopic to 0. But then the difference
as a map into C is homotopic to 0. So, by Lemma 2.3, we get that the
short exact sequence 0 → C → c(g) → S(C′) → 0 is split exact. So, by
Lemma 2.1, we get that g ∼= 0.

Corollary 3.2. With the same notation, HomK(R-Mod)(C′, C) →
HomK(R-Mod)(C′, X) is a bijection.

Proof. We first note that the exact sequence 0 → D → C → X → 0
gives the exact sequence Hom (C′, C) → Hom(C′, X) → Ext1(C′, D) =
0. So Hom (C′, C) → Hom(C′, X) is surjective. This gives that
HomK(R-Mod)(C′, C) → HomK(R-Mod)(C′, X) is surjective. Propo-
sition 3.1 guarantees that this function is injective and so bijective.

We also have the duals of Proposition 3.1 and Corollary 3.2. Since
the proofs will be dual proofs, we will just state the results.

Proposition 3.3. Suppose that (C,D) is a complete cotorsion
pair in C(R-Mod) where D is closed under taking suspensions. For
X ∈ C(R-Mod), let 0 → X → D → C → 0 be exact where C ∈ C and
D ∈ D. Then, if D′ ∈ D and if fi ∈ Hom(X,D′) and gi ∈ Hom(D,D′)
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for i = 1, 2 are such that

X

�

fi

� D
�
�

���
gi

D′

are commutative for i = 1, 2, then f1 ∼= f2 if and only if g1 ∼= g2.

Corollary 3.4. With the same notation we have that HomK(R-Mod)
(D,D′) → HomK(R-Mod)(X,D) is a bijection.

Theorem 3.5. If (C,D) is a complete cotorsion pair in C(R-Mod),
and if C is closed under taking suspensions, then the embeddings
K(C) → K(R-Mod) and K(D) → K(R-Mod) have right and left ad-
joints, respectively.

Proof. A right adjoint T of K(C) → K(R-Mod) can be constructed
as follows. For each X ∈ C(R-Mod), we make a choice of an exact
sequence 0 → D → C → X → 0 in C(R) with C ∈ C and
D ∈ D. We want to define a functor T : K(R-Mod) → K(C) so
that T (X) = C. If f : X → X ′ is a morphism in C(R-Mod),
we let [f ] represent the corresponding morphism in K(R-Mod). So
[f ] consists of all f ′ : X → X ′ such that f ∼= f ′. We use the
following procedure to define T ([f ]). We have the exact sequence
Hom (C,C′) → Hom(C,X ′) → Ext1(C,D′) = 0. So this means
that there is a g ∈ Hom(C,C′) whose image in Hom (C,X ′) is the

composition C → X
f→ X ′. So we have the commutative diagram:

C

�

g

� X

�

f

C′
� X ′.

For f ′ ∈ [f ] (so f ∼= f ′) we use the same argument and find a
g′ : C → C′ so that the diagram

C

�

g′

� X

�

f ′

C′
� X ′
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is commutative. Then an application of Proposition 3.1 gives that
g ∼= g′. This means that we can define T ([f ]) to be [g] with f and g as
above. Then it can be quickly checked that T is an additive functor.
Note that the maps C → X then become maps T (X) → X and give a
natural transformation from T to the identity functor on K(R-Mod).

Now we appeal to Corollary 3.2. This corollary says that, if C′ ∈ C
and if 0 → D → C → X → 0 is as above, then HomK(R-Mod)(C

′, C) →
HomK(R-Mod)(C

′, X) is a bijection. But T (X) = C so we have the
bijection

HomK(R-Mod)(C
′, T (X)) −→ HomK(R-Mod)(C

′, X).

From the definition of this map we see that it is natural in C′. From
the natural transformation above, we see that it is natural in X . So
this establishes that T is a right adjoint of the embedding functor
K(C) → K(R-Mod).

The definition of T in the above depends upon the choice of an exact
sequence 0 → D → C → X → 0 for every X . A different set of choices
of such sequences will give a functor isomorphic to this T .

Remark 3.6. If D above is exact, then T (X) = C → X is a homology
isomorphism. So if all such D are exact, the counit of the adjunction
consists of homology isomorphisms. If all C ∈ C are exact, we get a
similar claim about the unit of the left adjoint of Δ → K(R-Mod).

4. Examples and applications. In this section we will give several
complete cotorsion pairs in C(R-Mod) where the components of the
pair are closed under suspensions. So then we get the associated adjoint
functors.

We now recall a method of Gillespie for creating cotorsion pairs in
C(R-Mod) from pairs in R-Mod. Here E is the class of exact complexes.

