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A CORRESPONDENCE BETWEEN THE ISOBARIC RING
AND MULTIPLICATIVE ARITHMETIC FUNCTIONS

TRUEMAN MACHENRY AND KIEH WONG

ABSTRACT. We give a representation of the classical the-
ory of multiplicative arithmetic functions (MF) in the ring
of symmetric polynomials written on the isobaric basis. The
representing elements are recursive sequences of Schur-hook
polynomials evaluated on subrings of the complex numbers.
Multiplicative arithmetic functions are units in the Dirich-
let ring of arithmetic functions, and their properties can be
described locally, that is, at each prime number p. Our repre-
sentation is, hence, a local representation. This representation
enables us to clarify and generalize classical results, e.g., the
Busche-Ramanujan identity, as well as to give a richer struc-
tural description of the convolution group of multiplicative
functions. It is a consequence of the representation that the
MFs can be defined in a natural way on the negative pow-
ers of prime p which, in turn, leads to a natural extension
of Schur-hook polynomials to negatively indexed Schur-hook
polynomials.

0. Introduction. In this paper we give a representation of the
classical theory of multiplicative arithmetic functions (MF) in the ring
of symmetric polynomials. The Dirichlet ring of arithmetic functions
A∗ is well known to be a unique factorization domain (see Cashwell and
Everett [4]). Its ring theoretic properties have been investigated in, e.g.,
Rearick [29, 30], Shapiro [33], Carroll and Gioia [3], MacHenry [22],
MacHenry and Tudose [25]. The multiplicative arithmetic functions are
units in this ring, and their properties can be described locally, that is,
at each prime number p, (see, e.g., McCarthy [27], Sivaramakrishnan
[35] and Vaidyanathswamy, [36]). It is this local behavior which we
take advantage of to construct a representation in terms of a certain
class of symmetric polynomials called weighted isobaric polynomials
[25]. It is advantageous to use the isobaric basis as a basis for the
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ring of symmetric polynomials; we describe this basis in Section 1.
Henceforth, we refer to the symmetric polynomials in this basis as the
ring of isobaric polynomials.

The link between the theory of symmetric polynomials and the the-
ory of multiplicative, arithmetic functions is that of linear recurrence,
especially the ideas contained in MacHenry and Wong [25] (also see
Rutkowski [32], Lascoux [19] and Hou and Mu [15]). The isobaric ring
contains a certain submodule, the submodule of weighted isobaric poly-
nomials (WIP), which is generated as a Z-module by the Schur-hook
polynomials. This module has the property that it can be partitioned
into sequences which are linear recursions (see [25]). It contains the se-
quence of Generalized Fibonacci Polynomials (GFP), and the sequence
of Generalized Lucas Polynomials (GLP) (see MacHenry [23]). It turns
out that each of these sequences, when the indeterminates are evalu-
ated over a subring of the complex numbers, is the evaluation of a
local sequence of multiplicative functions, i.e., a multiplicative func-
tion at a prime p. Moreover, every MF is represented locally by such
sequences; in fact, the GFP-sequence is sufficient for this purpose. This
fact brings the machinery of the isobaric ring to bear with respect to
the convolution group of multiplicative functions. The importance of
linear recursions in the theory of MF is recognized in Laohakosol and
Pabhapote [16] and in Rutkowski [32]; however, the connection be-
tween multiplicative functions and symmetric functions and the power
of the isobaric notation to simplify and reveal basic facts about the
structure of MF is not made explicit in these papers.

The same machinery of linear recurrences in the isobaric setting was
used in MacHenry and Wong [26] to study number fields. A conse-
quence of the results in that paper implies a certain strong connection
between the structure of number fields, the algebraic structure of multi-
plicative functions, and periodicity in the theory of recursion. The con-
nection between A∗ and the symmetric polynomials was exploited in
[22, 25]. In the first of these papers it was used to prove that the group
of multiplicative functions generated by the completely multiplicative
functions is free abelian. In the second paper, a constructive procedure
using isobaric polynomials was given for embedding this group into its
divisible closure (also see [3]).

In Section 1, we define the weighted isobaric polynomials (WIP’s) and
give a formula for them independent of recursion.
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In Section 2, the notion of the core polynomial is introduced and the
infinite companion matrix and its properties are described, (see also
[25], Lascoux [20]). This infinite matrix extends the WIP-sequences
in the negative direction, that is, provides negatively-indexed functions
as well as positively-indexed ones. Negatively indexed sequences of
isobaric polynomials induce, using the linear recursion property, neg-
atively indexed MFs. Also, in this section, generating functions are
provided for the isobaric polynomials (and their MF counterparts).

In Section 3, we discuss the ring of arithmetic functions and introduce
an important classification scheme for them.

In Section 4, the main theorem, the Correspondence Theorem (The-
orem 1) asserting the relation between multiplicative arithmetic func-
tions and the WIP-module is proved.

Given a prime p, let χ ∈ M with local core C(X), k finite or infinite,
and let Fk(t) be the sequence of GFP’s induced by this core, then

Fk,n(t) = χ(pn).

In this section it is shown that, for each MF α, not only do we have
its local representation in terms of GFP’s, but in addition, each column
of the infinite companion matrix also determines an MF. Each element
in any column of A∞ is a Schur-hook polynomial. (The negatively
indexed one’s provide an extension of the idea of Schur polynomials.)
All of these Schur polynomials, the negatively-indexed ones as well
as the positively-indexed ones, can be conveniently computed using
Jacobi-Trudi formulae in their isobaric form.

In Section 5, we give a collection of examples showing the details of
the application of the correspondence theorem.

In Section 6, we look at the theory of specially multiplicative arith-
metic functions, the theorem of McCarthy and the Busche-Ramanujan
identity from the point of view of isobaric representation, putting these
ideas in a different and more transparent light. In particular, we show
that the specially multiplicative arithmetic functions are not so spe-
cial after all; the theorem of McCarthy is a trivially redundant asser-
tion that specially multiplicative functions are quadratic ([27, Theorem
1.12, especially part (4)]). Thus, the recursion formula for multiplica-
tive functions is a generalization of the McCarthy theorem. In the case
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of Busche-Ramanujan, we give a generalization and an interpretation.
In the language of this paper, the (Busche-Ramanujan) theorem (see
[27, 34]) becomes Proposition 3 which states that, when a multiplica-
tive function is represented by the GFP F , then

F2,r+s = F2,rF2,s + t2F2,r−1F2,s−1

(4.1)

F2,rF2,s = F2,r+s − t2F2,r+s−2 + · · ·+ (−t2)jF2,r+s−2j + · · ·
(4.2)

+ (−t2)rF2,s−r

where the degree of the core is 2, and j = 1, . . . , r.

In Section 7, the notions of type and valence are introduced. Type is a
classification of the local convolution group of multiplicative arithmetic
functions in terms of ranges and domains of its elements. There are
four types

(fin, fin), (inf, fin), (fin, inf), and(inf, inf),

where, for example, (fin, inf) means that the domain contains only
finitely many non-zero elements, and the range contains infinitely many
non-zero elements. Here we show, e.g., that all of these types exist and
are mutually exclusive, and that type 1 has only a single representative,
the identity function.

Valence is also an ordered pair, namely, a pair (r, s), where r is the
number of degree one factors in a multiplicative function χ and s is
the number of inverses of degree 1 factors in χ, where χ is written in
reduced form.

We also show how a theorem of Laohakosol and Pabhapote [7]
extending Busche-Ramanujan identities to multiplicative functions of
mixed type can be simplified and clarified.

In Section 8, we propose a classification system for MF which consists
of the categories degree, type and valence, which enables us to take a
refined look at the structure of MF’s. The degree is the degree of
the core polynomial; the type of an MF, as mentioned above, has
to do with the sizes of its domain and range; and the valence, with
its convolution structure. We discuss and extend some results of
Laohakosol-Pabhapote, [16, Proposition 7, Theorem 9 and especially,
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Theorem 11] which gives a candidate for a generalization of the Busche-
Ramanujan identity in terms of Schur-hook functions.

In Section 9, we discuss the Kesava Menon norm for MF in terms
of the framework of this paper, showing that it is multiplicative and
preserves degree. This is what the Kesava Menon norm looks like in
isobaric terminology:

N(Fn) =

2n∑
j=0

(−1)jF2n−jFj

or, equivalently

N(Fn) =
(
2
n−1∑
j=0

(−1)jF2n−jFj

)
+ (−1)nF 2

n .

In this section, we prove the multiplicative property of the Kesava
Menon norm, that is, that the Kesava Menon norm preserves convolu-
tion products, in the framework of this paper.

1. Ring of isobaric polynomials.

Definition 1. For a fixed k, an isobaric polynomial is a polynomial
of the form

Pk,n(t1, . . . , tk) =
∑
α�n

Cαt
α1
1 · · · tαk

k ,

α = (α1, . . . , αk),
∑

jαj = n, αj ∈ N.