Proposition 4.1 [3, Propositions 4.4, 4.6]. If (A,B) is a cotorsion
pair in R-Mod which is cogenerated by a set, then C(B) and C(B) ∩ E
are the second components of cotorsion pairs in C(R-Mod) which are
cogenerated by sets.

As noted in the introduction, the fact that these cotorsion pairs are
cogenerated by sets implies that they are complete. Also, note that
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classes C(B) and C(B) ∩ E are closed under suspensions. We note
that Gillespie’s result for C(B) ∩ E in [3] required that A contain a
generator of finite projective dimension. In this situation we even have
a projective generator; namely, the ring as a left module over itself.

Examples. We will use the symbol R-Inj to denote the category of
injective R-modules. Then we will use other variations of this notation.

(1) (R-Mod, R-Inj) is a cotorsion pair in R-Mod which is cogenerated
by the set of R/I where I is a left ideal of R (the Baer criterion). Then,
using Proposition 4.1 and Theorem 3.5 we see that K(R-Inj) → K(R-
Mod) and K((R-Inj) ∩ E) → K(R-Mod) have left adjoints.

(2) In [1, Theorem 4.2 and Proposition 4.1] it was shown that
(C(R-Flat)∩E , (C(R-Flat)∩E)⊥) is a cotorsion pair which is cogener-
ated by a set. The fact that (C(R-Flat), C(R-Flat)⊥) is a cotorsion pair
can be found in [1, Theorem 4.3]. This result, with different terminol-
ogy, says that this pair is complete. The argument that it is complete
was based on the fact that it was cogenerated by a set.

So now an application of Theorem 3.5 gives that K(R-Flat) →
K(R-Mod) and K((R-Flat) ∩ E) → K(R-Mod) have right adjoints.
The existence of the first of these two adjoints was proved by Neeman
(see [7, Theorem 3.2]) but with different methods.

We now want to give another example analogous to that in (2) above.
We first recall Kaplansky’s theorem:

Theorem 4.2 [6, Theorem 1]. If P is a projective module, then P
is the direct sum of countably generated projective modules.

The proof of Kaplansky’s theorem carries over to projective com-
plexes, i.e., to the projective objects in C(R-Mod). But it is not true
that every P ∈ C(R-Proj) can be written as a direct sum of complexes
with countably generated terms. To see that this is so, let M be a left
R-module, and let · · · → P2 → P1 → P0 → M → 0 be a projective res-
olution of M . If P is then the complex · · · → P2 → P1 → P0 → 0, we
see that, if P were such a direct sum, then M would be the direct sum
of countably generated modules. But it is certainly not true that every
module has such a direct sum decomposition. For example, consider
M = ZN as a module over Z. However, there is something we can say
about P ∈ C(R-Proj). To do so, we need the next notion.
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Definition 4.3. Given a complex C ∈ C(R-Mod), by a filtration
of C indexed by an ordinal λ we mean a family (Cα | α ≤ λ) of
subcomplexes of C such that C0 = 0, such that Cλ = C, such that
Cα ⊂ Cα′ whenever α ≤ α′ ≤ λ, and such that, for any limit ordinal
β ≤ λ we have Cβ is the union of the Cα with α < β. If S is some
class of complexes in C(R-Mod), we say that this filtration is an S-
filtration if, for each α + 1 ≤ λ, we have that Cα+1/Cα is isomorphic
to an element of S. By a filtration (Xα | α ≤ λ) of a set X , we will use
the obvious modification of this notion for complexes.

Theorem 4.4. If P ∈ C(R-Proj) for some ring R, and if S is a
set of representatives of complexes with all terms countably generated
projective modules, then P has an S-filtration.
Proof. By Kaplansky’s theorem each Pn can be written as a direct

sum Pn =
∑

i∈In
P i
n (direct) for some set In and where each P i

n is
countably generated and projective. We will construct the filtration
(Pα

n | α ≤ λ) for some ordinal number λ by constructing a filtration
(Iαn | α ≤ λ) of In for each n. This filtration will be such that, if we let
Pα
n =

∑
i∈Iα

n
P i
n for each n ∈ Z and α ≤ λ, then for each α the terms

Pα
n will give us a subcomplex Pα of P and then these in turn will give

us the desired filtration of P .

We construct our filtrations of the sets In by transfinite induction.
For α = 0, we let I0n = ∅ for each n. Then the corresponding
subcomplex is P 0 = 0. The crucial step is now in constructing the
subsets I1n ⊂ In for each n. To do this, we choose an arbitrary m ∈ Z
and then choose a countably generated submodule S ⊂ Pm. Since S is
countably generated, and since S ⊂

∑
i∈Im

P i
m, we can find a countable

subset I1m ⊂ Im with S ⊂
∑

i∈I1
m
P i
m. Now consider dm(

∑
i∈I1

m
P i
m).