The condition
∑

jα = n is equivalent to: (1α1 , . . . , kαk) is a par-
tition of n, whose largest part is at most k, and we write this in the
abbreviated, and somewhat unorthodox form, as α � n. (Note that,
given k the vector {αi} is sufficient information for reconstructing the
partition.) Thus, an isobaric polynomial of isobaric degree n is a poly-
nomial whose monomials represent partitions of n with largest part
not exceeding k. These polynomials form a graded commutative ring
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with identity under ordinary multiplication and addition of polynomi-
als, graded by isobaric degree. This ring is naturally isomorphic to the
ring of symmetric polynomials, where the isomorphism is given by the
involution Ω:

tj � (−1)j+1ej

with ej being the jth elementary symmetric polynomial in the kth
gradation of the graded ring of symmetric polynomials on the monomial
basis, (see [21, 25]). For example, if k = 2 and {λ1, λ2} is the monomial
basis, then for j = 1, e1 = λ1 + λ2 and for j = 2 e2 = −λ1λ2. This
isomorphism associates the Complete Symmetric Polynomials (CSP) in
the monomial ring with the Generalized Fibonacci Polynomials (GFP)
in the isobaric ring. It also associates the Power Symmetric Polynomials
(PSP) with the Generalized Lucas Polynomials (GLP) in the isobaric
ring, (see [25] and Macdonald [21]). We denote these two sequences
of polynomials, respectively, {Fk,n} and {Gk,n} where k is the number
of variables, and n is the isobaric degree. The correspondence between
(CSP) and (GFP) and the correspondence between (PSP) and (GLP)
can be shown inductively using the fact that (GFP) and (GLP) are
linearly recursions of degree k; that is,

Fk,n = t1Fk,n−1 + t2Fk,n−2 + · · ·+ tkFn−k

and

Gk,n = t1Gk,n−1 + t2Gk,n−2 + · · ·+ tkGn−k

with initial conditions given by

Fk,0 = 1, Fk,−1 = 0, . . . , Fk,−k+1 = 0

and

Gk,0 = k,Gk,−1 = 0, . . . , Gk,−k+1 = 0.

In Section 2 we show that this choice of initial conditions arises in a
natural way.
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The (GFP) and (GLP) can be explicitly represented as follows:

Fk,n =
∑
α�n

( |α|
α1 · · ·αk

)
tα1
1 · · · tαk

k ,

Gk,n =
∑
α�n

( |α|
α1 · · ·αk

)
n

|α| t
α1
1 · · · tαk

k ,

where |α| = ∑
αj , j = 1 + 2 + · · ·+ k.

Note that, when k = 2 and t1 = 1, t2 = 1, F2,n(1, 1) and G2,n(1, 1)
are, respectively, the sequence of Fibonacci numbers and the sequence
of Lucas numbers. On the other hand, for a fixed k, both the GFP
and the GLP are linearly recursive sequences indexed by n and. as
we shall see below, the indexing can be extended to the negative
integers with preservation of the linear recursion property (see [25,
26]). All other recursive sequences of isobaric polynomials are linear
combinations of isobaric reflects of sequences of Schur-hook polynomials
(to be explicitly defined in Section 2) and form a (free) Z-module, the
module of Weighted Isobaric Polynomials (WIP) (see [24, 25]). It is a
remarkable fact that the only isobaric polynomials that can be elements
in linearly recursive sequences of isobaric polynomials are those that
occur in one of the sequences in the WIP-module ([25, Theorem 3.4]).
Every sequence in the WIP-module can be presented in a closed form
whose structure explains the term weighted.

Pω,k,n =
∑
α�n

( |α|
α1, . . . , αk

) ∑
αjωj∑
αj

tα1
1 · · · tαk

k

ω = (ω1, . . . , ωk)

where ω = (ω1, . . . , ωk) is the weight vector, usually taken to be an
integer vector. k and ω are fixed and n varies. Both the GFP’s
and the GLP’s are weighted sequences, the weighting being given by,
respectively, (1, 1, . . . , 1, . . . ) for the GFPs and (1, 2, . . . , j, . . . ) for the
GLPs. The Schur-hook polynomial sequences, i.e., the columns of the
infinite companion matrix (see Section 2) have weightings of the form
(1, 1, . . . , 1, . . . ) or ±(0, . . . , 1, . . . , 1, . . . ), that is, 0 up to k−1 zeros as
their leading coordinates and 1’s elsewhere. The GLPs are alternating
sums of all of the Schur-hooks of the same isobaric degree (see [21, 24,
25]).
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Moreover, it is important to note that a new variable tk will appear
in a WIP polynomial Pω,k,n for the first time when n = k. Thus, for
fixed ω and k, the Pω,k,j are the same for all |j| < k. We call this the
conservation principle. We illustrate this with a listing of the first five
GFPs, taking the point of view that k varies as n varies.

• Fk,1 = t1

• Fk,2 = t21 + t2

• Fk,3 = t31 + 2t1t2 + t3

• Fk,4 = t41 + 3t21t2 + t22 + 2t1t3 + t4

• Fk,5 = t51 + 4t31t2 + 3t1t
2
2 + 3t21t3 + 2t2t3 + 2t1t4 + t5.

We need another concept which binds these various sequences to-
gether, namely, that of the core polynomial.

Definition 2. Given a set of variables t = (t1, . . . , tk), the core
polynomial is:

[t1, . . . , tk] = Xk − t1X
k−1 − · · · − tk.

This polynomial is related to the various sequences of isobaric poly-
nomials by the two fundamental theorems of symmetric functions, the
first being that the ring of symmetric functions is generated by the
elementary symmetric functions and the second, that the coefficients
of a monic polynomial are (up to signs) elementary symmetric func-
tions of the roots. A rather striking way of immediately achieving this
connection is through the companion matrix (CM).

2. The companion matrix and core polynomials. Given the
core polynomial, [t1, . . . , tk], the companion matrix is:

A =

⎛
⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
tk tk−1 tk−2 · · · t1

⎞
⎟⎟⎟⎠ .

A useful property of companion matrix A is that, when A operates
on An by multiplication on the left, say, the result is that all of the
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rows of An are shifted up one row, the first row disappears and the
new last row is the result of A operating on the last row of An. The
upshot is, of course, An+1. We can make use of this fact by making the
following construction. Starting with the k× k-matrix A, we construct
a k × (k + 1)-matrix whose last row is the result of A operating on
the right on the last row vector of A. We repeat this process on the
k × (k + 1)-matrix just constructed. And so on. The limit of this
process is a k×∞-matrix whose k×k-contiguous blocks constitute the
orbit of A operating on itself repeatedly. These blocks are the positive
powers of A. If A is non-singular, an analogous process, starting with
A using A−1 as the operator, produces a new top row each time whose
k × k-contiguous blocks are the negative powers of A. This produces
a doubly-infinite (top and bottom) matrix with k columns, which we
denote A∞ and call the infinite companion matrix (see [26] and Chen
and Louck [5]). We write the orbit matrix A∞ described above as
follows:

A∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · · · · ·
(−1)k−1S(−2,1k−1) · · · −S(−2,1) S(−2)

(−1)k−1S(−1,1k−1) · · · −S(−1,1) S(−1)

(−1)k−1S(0,1k−1) · · · −S(0,1) S(0)

(−1)k−1S(1,1k−1) · · · −S(1,1) S(1)

(−1)k−1S(2,1k−1) · · · −S(2,1) S(2)

(−1)k−1S(3,1k−1) · · · −S(3,1) S(3)

(−1)k−1S(4,1k−1) · · · −S(4,1) S(4)

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ((−1)k−jS(n,1k−j))k×∞.

Here is a typical k × k− block in A∞ when k = 3:

An =

⎛
⎝S(n−2,12) −S(n−2,1) S(n−2)

S(n−1,12) −S(n−1,1) S(n−1)

S(n,12) −S(n,1) S(n)

⎞
⎠ .

Note that

S(n−2) = F3,n−2, S(n−1) = F3,n−1, S(n) = F3,n.

This matrix can be regarded as recording all of the elements of the
free-abelian group (an infinite cyclic group) generated by matrix A. An
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is specifically the k × k-block whose lower right hand element in the
representation above is denoted by S(n) = Fk,n, n ∈ Z. It turns out
that the entries in this matrix are the positive and negatively-indexed
Schur-hook polynomials induced by Young diagrams of arm-length n
and leg-length k − j (see [21, page 2] for this terminology) but appear
in this matrix in their isobaric form (what has been called in previous
papers, isobaric reflects (see [24, 25])). However, the idea of having
the indexing range over the negative integers appears to be new. So we
shall describe how the Jacobi-Trudi formula (see [21, 25]) can be used
to produce isobaric polynomials in both the well-known case of non-
negative indices as well as in the newly introduced negatively indexed
case.

Let (θ1, θ2, . . . , θr) be a partition of n (
∑

θi = n), listed in weakly
descending order (the partition (1α1 , 2α2 , . . . , kαk) written in this fash-
ion would be (k, . . . , k, . . . , 2, . . . , 2, 1, . . . , 1), each j written αj times;
thus,

∑
jαj = n. Then the Jacoby-Trudi formula for the Schur poly-

nomial on the isobaric basis induced by this partition is given by the
determinant of the |α| × |α|-matrix, where |α| = ∑

αi.

S(θ1, θ2, . . . , θk) = det (Fθi−i+j).

It is straightforward to check that this is consistent with first computing
the Schur functions on the monomial basis and then going to the
isobaric basis by way of the mapping tj → (−1)j+1ej above. It is
also straightforward to show that, when the Schur polynomials are
hook-polynomials, this is consistent with extending the sequences to
the negatively indexed polynomials by linear recursion. Perhaps an
example would be useful. Consider the Schur-hook polynomial denoted
by S(2,12), a polynomial of isobaric degree 4.

S(2,12) = det

⎛
⎝F2 F3 F4

F0 F1 F2

0 F0 F1

⎞
⎠ = t1t3 + t4.

Note that the monomials in this polynomial have the property that
the sum of the product of the exponent and index of the variables of
the monomial is equal to the isobaric degree. That is,

∑
jαj = n. This

is a necessary condition for a symmetric polynomial to be isobaric.
It is this fact which associates isobaric polynomials to partitions of
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the natural numbers and, so, to arithmetical number theory. We
refer to the checking of this condition as isobaric bookkeeping. The
isobaric property is multiplicative, that is, the product of two isobaric
polynomials is isobaric, the isobaric degree of the product being the
sum of the isobaric degrees of the factors.

An alternate way of deriving this polynomial is to take the conju-
gate partition obtained by reading the partition off of the conjugate
Young diagram, obtained by reversing rows and columns of the origi-
nal diagram. The conjugate partition of (2, 12) is the partition (3, 1).
Then the Jacoby-Trudi formula written directly in terms of t’s gives
the computation

S(3.1) = det

(
t3 −t4
1 t1

)
.

The general expression for computing Schur polynomials directly in
terms of the variables is

S(θ1,θ2,... ,θk) = det ((−1)θi−i+j+1tθi−i+j),

where we define t0 = 1.

It is also useful to remind the reader that the GFPs are Schur-hook
polynomials, namely, Fk,n = S(n), where it is understood that the
partition considered is a partition of n with greatest part k.

The infinite companion matrix carries an extraordinary amount of
information. For example, the right-hand column is just the sequence
{Fk,n} of GFPs. Each entry of the matrix gives the isobaric reflect of
the Schur-hook polynomial induced by the Young diagram ±(n, 1k−j),
the diagram with an arm of length n and a leg of length k−j. The neg-
atively indexed symbols represent new Schur-hook polynomials whose
existence is defined by this matrix. Each column is a doubly-infinite
k-degree linear recursion determined by the coefficients {t1, t2, . . . , tk}
of the core polynomial (note that the columns of the identity matrix
contained in A∞ serve as initial conditions). The sums of the diagonal
elements in A∞, that is, the traces of the elements of the infinite cyclic
group generated by A, is just the (k-degree linear recursive) sequence
({Gk,n}), that is, the GLPs (see [21, 1.2]). Each row provides coef-
ficients for a vector representation of powers of the roots of the core
polynomial in terms of a basis consisting of the first k − 1 powers of a
root λ, namely, λ0, . . . , λk−1. We note that, as k increases, the identity
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matrix inside of A∞ increases in size and the non-zero terms of the neg-
atively indexed sequences recede. In the limit, there is no non-trivial
negatively indexed part to each sequence.

We have mentioned that the columns of the ∞-companion matrix
are linear recursions with recursion coefficients {t1, t2, . . . , tk}. In
connection with this fact, we mention the following lemma which will
be useful later:

Lemma 1 [26, Theorem 2.1]. A linear recursion is periodic if and
only if every root of the core polynomial is a complex root of unity. In
particular, if the core polynomial is the cyclotomic polynomial CP (n)
of degree ϕ(n), where ϕ is the Euler totient function, then its associated
linear recursion is periodic with period n (see [17]).

On the other hand, every linear recursion is periodic modulo the
prime (p) for every rational prime p. The p-period of a linear recursion
induced by [t1, . . . , tk] satisfies cp[t] � pk − 1 [6].

Finally, we remark that, while the positively indexed Schur-hook
polynomials are induced by partitions of the form (1r, n), n positive, it
is consistent with the notation to regard the negatively indexed Schur-
hooks as induced by the “signed” partition (1r, n) in the sense of George
E. Andrews, (see [1]).

There are other algebraic structures that can be imposed on the
isobaric ring, (see [25]). For subsequent use, we want to consider one
such, a new product on the elements of the WIP-module, namely, the
convolution product.

Definition 3. For a fixed k, the convolution product of two ele-
ments Un and Vn in the WIP-module is the convolution Un ∗ Vn =∑n

j=0 UjVn−j , where Un and Vn are n-th terms in the WIP-module.

Remark 1. Taking the convolution product of tn and, say Fn, we are
regarding tn as the sequence {tj}n0 . For example, the linear recursion
given by Fn−t1Fn−1−· · ·−tkFk is just Fn∗−tn. tj = (−1)n−1S(1,1n−1)

is an entry in A∞.
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It turns out that this gives a graded group structure to the WIP-
module. In particular, −tn is the convolution inverse of Fk,n, where
tj = 0 when j > k and t0 = 1 (recall that −tj , j = 0, . . . , k are
the coefficients of the core polynomial). The fact that this is the
convolution inverse is a consequence of the statement that Fk,n =∑k

j=1 tjFk−j , that is, that the GFP-sequence is a kth order linear
recurrence.

We have regarded the tj ’s as indeterminates so far, and the core
polynomial as a generic kth-degree polynomial. That is, we have
been operating with polynomials, not polynomial functions; but there
are many applications in which it is convenient to evaluate these
polynomials over a suitable ring. It is in this context that the names
Generalized Fibonacci and Generalized Lucas were chosen. As was
pointed out in Section 1, if k = 2 and t1 = 1 = t2, then a GFP is just
the Fibonacci sequence, and a GLP is the Lucas sequence. Taking this
point of view, it is easy to show that every linearly recursive numerical
sequence is contained as a sequence in the WIP-module.

For some purposes, we shall want to choose the evaluation ring to be
Z, but other rings will also be useful.

We record here the generating functions for elements in the WIP-
module. For example, a generating function for a GFP is given by

H(y) =
1

1− p(y)
, p(y) = t1y + · · ·+ tky

k,

where p(y) is the generating function for the convolution inverse of the
GFP.

Recall from Section 1 that sequences in the WIP-module are defined
by weight vectors ω. For an arbitrary sequence {Pω,k,n} in the WIP-
module, we have the generating function Ω(y) =

∑
n�0 Pω,ny

n given in
closed form by

Proposition 1.

Ω(y) = 1 +
ω1t1y + ω2t2y

2 + · · ·+ ωktky
k

1− p(y)
,

where Pω,0 = 1, (see [25]).
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In [26] we studied the sequences in the WIP-module with respect
to periodicity and periodicity modulo a prime (a linear recursion is
periodic if and only if every root of the core polynomial is a root of
unity; on the other hand, every linear recursion is periodic modulo p for
every prime p [26, Theorems 2.1 and 2.2]). If cp[t1, . . . , tk] denotes the
period of Fk,n(t1, . . . , tk) modulo p, then every sequence in the WIP-
module has a period cp[t1, . . . , tk], and so cp[t1, . . . , tk] can be regarded
as an invariant of the core polynomial C(X)(t1, . . . , tk). (Letting p = 1
takes care of the case covered by Theorem 2.1). The fact that every
sequence in the WIP-module has the same p-period has consequences
for other structures derived from the same core polynomial. This leads
to results concerning the number fields obtained as quotients by an
irreducible core polynomial, discussed in [26]. Another such application
occurs in the ring of arithmetic functions, which we turn to now.

3. The ring of arithmetic functions. While the isobaric ring is a
not-so-classical version of the well-known ring of symmetric functions,
the elements in the ring of arithmetic functions have long been objects
of study, though not usually from a structural point of view (but
see [4, 29, 30, 33]) and, recently, Laohakosol and Pabhapote [16]
and Laohakosol, Pabhapote and Wechwiriyakul [17, 18], Haukkanen
[8 14]. It is possible that the relation between the two structures
is implicitly well understood, but it is rather surprising that the
relationship, to our knowledge, has not been made explicit in the
literature. The connection is that the GFP’s with the convolution
product is locally isomorphic to the group of multiplicative functions
under the convolution product, and by consequence, every sequence in
the WIP-module yields a group of multiplicative functions that can be
associated locally with a given multiplicative function. So now we shall
review the facts about arithmetic functions that we need in order to
show this connection (see, e.g., [27] or [35]).

We recall that arithmetic functions (A) are functions from N to C
and form a ring under the usual sum and product rule for functions. It
is also usual to add convolution as an additional operation: (α∗β)(n) =∑

d|n α(d)β(n/d). Call this structure in which the convolution product
substitutes for the standard product of functions, A∗. Then not only
is A∗ a ring, but it is a unique factorization domain (see [4]). An
arithmetic function α is invertible with respect to convolution if and
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only if α(1) �= 0. α is a multiplicative function (MF) if and only if
α(mn) = α(m) ∗ α(n) whenever (m,n) = 1. Thus the MF’s are just
those AF’s that are uniquely determined at powers of primes. Every
non-zero MF has value 1 at 1 and is therefore invertible. From now on,
we shall exclude the zero function from MF so that MF belongs to the
group of units of A∗. Denote the group of units in A∗ by M. Since
multiplicative functions are determined locally,M is the direct sum of
its local subgroups,Mp.

An MF α is completely multiplicative if α(mn) = α(m)α(n) for all
m,n ∈ N. Let L be the subgroup ofM generated by the CM functions.
L is known to be a free abelian group (see [22]). We also have that L
is the direct sum of its local groups Lp. We shall often drop the index
p in what follows when the context is clear.

A multiplicative function is called positive if it is the convolution
product of CM functions, negative if it is the product of the inverses
of CM functions and mixed if it is the convolution product of at least
one non-identity CM function and one negative of a non-identity CM
function and is in L. (In Carroll and Gioia (see [3]), these are called
rational functions).