Since this module is a countably generated submodule of Pm+1, it will
in turn be contained in a sum

∑
i∈I1

m+1
P i
m+1 for a countable subset

I1m+1 of Im+1. We then choose a countable subset I1m+2 ⊂ Im+2 so that
dm+1(

∑
i∈I1

m+1
P i
m+1) ⊂

∑
i∈Ii

m+2
P i
m+2. Proceeding in this manner we

choose countable subsets I1n ⊂ In for each n ≥ m. Now, for n < m,
let I1n = ∅. Then, with P 1

n =
∑

i∈I1
n
P i
n, we get a subcomplex P 1 ⊂ P

with each term of P 1 countably generated and projective and such that
S ⊂ P 1

m. This means that, if P �= 0, we can choose P 1 �= 0.
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We now note that, by construction, (P/P1)n = Pn/P
1
n
∼=

∑
i∈InI1

n
P i
n

(direct). So this means that we can use the same procedure to construct
a subcomplex P 2/P 1 of P/P 1 where P 2

n =
∑

i∈I2
n
P i
n for each n where

I2n ⊃ I1n and where I2nI
1
n is countable. We can also require that, for

some given m and countable submodule T/Pm ⊂ Pm/P 1
m, we have

T ⊂ P 2
m. This means that we can choose P 1 � P 2 if P 1 �= P .

So now we assume that β is some ordinal number and that, for each
n ∈ Z and each α < β, we have constructed subsets Iαn ⊂ In satisfying:

1) Iαn ⊂ Iα
′

n when α ≤ α′ < β,

2) Iα+1
n Iαn is countable when α+ 1 < β,

3) Iγn = ∪α<γI
α
n when γ < β is a limit ordinal,

4) If Pα
n =

∑
i∈Iα

P i
n for α < β, then these are the terms of a

subcomplex Pα of P .

Now if β is a limit ordinal, we let Iβn = ∪α<βI
α
n for each n ∈ Z. If β is

not a limit ordinal and if β = α+ 1, we construct each Iα+1
n ⊃ In just

as we constructed the I1n from the I0n = ∅. But then it is clear that we
can find an ordinal λ so that the corresponding subcomplex Pλ = P
(so then we can also assume that Iλn = In for this λ and each n).

It is clear then that (Pα | α ≤ λ) is an S-filtration of P .

Theorem 4.5. If R is a ring, then (C(R-Proj),C(R-Proj)⊥) is a
cotorsion pair which is cogenerated by a set.

Proof. We let S be a set of representatives of all complexes P of left R-
modules such that each Pn is countably generated and projective. Then
S contains a projective generator of C(R-Mod). For, if we let R be the

complex · · · 0 → 0 → R
1→ R → 0 → 0 → · · · with the two R’s in the

1st and 0th place, then ⊕n∈ZS
n(R) is such a projective generator in S.

In fact, this complex is free as a complex with exactly one base element
of every possible degree. We then have the cotorsion pair (⊥(S⊥),S⊥)
which is cogenerated by the set S. We now use [4, Theorem 3.2.4]. That
theorem was stated for modules, but the proof carries over directly to
complexes where we let the projective generator above of C(R-Mod)
play the role of R in that theorem. We get that ⊥(S⊥) consists of
all complexes which are direct summands of complexes admitting an
S-filtration. By Theorem 4.4 above, we get that C(R-Proj) ⊂⊥ (S⊥).
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But, conversely, any complex P admitting an S-filtration has all its
terms projective. So then any summand of such a complex has all
its terms projective. Hence, ⊥(S⊥) ⊂ C(R-Proj). So we get that
(⊥(S⊥), S⊥) = (C(R-Proj), (C(R-Proj))⊥), and we have established
our claim.

We now want to prove a theorem analogous to Theorem 4.4 above
where we replace the class C(R-Mod) with the class C(R-Mod) ∩ E .
To do so, we will use the following terminology. Given P ∈ C(R-Proj)
for some ring R, for each n let Pn =

∑
i∈In

P i
n be a fixed direct sum

decomposition of Pn as a direct sum of countably generated projective
modules. We will call a subcomplex P ′ ⊂ P a nice subcomplex
(relative to these direct sum decompositions) if, for each n, we have
P ′
n =

∑
i∈I′

n
P i
n for some subset I ′n ⊂ In. So we note that the

complexes Pα in the proof above are all nice subcomplexes of the P of
the theorem relative to the given direct sum decompositions. We also
remark that any intersection and any sum of nice subcomplexes of P
are nice subcomplexes of P .