If α is a positive element in L, then α and its inverses are determined
at each prime, that is, locally, by a monic polynomial of degree k, where
k depends on the prime p and the number of CM factors of α. Call
this polynomial the local core of the MF, denoted by Cp(X). It is, in
fact, a generating function for the negative elements in L. We write
this polynomial as

Xk − t1X
k−1 − · · · − tk

in the non-mixed case. Since it will turn out that MFs are locally
recursive, this polynomial will also determine positive elements in L.
We can also classify functions in MF as being one of the four following
types depending upon the sizes of their ranges and domains: (fin, fin),
(∞, f in), (fin,∞), (∞,∞), where the notation here means the pair
(range, domain). The domain of such a function is the set of coefficients
of the core polynomial

The first type are those MF’s which have both range and domain
finite; the second type, those that have an infinite range and a finite
domain; the third type, those with a finite range and an infinite domain;
and the fourth type has both range and domain infinite finite range and
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finite domain mean that eventually all values are zero. In Theorem 7
and Corollary 10 we show that the set of type (1) functions contains
only the identity, type (2) functions are just the positive MF’s, type (3)
the negative MF’s and type(4) are mixed. The mixed type lead to
power series generating functions as core ‘polynomials.’

4. Relation between multiplicative functions and the WIP-
module. Since a given core polynomial determines both the WIP-
module (in particular, the infinite companion matrix) and determines
a particular arithmetic function locally inM, it is clear that there is a
strong connection between the MF’s and the WIP sequences. In fact,
the GFP-sequence evaluated at the vector t is a (non-trivial) MF. So is
the positively indexed part of every column in the matrix A∞. Thus,
every sequence in the WIP-module is by consequence also in MF. There
are instances of MF’s for which the core polynomial remains the same
for all choices of the prime p (the MF τ , of degree 2 which counts the
number of divisors of n, has the core polynomial (X2−2X+1) for all p).
There are also instances where the core polynomial has the same degree
over all primes and the coefficients are given by the same functions of p
(the MF σ of degree 2 which records the sum of the divisors of n where
the core polynomial is given by X2− (p+1)X + p). The first case can
be regarded as a special case of the second.

We note that convolution preserves isobaric degree in the WIP-
module and core degree in both the isobaric and the L cases. The
analogue of isobaric degree for the multiplicative functions is just power
of the prime p. The analogue of a function in L requiring infinitely many
powers of the prime in its definition is that k is unbounded in the WIP-
module; that is, that (tj) is different from 0 for infinitely many j’s or,
equivalently, that the rows of the companion matrix are unbounded
on the left. If we call the MF’s, which are locally of degree k for all
primes p, k-uniform, and the set of all k-uniform for all k, uniform,
then it is easily seen that the uniform MF’s form a graded group under
convolution. At each level of the grading and for each prime p, the core
polynomial induces a (cyclic) direct summand (the values of the MF
at the powers of the prime p) and, at the same time, on the induced
GFP. That is, for each k the subgroup at that level is a direct sum
of cyclic subgroups, one such subgroup for each p. We refer to these
subgroups as the local subgroups of degree k. These subgroups all have
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the same generic core, i.e., the cores of the elements in the subgroup
are evaluations of the same generic polynomial.

So far we have glossed over the point that the output of the functions
Fk,n depends upon the choice of domain ring. It is clear that the output
of such evaluations will always be elements in the same ring as that of
the input; for example, an input of integers yields an output of integers.
Integer inputs will often be used in the examples simply because so
many classical MF’s are of that sort. In general, if the evaluation ring
is R (a subring of the complex numbers), we denote the subgroup in
M that they generate,MR.

With these remarks, we state the main theorem, the Correspondence
Theorem.

Theorem 1. Given a prime p, let χ ∈ M with local core C(X), k
finite or infinite, and let Fk(t) be the sequence of GFP’s induced by this
core, then Fk,n(t) = χ(pn).

Proof. As pointed out above, for each integer k, every polynomial
in the WIP-module determined by k (i.e., whose companion matrix
is ∞× k) is a member of a k-linear recursive sequence; in particular,

the GFP-sequence is one such sequence. Thus, Fk,n =
∑k

j=0 tjFk,k−j ,
Fk,0 = 1, where tj , j = 1, . . . , k is the set of parameters that determine
the recursion. Thus, every linear recursion of degree k is determined by
choosing a set of values for tj (see [26]). (k can be finite or infinite). It
is clear such a choice of parameters determines a multiplicative arith-
metic function locally the recursive relation determines the convolution
product.

The converse is also true; that is, each multiplicative function χ has
a locally faithful representation as an evaluation of F (t1, . . . , tj , . . . ) in
the GFP-sequence. For, given a prime p and the set of values χ(pn) =
an, we can determine the tj and Fk,j(t1, . . . , tj , . . . ) inductively in such
a way that Fk,j(t1, . . . , tj) = χ(pj), j � k. Let χ(pj) = aj , j = 1, 2, . . . ,
and let Fk,0 = a0 = 1. Let t1 = a1 = F1,1. Suppose that tj for j < n+1
has been defined and that aj = Fk,j < n+ 1. We define tn+1 by

tn+1 = an −
n∑

j=1

tjaj−1.
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That is,

tn+1 = χ(pn)−
n−1∑
j=1

tjχ(p
j−1)

(cf. Proposition 4)

= Fn+1,n+1 −
n∑

j=1

tjFn,n−j+1.

The theorem now follows by the recursive property of the GFP sequence
and induction.

We shall use the notation χ ↔ F to mean that χ is the MF that
corresponds to F in the sense of Theorem 1. The last equation in
the proof reflects the fact that Fk+1,k+1 − Fk,k+1 = tk+1. This is an
example of the conservation principle referred to in Section 1 applied to
the GFP sequence. The very fact that the construction in the proof of
Theorem 1 is possible guarantees, by the way, that every multiplicative
function is recursive.

A useful way of formulating the content of Theorem 1 is that each core
polynomial of degree k induces k columns of linear recursions which can
be taken as the k generators of a Z-module of linear recursions, each
of which is locally a multiplicative arithmetic function induced by the
coefficients of the core polynomial. The generators are produced by
taking the successive powers of the companion matrix associated with
the core polynomial (producing the k×∞ infinite companion matrix).

An immediate consequence of Lemma 1 and the Correspondence
Theorem is the following fact about multiplicative functions:

Theorem 2. A multiplicative function is periodic if and only if every
root of the core polynomial is a complex root of unity. On the other
hand, every multiplicative function is periodic modulo the prime (p)
for every rational prime p. The p-period of the multiplicative function
satisfies cp[t] � pk.
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On the other hand, it is a simple consequence of the pigeonhole
principle that every multiplicative function is locally periodic at each
prime p.

Proposition 2 [7]. If the core polynomial is of degree k, then

cp[t] = cp[t1, . . . , tk] � pk − 1.

5. Examples.

Example 1. Consider the multiplicative functions τ and σ, where
τ is the function on N which counts distinct divisors of n ∈ N,
while σ is the divisor sum function, that is, σ(n) =

∑
d|n d. Both

of these functions are multiplicative of degree 2, τ(pn) = n + 1 and
σ(pn) = 1 + p+ · · · + pn. We can find the local core polynomial for τ
by noting that τ(p) = 2, τ(p2) = 3 and τ(p3) = 4. Using the induced
GFP, F1 = t1, we have that t1 = τ(p1) = 2. Then we note that
F2 = t21 + t2 = τ(p2) = 3 and we deduce that t2 = −1. A similar
computation for t3 yields t3 = 0. An induction using the recursive
properties of the GFP sequence shows that tj = 0 for all j > 2.
Thus, the local core is the quadratic polynomial X2 − 2X + 1, which
incidentally, shows the well-known result that τ is the convolution
product of two copies of ζ, where ζ(n) = 1 for all values of n. ζ is
a completely multiplicative function.

Example 2. If we carry out the same procedure for σ, we find that
t1 = 1+p, that t2 = −p and that the degree of σ is 2, that is, that tj = 0
for j > 2, hence, the local core is X2 − (p+ 1)X + p. Again, since the
local core has linear factors X − p,X − 1, σ is the convolution product
ζ1 ∗ ζ of two CM arithmetic functions, i.e., two degree 1 functions,
where ζk(p

n) = pnk. Degree 2 uniform MF’s are also called specially
multiplicative. These are both examples of uniform MF’s, i.e., they are
elements of L.

Definition 4. A multiplicative function has valence 〈r, s〉 if it is
a convolution product of r completely multiplicative functions and s
inverses of completely multiplicative functions.
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Example 3. This same procedure applied to the Euler totient
function φ shows that tj �= 0 for all j > 0. Thus, φ is uniform and
is an example of a MF whose core is a power series. Its values are given
by Fk,n(t1, . . . , tk, . . . ), tj = p − 1 for all j > 0 and all k > 0 and all
primes p. It is well known that φ = ζ1 ∗ μ, where μ is the convolution
inverse of ζ, i.e., φ = ζ1 ∗ ζ−1, which is called in [16] a function of
valence 〈1, 1〉 (see Definition 4) and type (∞,∞).

This example leads to an interesting theorem:

Theorem 3. Let α = β ∗ γ−1 where β and γ are CM, β �= γ, that
is, α is of valence 〈1, 1〉, then α is of type (inf, inf). That is, α has
an infinite range and infinite domain; thus, α has an infinite core.

Proof. We combine the techniques of calculation used before with the
generating functions from Proposition 1 and the remarks just above it.
Represent α, β, γ by F , F ′, F ′′, respectively. Letting the parameters
for the two CM functions β, γ be given as t′1 �= 0, tj = 0 otherwise, and
t′′1 �= 0, tj = 0 otherwise; then the local core polynomials are X − t′1,
X − t′′1 . We have that the generating function for the convolution
product in terms of the parameters of the factors is

1− t′′1y
1− t′1y

= 1 +

∞∑
n=1

(t′n1 − t′n−1
1 t′′1)y

n =

∞∑
n=0

Fny
n.

Thus,
Fn = (t′n1 − t′n−1

1 t′′1 ).

Using these values for Fn, the calculating methods employed above,
and induction, we can deduce that

tn = (−t′′n1 + t′1t
′′n−1
1 ).

But, since t′1 �= 0 and t′′1 �= 0, this shows that both the range and
domain of Fn are infinite, that is, α is of type (inf, inf).

Thus, the case for φ generalizes. It seems reasonable to conjecture
that 〈r, r〉-functions have infinite cores.
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It is also instructive to look at the convolution product τ ∗ σ = α, a
positive function. A calculation of the nature of those above shows that
the parameters for τ ∗σ = α are u1 = p+3, u2 = −3(p+1), u3 = 4p+1,
u4 = p, all non-zero, and uj = 0, j > 4. Hence, the product is of
degree 4 and the local core is X4−(p+3)X3−3(p+1)X2−(4p+1)X−p,
which is just the product of the local cores of the two factors. This
suggests that we make the following definition:

Definition 4. For any MF, we define its degree to be k if the
parameters tj of the function have the property that tk �= 0 and tj = 0,
j > k, where k is either finite or infinite.

Corollary 4. The positive part of each column in the infinite
companion matrix is also an MF, hence in M.

Since the GFPs with non-negative indexes are now understood as
corresponding to the elements of MF, and since the properties of the
GFPs naturally extend the range of the MFs to negative powers of
the prime p, it seems reasonable to extend group L to a larger group
L∗ to reflect this fact. Moreover, the negative part of each column in
the infinite companion matrix is also in MF. So we have the following
situation. The core polynomial determines a principal MF, the one
determined in Theorem 1 by the GFP, and at the same time (a module
of) induced MF’s, those determined by all of the sequences in the WIP-
module.

The fact that each column in the infinite companion matrix is a
k-linear recursion is reflected in the fact that the induced MF’s are
determined locally by the first k powers of the prime, while the rest of
the sequence is determined by linear recursion, the recursion constants
being given by the vector t.

In [25] it was shown that, in the case that the local core is irreducible,
there is a strong relation between the WIP-module and the number
fields associated with the field extension determined by the local core.
This fact gives a three-way relation among the three structures: WIP-
module, multiplicative arithmetic functions and number fields. In
particular, it associates with every such number field, a special set
of multiplicative functions.
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Another question arises from the fact that the UFD A∗ has a rich
ideal structure [2, 33]. Is there a representation of these ideals in terms
of symmetric polynomials?

6. Specially multiplicative arithmetic functions.

Remark 2. The main point in this section is that there is nothing
special about specially multiplicative functions. Expressions of the
sort contained in the McCarthy theorem discussed below are true for
every multiplicative function and merely represent the fact that these
functions are degree k recursive. The B(p)-term in the degree 2 case
(that is, −t2) can be replaced by −t2, . . . ,−tk in the degree k-case. The
representation of B in terms of the original function generalizes to the
representation t2, . . . , tk as a function of its associated F -polynomials
as indicated in Proposition 5 above.

McCarthy’s theorem (see P.J. McCarthy [27]) states that a multi-
plicative function χ is specially multiplicative, that is, it is of degree 2
if and only if, for each prime p,

χ(pn+1) = χ(p)χ(pn)− χ(pn−1)B(p),

where B(p) = χ(p)2 − χ(p2) and B(p) ∈ CM . Furthermore, degree 2
multiplicative arithmetic functions are characterized by the property
that they admit a Busche-Ramanujan identity (see [28]).

Using Theorem 1 to translate these results into isobaric form, we get
as a characterization of degree 2 MF’s the following:

F2,n+1(t1, t2) = t1F2,n(t1, t2) + t2F2,n−1(t1, t2),

or more succinctly,
Fn+1 = t1Fn + t2Fn−1.

In particular, Bχ = B(p) = χ(p)2−χ(p2) translates into −t2 = F 2
1 −F2.

Indeed, using the main theorem of this paper, this is just the redundant
statement that degree 2 cores induce linear recursions of degree 2.

It is also asserted in the McCarthy theorem that B(p) is a completely
multiplicative arithmetic function, that is, it has degree 1. This is a
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rather peculiar claim. Is this intended to be a definition of function B
or is this deemed to be a consequence of its role in the theorem? If
the latter, then we should be able to show that representing B by
B(u1, . . . , uj) has the consequence that uj = 0 for j > 1. Under some
rather natural assumptions leading to a definition of this function, this
is not the case. The linear recursion for χ does define B(p) = B1. But
B(pn) is not determined by the linear recursion when n > 1. The proof
that B is CM in [27] and again in [35] appear to define B arbitrarily
for higher values of p as CM, that is, that B(pn) = Bn(p) for all n ∈ N.

The Busche-Ramanujan identities for the specially multiplicative
functions σk are the two statements:

σk(mn) =
∑

d|(m.n)

σk

(
m

d

)
σk

(
n

d

)
μ(d) dk(1)

σk(m)σk(n) =
∑

d|(m.n)

dkσk

(
mn

d2

)
(2)

where σk(n) =
∑

d|n d
k, σ1 = σ, σk = ζk−1 ∗ ζ.

We translate this into isobaric notation. For simplicity, we take the
case where k = 1, that is, σ1 = σ. So we are interested in the identities:

σ(mn) =
∑

d|(m.n)

σ

(
m

d

)
σ

(
n

d

)
μ(d) dk(1′)

σ(m)σ(n) =
∑

d|(m.n)

dσ

(
mn

d2

)
(2′)

Letting t1 = 1 + p, t2 = −p, the core coefficients for σ, and using
Theorem 1, that is, that Fn(t1, t2) = σ(pn) since σ is an MF of degree 2,
and letting m = pr, n = ps, r � s, the two identities become

Proposition 3 (Busche-Ramanujan) (see [27, 34]).

F2,r+s = F2,rF2,s + t2F2,r−1F2,s−1(4.1)

F2,rF2,s = F2,r+s − t2F2,r+s−2 + · · ·(4.2)

+ (−t2)jF2,r+s−2j + · · ·+ (−t2)rF2,s−r

where the degree of the core is 2, and j = 1, . . . , r.
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It is perhaps instructive to give a proof of these well-known relations
in terms of the isobaric representation of MF’s being discussed in this
paper.

Proof. We consider the first of these identities. Omitting the degree
index k = 2 on the GFP-symbols, and noting that (4.1) is true when
r = 1, we have the basis for an induction. But

Fr+s = t1Fr+s−1 + t2Fr+s−2

= t1F(r−1)+s + t2F(r−1)+(s−1)

= t1(Fr−1Fs + t2Fr−2Fs−1) + t2Fr−1Fs−1 + t22Fr−2Fs−2

= t2(t1Fr−2Fs−1 + t2Fr−2Fs−2) + t1Fr−1Fs + t2Fr−1Fs−1

= t2(Fr−2Fs) + t1Fr−1Fs + t2Fr−1Fs−1

= Fs(t1Fr−1 + t2Fr−2) + t2Fr−1Fs−1

= FsFr + t2Fr−1Fs−1,

using only linear recursion and the induction hypothesis. This proves
the first of the two identities.

We prove the following lemma from which, along with (4.1), (4.2) will
follow.

Lemma 4.2.

t2F2,r−1F2,s−1 +

r∑
j=1

(−t2)jF2,r+s−2j = 0, r � s.

Proof. We observe that the identity of the lemma holds when
〈r, s〉 = 〈1, 1〉. Suppose that it also holds for 2 < r+s < n. Then, using
the linear recursion property of the F−sequence, we have, for k = 2,

t2(t1F2,r−1F2,s−2 + t2F2,r−1F2,s−3)

+

r∑
j=1

(−t2)j(t1F2,r+s−2j−1 + (−t2)jF2,r+s−2j−2)

=
(
t2(t1F2,r−1F2,s−2) +

r∑
j=1

(−t2)jt1F2,r+s−2j−1

)
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+
(
t2(t2F2,r−1F2,s−3) +

r∑
j=1

(−t2)jF2,r+s−2j−2

)

= 0.

It is clear from the proofs of the proposition and Lemma 2 that
the only assumption made was that we are dealing with degree 2
multiplicative functions, so the results do indeed hold for all degree 2
MF’s; moreover, it is hardly surprising that they do not hold for higher
degree MF’s, since our very assumption is that our linear recursions
and hence our core is of degree 2, that tj = 0, j > 2 (also see [35, page
282]).

Can the McCarthy characterization of specially multiplicative func-
tions, that is, degree 2 functions, be generalized to finite higher degree
functions? The B-function in McCarthy’s theorem is just −t2 at p, and
the relation itself is just a statement of the linear recursive property of
the F -functions that represent the multiplicative functions (see (4.5)).
If we think of t2 as the isobaric degree 2 term in the specially multi-
plicative case, then it is natural to think of tk as the isobaric degree k
term in the general case where the core polynomial has degree k. The
analogue to the fact that B(p) = F 2

1 −F2 = −t2 is the following propo-
sition which expresses the indeterminates, tj in terms of the generalized
Fibonacci polynomials, Fk,n.