Theorem 4.6. Let P ∈ C(R-Proj), and let κ be an infinite cardinal
with κ ≥ |R|. If T is a set of representatives of exact complexes with
all terms projective and with the cardinality of each term at most κ,
then P has a T -filtration.

Proof. The argument is analogous to but slightly more complicated
than the argument in Theorem 4.4. In constructing the filtration, the
crucial step is constructing Pα+1 from Pα. Letting P 0 = 0, we show
how to construct P 1. Then Pα+1 will be constructed from Pα in a
similar manner.

We construct P 1 as a union of a chain Q1 ⊂ Q2 ⊂ Q3 ⊂ · of P
where each of these Qn are nice subcomplexes of P . To construct
Q1, we let m ∈ Z be arbitrary and T ⊂ Pm be a submodule with
|T | ≤ κ. We choose a subset J1

m of Im so that T ⊂
∑

i∈J1
M
P i
m.

Then we choose subsets J1
n ⊂ In for n ≥ m so |J1

m| ≤ κ and so
that dn(

∑
i∈J1

n
P i
n) ⊂

∑
i∈J1

n+1
P i
n+1 for all n ≥ m. Then, we let

J1
n = ∅ for n < m and Q1 be the complex whose nth term is

∑
i∈J1

n
P i
n.

Clearly, each term Q1
p of Q1 has cardinality at most κ. We have a nice

subcomplex all of whose terms are projective, but it is not necessarily
exact.
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To construct Q2, we pick any p ∈ Z. We have |Q1
p| ≤ κ, and so

|Zp(Q
1)| ≤ κ. Since P is exact, we have that dp+1(Pp+1) ⊃ Zp(Q

1).
So there is a submodule U ⊂ Pp+1 with |U | ≤ κ such that dp+1(U) ⊃
Zp(Q

1). Now we find a nice subcomplex C of P with Cp+1 ⊃ U and
where the corresponding subsets of each In have cardinality at most
κ. Now let Q2 = Q1 + C. Then Q2 is a nice subcomplex of P with
the corresponding subsets of In still having cardinality at most κ. Also
we have that dp+1(Q

2
p+1) ⊃ Zp(Q

1). We then construct Q3 from Q2

as we constructed Q2 from Q1 but with perhaps a different p. If we
then continue and construct Q1 ⊂ Q2 ⊂ Q3 ⊂ · · · , but making sure
that a given p ∈ Z is used infinitely many times in constructing Qn+1

from Qn, we see that if we let P 1 = ∪∞
n=1Q

n, we get a nice subcomplex
of P with the corresponding subsets of each In having cardinality at
most κ. We also have that, by construction of P 1, every cycle of P 1

is a boundary of P 1 and so P 1 is exact. By construction, P 1
m ⊃ T .

Now the rest of the argument for the existence of our desired filtration
follows the pattern of the proof in Theorem 4.4 above.

Theorem 4.7. If R is a ring, then (C(R-Proj)∩E, (C(R-Proj)∩E)⊥)
is a cotorsion pair which is cogenerated by a set.

The proof of this theorem is like that of the proof of Theorem 4.5 but
with the set S of that theorem replaced by the set T .

We now get other examples of adjoint functors.

The functors K(R-Proj) −→ K(R-Mod) and

K((R-Proj) ∩ E) −→ K(R-Mod) have right adjoints.

5. Hovey pairs. For a ring R, we again let E ⊂ C(R-Mod) be the
class of exact complexes. In [2, page 28, the Main theorem] it was noted
that (⊥E , E) is a cotorsion pair where ⊥E is the class of DG-projective
complexes. So P ∈ ⊥E if and only if each Pn is projective and if every
morphism P → E with E ∈ E is homotopic to 0. We also need the fact
that this cotorsion pair is cogenerated by a set. So, using this notation
we have:

Lemma 5.1. (⊥E , E) is cogenerated by a set of complexes.