Proposition 4. Consider the GFP Fn(t1, . . ., tk), and make the
substitution tj = (−1)j+1Fj. Then tn = Fn(F1, . . ., (−1)j+1Fj , . . .,
(−1)n+1Fn), j = 1, 2, . . . , n.

Proof. tn = (−1)n+1S(1,1n−1) where S(1,1n−1) is the Schur-hook
polynomial determined by the Young diagram with arm length 1 and
leg length n−1, i.e., a vertical strip of length n, written on the isobaric
basis. Using the Jacobi-Trudi formula applied to the GFPs, we have

S(1,1n−1) = det

⎛
⎜⎝

F1 F2 · · · Fn

1 F1 · · · Fn−1

· · · · · · · · · · · ·
0 0 · · · F1

⎞
⎟⎠ = (−1)n−1tn.
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Here are some examples:

1. t1 = F1,

2. −t2 = F 2
1 − F2,

3. t3 = F 3
1 − 2F1F2 + F3.

Proposition 3 expresses the Busche-Ramanujan identities in terms of
the GFP-representation, which in turn suggests a way of generalizing
such identities to MF’s of higher degree. Thus, one way to think of
the Busche-Ramanujan identities is as an expression of Fr+s in terms
of Fr and Fs together with a remainder term. In Theorem 11 near the
end of the next section, Section 7, we have just such a generalization,
which has the pleasant property of involving Schur-hook functions as
coefficients.

7. Structure of the convolution group M of multiplicative
functions revisited. Group L generated by the completely multi-
plicative functions, sometimes called the group of rational functions
(e.g., see [16, 32]) contains elements of four kinds: the identity, pos-
itive elements (the semi-group generated by CM functions), negative
functions (the inverses of the positive functions) and mixed elements
(those which are convolution products of both positive and negative
elements) as discussed in Section 2. Each element has a degree which
is either infinite or a non-negative integer. The identity has degree 0, a
positive element has positive degree, the degree of its core polynomial,
or equivalently, the number of CM functions of which it is a product.
(In [22] it is shown that the CM functions freely generate a free abelian
group). Both negative and mixed functions have infinite degrees. Neg-
ative functions have power series cores, and a mixed function has a
rational function for a core whose numerator is the core of the positive
part and whose denominator is the core of the negative part.

In Section 2, the classification of elements of types (fin, fin),
(∞, f in), (fin,∞), (∞,∞) in the groupM was introduced, where fi-
nite range or domain means that the sequence is eventually constantly
zero. Infinite means that the sequence has infinitely many non-zero
values.

Clearly, the types are mutually exclusive; moreover, each type is non-
empty. For example, the identity function is type 1. Type 2 consists of
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the positive functions, and type 3, the negative functions. Completely
multiplicative functions, e.g., ζ, or any specially multiplicative function
is of type 2, e.g., σ, while μ, a negative function, is of type 3, and, as
we shall see, the Euler totient function, φ, is of type 4.

We now regard the {tj} as a set of values so that F is a particular
numerical sequence F (t), and, hence, a particular MF.

Proposition 5. Let α ∈ MF , let α ↔ F and let {tj} be the set
of parameters for F . Let {sj} be the set of parameters for F−1 which
represents α−1. Then, for all j,

Fj = −sj , F−1
j = −tj .

Proof. 0 = F1 ∗ F−1
1 = F1 + F−1

1 = t1 + s1, so t1 = −s1; therefore,

F1 = −s1, and F−1
1 = −t1.

So assume inductively that Fj = −sj , j = 2, . . . , n − 1 and that
F−1
j = −tj, j = 2, . . . , n− 1. Then we have that

Fn =

n−1∑
j=1

tjFn−j + tn = −
n−1∑
j=1

tjsn−j + tn.

Similarly,

F−1
n = −

n−1∑
j=1

tjsn−j + sn;

therefore,
Fn − F−1

n = tn − sn.

Also,

Fn ∗ F−1
n = Fn +

n−1∑
j=1

Fn−jF
−1
j + F−1

n

= Fn −
n−1∑
j=1

sn−jt
−1
j + F−1

n = 0.
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Thus,

Fn + F−1
n = −

n−1∑
j=1

tjsn−j = Fn − tn = F−1
n − sn.

So

2Fn = Fn − sn

implies

Fn = −sn,
and similarly,

F−1
n = −tn.

Corollary 5. Let F = F ′ ∗ F ′′ with t′j , t
′′
j being the parameters of

F ′, F ′′ and s′j , s
′′
j the values of F ′′, F ′′, then

−sn = −s′n +

n−1∑
j=1

s′n−js
′′
j − s′′n,(1)

−tn = −t′n +

n−1∑
j=1

t′n−jt
′′
j − t′′n,(2)

equivalently,

Fn = −s′n +
n−1∑
j=1

s′n−js
′′
j − s′′n;(1′)

and

tn = t′n −
n−1∑
j=1

t′n−jt
′′
j + t′′n.(2′)

Proof. Expand the convolution product Fn =
∑n

j=0 F
′
n−jF

′′
j and

apply the theorem to the factors.
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Theorem 6.

core (α1 ∗ α2) = core (α1)core (α2)(3.1)

deg (α1 ∗ α2) = deg (α1) + deg (α2).(3.2)

Proof. From Corollary 5 we have

−tn = −t′n +

n−1∑
j=1

t′n−jt
′′
j − t′′n.

But the {−tj} are just coefficients of the core polynomial of the
convolution product α1 ∗ α2; while {−t′j} and {−t′′j } are, respectively,
coefficients of the core polynomials of α1 and of α2. Thus, Corollary 5
is, at the same time, the formula for the coefficients of the core
polynomial of the convolution product and of the coefficients of the
product of the core polynomials core (α1) and core (α2). This proves
(3.1). Equation (3.2) follows directly from (3.1).

Definition 6. A convolution product of r + s factors is said to be
in normal form if there are r degree 1 (i.e., completely multiplicative)
factors and s inverses of degree 1 factors, and if no two factors in the
product are mutually inverse to one another. By commutativity we can
always write the positive (degree 1) factors first.

Theorem 7. Let α ∈MF

(1) α is type 1 = (fin, fin) if and only if it is the identity.

(2) If α is positive, it is type 2, (∞, f in); if α is negative, it is type 3.

Proof. (1) Suppose that α and α−1 have a finite range, i.e., both
α(pn) and α−1(pn) have value zero for all values of n > s > 0. Let
F represent α and F ′ represent α−1. Suppose that tm and Fn are the
largest non-zero values of F and −F ′, i.e., suppose that tm �= 0 and
Fn �= 0, but that tj = 0 and ti = 0 whenever j > m > 0 and i > n > 0,
then consider the following equation resulting from the linear recursion
property of the GFPs.

Fm+n = t1Fm+n−1 · · ·+ tmFn + tm+1Fn−1 + · · ·+ tm+nF0.
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Observe that the only term that survives on the right-hand side of
the equation is tmFn, while the left-hand side is 0. So either tm or
Fm is not equal 0, a contradiction to which the convolution identity
function is exempt. Thus, we have four mutually exclusive types,
type 1 containing only the identity. (2) claims that functions with
valence 〈r, 0〉 have infinite ranges and finite domains; while functions
with valence 〈0, s〉 have finite ranges and infinite domains. But these
two propositions follow from the fact that we have defined functions
to be positive if they are a product of CM functions and negative if
they are the inverses of a product of CM functions, from Theorem 6,
and from the fact that the core polynomials determine the number of
parameters of a function.

Remark 3. We shall show that φ is of type 4. To show that φ is
of type 4, we must show that both φ and φ−1 have infinite non-zero
range. But, for any prime p and all n, φ(pn) = pn − pn−1 �= 0.
φ−1 is also infinite: its parameters are tj = −(p − 1) for all n.
So let us suppose that tj = p − 1 for 0 < j < n. Then, by
the recursive property of GFP-sequence and induction, we have that
Fn = t1Fn−1 + t2Fn−2 + · · ·+ tn−1F1 + tn, that is,

tn

(1)

= Fn − (t1Fn−1 + t2Fn−2 + · · ·+ tn−1F1 + tn)
(2)

= pn − pn−1 − (p− 1)(pn−1 − pn−2 + pn−2 + · · ·+ (p− 1))
(3)

= pn − pn−1 − (p− 1)(pn−1 − 1)
(4)

= p− 1.
(5)

Thus, we have shown that tj = p−1 �= 0 for all j, and so F j = −tj �= 0
for all j, and thus that φ ∈ type 4.

We can also prove this by using the fact that φ = ζ1 ∗ μ. Represent
ζ1 by F ′ and μ by F ′′; then by Corollary 5, t′1 = p, t′j = 0, j > 1;
s′n = −pn; s′′n = −p, when n = 1 and 0 otherwise, and t′′n = 1 for all
values of n. We can symbolize the product by (∞, f inite)∗(finite,∞).
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This property of φ turns out to be true for all totient functions, i.e.,
functions of valence 〈1, 1〉.
Proposition 6. α = β ∗ γ−1 where β, γ are degree 1 functions, α is

not the identity function. Then α is type (∞,∞) and degree ∞.

Proof. We represent α, β and γ by, respectively, F, F ′ and F ′′, with
tj , t

′
j , t

′′
j ; sj , s

′
j , s

′′
j as in Corollary 5. We observe that F ′

n = t′n1 and

F ′′
n = t

′′n
1 , and that neither of these values is 0. We also have that

Fn = t′n1 − t′n−1
1 t′′1 , since t′′j = 0, j > 1, and Fn = 0 implies t′1 = t′′1 ,

contradicting the hypothesis; hence, the range of α is infinite. If we
apply similar reasoning to F−1

n , we find that it also has infinite range;
thus, α is of type 4 and has infinite degree.

In [16, Corollary 2.4] 2005, Laohakosol and Pabhapote discussed
Busche-Ramanujan identities and the Kesava Menon norm. We shall
discuss the Kesava Menon norm in the next section. Now we wish
to look at their theorem extending Busche-Ramanujan identities to
multiplicative functions of mixed type, which we reproduce here.

Corollary 8. Let χ ∈MF . Then the following hold.

(i) χ has valence 〈1, 1〉 ⇐⇒ for each prime p and each n ∈ N, and
there exists a complex number T (p) such that

χ(pn) = T (p)n−1χ(p).

(ii) χ has valence 〈2, 0〉 ⇐⇒ for each prime p and each n(� 2) ∈ N,

χ(pn+1) = χ(p)χ(pn) + χ(pn−1)[χ(p2)− χ(p)2].

(iii) χ has valence 〈1, s〉 ⇐⇒ for each prime p and each χ ∈ N, and
there exist complex numbers B1(p), . . . , Bs(p) such that for all χ � s,

χ(pn) =

s∑
j=0

ρ(p)n−jHj

where

Hj = (−1)j
∑

1�i1<i2<···ij�s

Bi1(p) · · ·Bij (p), H0 = 1, ρ ∈ CM.
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First we note that (ii) is just McCarthy’s theorem (see [27]) discussed
in Section 5, where we showed thatB(p) is parameter−t2 of the positive
degree two multiplicative function in question. We look now at parts
(i) and (iii) of the Laohakosol-Pabhapote corollary. We shall, as is
consistent with our practice in this paper, drop reference to the prime
p since our theory is intrinsically local. So we now look at part (i).

Let χ = θ ∗ ρ−1 where θ, ρ ∈ CM . (Recall the discussion of the Euler
totient function ϕ above.)

Let
F (t)←→ χ, F ′′(t′)←→ θ, F ′′(t′′)←→ ρ.

Then

t′1 �= 0, t′j = 0, j > 1; t′′1 �= 0, t′′j = 0, j > 1

Making use of Proposition 5, we have that

s′′ = F ′′
n = −t′′1 , if n = 1, = 0 if n > 1.

From this we easily deduce that:

F1 = t′1 − t′′1 = t1,

· · · ,
Fn = (t′)(n−1)

1 (t′1 − t′′1) = t
′(n−1)
1 (t′1 − t′′1 ) = t

′(n−1)
1 t1 = t′(n−1)F1.

That is,

Proposition 7. Suppose χ = θ∗ρ−1, θ and ρ are degree 1 functions,
θ �= ρ and θ �= δ �= ρ, and suppose that χ, θ and ρ are represented by,
respectively, F , F ′ and F ′′, with parameters tj, t

′
j, t

′′
j ; sj, s

′
j, s

′′
j . Then,

Fn = t
′(n−1)
1 F1, for all n ∈ N

where F
′′
= F−1.

Thus, the mysterious T (p) in the original corollary is just one of the
parameters determining the representing GFP-sequence just as in the
case of McCarthy’s theorem, this time for θ, it is just t′1.
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Next, we look at part (iii) of the corollary. We first consider a product
of degree 3, as in Remark 3, i.e., a product χ = θ ∗ ρ−2 where θ is a
positive function of degree 1 and ρ is a positive function of degree 2,
and use the formalism of the previous example for representing χ, θ
and ρ by GFP sequences. Thus, we have

F (t1, t2, t3) = F ′(t′1) ∗ F
′′
(t′′1 , t

′′
2).

(Here we are thinking of F
′′
not as an inverse, but as a function in its

own right). With the help of Proposition 5 and Corollary 5, we easily
find that

F1 = t′1 + t′′1 = t1

and

F2 = F ′
2 + F ′

1F
′′
1 + F

′′
2

= t′21 + t′1t
′′
1 + t′′2

= t′1(t
′
1 + t′′1 )

= t′1F1 − s′′2 .

In the same way,
F3 = t′21 F1 − t′1s

′′
2 − s′′3 .

Induction gives us

Proposition 8. If χ has valence 〈1, s〉 and χ↔ F , then

Fn = (t′)n−1F1 − t′n−2
1 s′′2 − t′n−3

1 s′′3 .

This proposition is nothing but a thinly disguised version of the def-
inition of a convolution product together with particular assumptions
about the parameters of the factors together with Proposition 5. But
it says all that the Laohakosol-Pabhapote result says and at the same
time explicitly identifies the mysterious functions. Compare the pre-
vious remarks concerning the McCarthy theorem. The general case is
now clear.
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Theorem 9. Let χ = θ ∗ ρ, where θ is a positive degree 1 function
and ρ is the convolution inverse of a degree (k − 1) positive function,
and suppose that χ is non-trivial and in normal form. Representing
these functions by GFP functions as above, χ↔ F (t1, . . . , tj , . . . ), θ ↔
F ′(t′1), ρ↔ F ′′(t′′1 , . . . , t

′′
j , . . . ),

Fk,n = −
n∑

j=0

t
′(n−j)
1 s′′j =

n∑
j=0

t
′(n−j)
1 F ′′

j .

Proof. θ ↔ F ′ is of type (∞, f in), and ρ ↔ F ′′ is of type (fin,∞);
thus, as a result of the assumptions on the factors and the freeness of
the product, F is infinitely generated, and so is its inverse. Hence, F
is of type (∞,∞). We can symbolize this by (∞, f in) ∗ (fin,∞). By
Corollary 5, we have that

Fn = −s′n +
n−1∑
j=1

s′n−js
′′
j − s′′n,

and since β is of degree 1,

−s′j = F ′
j = t′j1 .

Therefore,

Fn = −
n∑

j=0

t
′(n−j)
1 s′′j ,

that is,

Fn =

n∑
j=0

t
′(n−j)
1 F ′′

j .

Since χ in Theorem 9 has valence 〈1, r〉, Theorem 9 is a generalization
of Proposition 7.

The following corollary is a direct consequence of the remarks in the
proof of the previous theorem concerning generators and the types of
terms in the product:
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Corollary 10. A non-trivial product in normal form of valence 〈r, s〉,
that is, a mixed product, is type (∞,∞).

In [16] the notion of s-excessive was introduced in connection with
a generalization of the Busche-Ramanujan identities. Since the theory
that we are dealing with is local, we shall refer the reader to Defini-
tion 3.1 of the paper just cited for the general definition and discussion
of that concept and give here the local definition, which is suitable for
this paper.

Definition 7. Two prime powers of the same prime p, say pr and
ps with s � r, are said to be e-excessive if r � s and s− r = e.

In Section 5, we suggested that Busche-Ramanujan identities can
be regarded locally as expressing Fn = Fr+s in terms of Fr and
Fs. The following theorem, Theorem 11, is a local generalization
of B-R identities to functions of arbitrary degree and generalizes to
Theorem 3.2 in [16] when the functions here are restricted to the
functions in that theorem and the result of Theorem 11 is globalized.

Theorem 11. Let α be a multiplicative arithmetic function of
degree k, and let r and s be two integers with r � s. Abbreviating
Fk,n as Fn, then

Fn = Fr+s =

e+1∑
j=0

(−1)jS(r,1j)Fs−j ,

where S(r,1j) is an isobaric reflect of the Schur-hook function whose
Young diagram has an arm of length r and a leg length of j.

Observe that these Schur-hook functions for a given r consist exactly
of the elements of the r-th row, in order from right to left, of the
companion matrix, and that S(r,10) = Fr; so that this formula satisfies
our interpretation of a generalization of the Busche-Ramanujan identity
and includes Theorem 3.2 in [16]. Also observe that such a row is a
vector representing the r-th power of a root of the core polynomial (see
Section 2).
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Proof of Theorem 11. First note that the companion matrix is stable
in the sense that adding a k + 1-st column on the left of an ∞ × k-
companion matrix changes nothing in the original matrix. Thus, we
might as well assume that we have infinitely many parameters for F .
For a finite k we need only let tj = 0 from a certain point onward. We
shall also need to recall the fact that the columns of the companion
matrix are linear recursions with respect to the parameters tj . When
r = 0 the theorem is just a statement of the fact that F is a linear
recursion with parameters tj . We proceed by induction on r with
e = r − s.

Fn = Fr+s = t1F(r−1)+s + t2F(r−2)+s + · · ·+ tkF(r−k)+s

= t1

e+2∑
j=0

S(r−1,1j)Fs−j + t2

e+3∑
j=0

S(r−2,1j)Fs−j + · · ·

+
e+k+1∑
j=0

S(r−k,1j)Fs−j

=

( e+2∑
j=0

t1S(r−1,1j) +

e+3∑
j=0

t2S(r−2,1j) + · · ·

+

e+k+1∑
j=0

tkS(r−k,1j)

)
Fs−j

=

e+1∑
j=0

S(r,1j)Fs−j .