Proof. We again let R be the complex · · · → 0 → R
1→ R → 0 → · · ·

with the two Rs in the 1st and 0th places. Then R is a projective
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object in C(R-Mod) (in fact, it is free with a single generator of
degree 1). We let R be the complex · · · → 0 → R → 0 → · · ·
with the single R in the 0th place. Then R is a subcomplex of R
and the quotient R/R is S(R), so we have the short exact sequence
0 → R → R → S(R) → 0. So we can use this partial projective
resolution of S(R) to compute Ext1(S(R), C) for any C ∈ C(R-Mod).
Clearly, Hom (R, C) ∼= Z0(C) and a morphism f : R → C has an
extension g : R → C if and only if x = f0(1) ∈ Z0(C) is a boundary in
C. This gives that Ext1(S(R), C) ∼= H0(C). More generally, we have
that Ext1(Sk+1(R), C) ∼= Hk(C) for any k ∈ Z. So this gives that a
complex C is exact if and only if Ext1(Sk(R), C) = 0 for all k, and so
we get that S⊥ = E where S is the set of complexes Sk(R) for k ∈ Z.

Definition 5.2. If C and D are two classes of complexes of left
R-modules, we will say that (C ∩ E ,D) and (C,D ∩ E) form a Hovey
pair if each of these pairs is a functorially complete cotorsion pair in
C(R-Mod).

Hovey proved ([5, Theorem 2.2]) that every such pair gives rise to
a model structure on C(R-Mod) such that C is the class of cofibrant
objects, D is the class of fibrant objects and E is the class of trivial
objects of the model structure. Our aim here is to provide an example
of a Hovey pair. All cotorsion pairs here will be in the category
C(R-Mod). We note that we are considering a special case of Hovey’s
results. We are taking the P of his paper to be the class of all short
exact complexes and the class of trivial objects of his paper to be the
class of exact complexes.

Lemma 5.3. If (C,D′) is a cotorsion pair and (U ,V) is a complete
and hereditary cotorsion pair in C(R-Mod) and if U ⊂ C, then when
(C ∩ V)⊥ = D, we have D′ = D ∩ V.

Proof. Since C ∩ V ⊂ C, we have D′ = C⊥ ⊂ (C ∩ V)⊥ = D. Since
U ⊂ C, we haveD′ = C⊥ ⊂ U⊥ = V . Hence, D′ ⊂ D∩V . Let D ∈ D∩V .
We want to show that D ∈ D′ = C⊥, i.e., that Ext1(C,D) = 0 for all
C ∈ C. Since (U ,V) is complete, for any C ∈ C, we have an exact
sequence

0 −→ C −→ V −→ U −→ 0

with U ∈ U and V ∈ V . Since C ∈ C and U ∈ U ⊂ C, we have V ∈ C
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(C is closed under extensions). This gives that Ext1(V,D) = 0. But we
have the exact

Ext1(V,D) −→ Ext1(C,D) −→ Ext2(U,D).

But Ext2(U,D) = 0 since U ∈ U , D ∈ D and since (U ,V) is hereditary.
So Ext1(C,D) = 0. This gives that D ∈ D′. So we have D′ = D∩V .
A dual argument gives the next result.

Lemma 5.4. If (C′,D) is a cotorsion pair and (U ,V) is a complete
and hereditary cotorsion pair in C(R-Mod), and if V ⊂ D, then when
C =⊥ (D ∩ U), we have C′ = C ∩ U .
Theorem 5.5. For any ring R there is a model structure on

C(R-Mod) where C(R-Proj) is the class of cofibrant objects.

Proof. By Theorems 4.5 and 4.7, we have that (C(R-Proj), (C(R-
Proj))⊥) and (C(R-Proj) ∩ E , (C(R-Proj) ∩ E)⊥ are cotorsions pairs
which are cogenerated by sets. So, as noted in the introduction,
both pairs are functorially complete. We want to argue that they
form a Hovey pair as in Definition 5.2 with C = C(R-Proj) and
with D = (C(R-Proj) ∩ E)⊥. So, with this notation, we need that
(C(R-Proj))⊥ = D ∩ E = (C(R-Proj) ∩ E)⊥ ∩ E .
To get this equality we will appeal to Lemma 5.3 with (C(R-Proj),

(C(R-Proj))⊥) being the pair (C,D′) of that lemma and with (⊥E , E)
being the pair (U ,V) of that lemma. This latter pair is complete by
Lemma 5.1. It is also hereditary. For, if 0 → E′ → E → E′′ → 0
is a short exact sequence of complexes where E′ and E are exact,
then E′′ is also exact. Since the P ∈⊥ E are the DG-projective
complexes, we have U =⊥ E ⊂ C(R-Proj) = C. Now, applying
Lemma 5.3, we get that D′ = D ∩ V . But this equality just says
that D′ = (C(R-Proj))⊥ = D ∩ V = (C(R-Proj) ∩ E)⊥ ∩ E . So, finally,
an appeal to [5, Theorem 2.2] gives the conclusion about the model
structure on C(R-Proj).
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