Corollary 2.6 in [16] simply states that, for a positive function of
degree r, tj = 0, j > r, tr �= 0. And Corollary 2.7 in [16] is a statement
of the basic fact that the representing GFP-sequence is a k-order linear
recursion whenever α is a multiplicative function of degree k, (see [26]
or, indeed, [23, 24, 25]).

To conclude this section, we point out that in the formalism of this
paper, using symmetric function theory, some classical theorems in
multiplicative number theory reduce to rather prosaic statements, if
not trivialities. An example of this is the binomial identity, (see [8, 31,
35]). We would like to use this instance to show how this is the case.
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The binomial identity may be stated as follows:

Proposition 9. Suppose that α = γ1 ∗ γ2 where γ1 and γ2 are
completely multiplicative functions. Then α satisfies the binomial
identity

α(pn) =

�n/2�∑
j=0

(−1)j
(
n− j
j

)
α(p)n−2j(γ1(p)γ2(p))

j ,

which in turn is just a special case of the general formula for Weighted
Isobaric Polynomials, (see [25]). If we use our GFP representation,
then this result is just a case of the general formula for GFP’s as in
Section 1 of this paper; namely,

Fk,n =
∑
α�n

( |α|
α1, . . . , αk

)
tα1
1 · · · tαk

k .

Here is the formulation in our terms:

Proposition 10. Let α be a positive MF of degree 2 represented by
F , and let F ′ and F ′′ represent the convolution factors. Then

F2,n = Fn =

�n/2�∑
j=0

(−1)j
(
n− j
j

)
Fn−2j
1 (−t′1t′′1)j .

Thus, we have

Fn =

�n/2�∑
j=0

(−1)j
(
n− j
j

)
Fn−2j
1 (−t2)j .

As an example, let n = 5, and note that the partitions of 5 with k = 2
are just (15), (13, 2), (1, 22). Then, we have,

F2,5 =

3∑
j=0

(−1)j
(
5− j
j

)
F 5−2j
1 (−t2)j = t51 + 4t31t2 + 3t1t

2
2.
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8. Kesava Menon norm. Since our aim is to show the utility of
expressing multiplicative function theory in terms of isobaric polyno-
mials, we include a discussion of the Kesava Menon norm. The Kesava
Menon norm N is defined on multiplicative functions and is given by

N(α)(n) =
∑
d|n2

α(n2)λ(d)α(d)

where λ is the Liouville function. N is a multiplicative function. The
Liouville function is defined by λ(m) = (−1)Ω(m), where Ω(m) is the
number of prime factors of m counting the multiplicity of a prime in
m; in particular, λ(pn) = 1 if n is even and −1 if n is odd. If α has
degree 1 or 2, then degN(α) = 1, 2, respectively. What does the norm
look like in isobaric notation?

Let Fn(t) ↔ α, α ∈ MF for a suitable choice of vector t, and let
N(Fn) = N(α)(pn). Then

N(Fn) =

2n∑
j=0

(−1)jF2n−jFj

or, equivalently

N(Fn) = 2

n−1∑
j=0

(−1)jF2n−jFj + (−1)nF 2
n .

By Corollary 5, (1′) and (2′), this can be written in the following way.

Proposition 11.

N(Fn) = −2s2n + 2

n−1∑
j=1

(−1)js2n−jsj + (−1)ns2n

N(Fn) = 2t2n + 2

n−1∑
j=1

(−1)jt2n−jtj + (−1)nt2n.

It is well known that this norm is multiplicative (see [27, page 50]),
that is: If α and β ∈ MF, then

N(α ∗ β) = N(α) ∗N(β).
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We give a proof here using the concepts of this paper.

First, we observe that

N(F ′
0 ∗ F ′′

0 ) = F ′
0F

′′
0 = F ′′

0 = N(F0) = 1 = N0.

We prove the following lemma:

Lemma 3. If F1 = F ′
1 ∗ F ′′

1 , then

N(F1) = N(F ′
1 ∗ F ′′

1 ) = N(F ′
1) ∗N(F ′′

1 ).

Proof. Let χ = χ′ ∗ χ′′ where χ, χ′, χ′′ are multiplicative functions,
and let χ↔ F , χ′ ↔ F ′ and χ′′ ↔ F ′′. Using the definition we have

N1(F ) = 2F2 − F 2
1 = 2(t21 + t2)− t21 = t21 + 2t2.

Then, using Corollary 5, we have

(t′1 + t′′1)
2 + 2(t′2 − t′1t

′′
1 + t′′2) = t′1

2
+ 2t′1t

′′
1 + t′′1

2
+ 2t′2 − 2t′1t

′′
1 + 2t′′2

= (t′1
2
+ 2t′2) + (t′′1

2
+ 2t′′2),

which is

N1(F
′) +N1(F

′′),

and

N1(F
′′) +N1(F

′′) = N′
1 ∗N′′

1 .

Theorem 12. Let F = F ′ ∗ F ′′. Then

N(Fn) = N(F ′
n) ∗N(F ′′

n );

that is, if Nn = N(Fn), then

Nn = N′
n ∗N′′

n.
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Proof. It is well known that the KM-norm is a multiplicative function
and hence by the correspondence theorem is linearly recursive. Denot-
ing the indeterminates of the MFs N, N′ and N′′ by nr, n

′
r and n′′

r ,
and using Corollary 5, we have

nr = n′
r −

r−1∑
j=1

n′
jn

′′
r−j + n′′

r ,

where 1 � j � r. Then, using the recursion property of the norm
function, we have

Nr =

r∑
j=1

njNr−j =

r∑
j=1

(n′
j −

r−j∑
s=1

n′
r−j−sn

′′
s + n′′

j )Nr−j ,

where 1 � s � r.

We let nu = 0 when u < 0 and nu = 1 when u = 0. By the inductive
hypothesis:

Nr−j = N′
r−j ∗N′′

r−j,

we have

Nr =

r∑
j=1

(n′
j −

r−j∑
s=1

n′
r−j−sn

′′
s + n′′

j )

r∑
j=1

N′
r−j ∗N′′

e−j ,

and so

=

r∑
j=1

[
(n′

j −
j−1∑
s=1

n′
j−sn

′′
s + n′′

j )

( r−j∑
i=0

N′
r−j−iN

′′
i

)]
,

where 0 � s � r. Thus, we have

Nr =

r∑
j=1

[(n′
j + n′′

j )

r∑
j=1

N′
r−j−iN

′′
i −

( j−1∑
s=1

n′
j−sn

′′
s

r−j∑
i=0

N′
r−j−iN

′′
i

)]
,
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which we can write as

Nr =

r∑
j=1

(
n′
j

r−j∑
i=0

N′
r−j−iN

′′
i

)

+
r∑

j=1

(
n′′
j

r−j∑
i=0

N′
r−j−iN

′′
i

)

−
( r∑

j=1

( j−1∑
s=1

n′
j−sn

′′
s

r−j∑
i=0

N′
r−j−iN

′′
i

))
.

We can now shift the order of summation in the first and second
summands on the right hand side, and using the fact that N ′

0 = 1 and
N ′′

0 = 1,

Nr =

r∑
i=0

(
n′
j

r−i∑
j=1

N′
r−j−iN

′′
i

)

+

r∑
i=0

(
n′′
j

r−i∑
j=1

N′′
r−j−iN

′
i

)

+
r−2∑
j=1

n′
j

(
N ′′

r−j −
r−j∑
i=1

n′′
jN

′′
r−j−i

)

+

( r−2∑
j=1

n′′
j (N

′
r−j −

r−j∑
i=1

n′
jN

′
r−j−i

)
.

Using the linear recursion property of the KM-norm in each of the four
summands, this becomes

Nr =

r∑
j=1

N′
jN

′′
r−j +

r−2∑
j=1

n′
j(N

′′
r−j −N′′

r−j)

+
r−2∑
j=1

n′′
j (N

′
r−j −N′

r−j)

=
r∑

j=1

N′
jN

′′
r−j

= N′
r ∗N′′

r .
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Thus, together with Lemma 3, we have

N(F ′ ∗ F ′′) = N(F ′) ∗N(F ′′).

In particular, the theorem together with the proof show that any
norm function on multiplicative functions that agrees with the KM-
norm at all primes, i.e., at n = 1, agrees at all prime powers, that is, is
the KM-norm.

Note that N1 = Gk,2 for all k > 1. While this is suggestive, it
suggests the wrong thing. There does not seem to be such a relation
to the GLPs for n > 2.

Lemma 4. If deg (α) = 1, then degN(α) = 1. (See [27, page 50].)

Theorem 13.
deg (N(α)) = deg (α).

Proof. If deg (α) = k, then α is the convolution product of k degree 1
multiplicative functions. The theorem then follows from Theorem 12
and Lemma 4.

9. Examples.

Example 4. Let α be the arithmetic function whose values for
α(pn) = fn, for all primes p, where fn is the n-th Fibonacci number.
f0 = f1 = 1, fn+1 = fn + fn−1, and represent α at each prime
by F . It is easy to calculate that F has degree two, in fact, that
Fn(t1, t2) = Fn(1, 1). According to Theorem 13, degN(α) = 2 also.
We can see this directly. N(F1) = N1 = f3 = 3 and N2 = f5 = 8.
From the first of these two facts, we have that n1 = f3 = 3 and, from
the second, that N2 = f5 = 8, and since N2 = n2

1 + n2, we have that
n2 = −1. The same technique shows that N3 = 0. An easy induction
yields nj = 0, j > 2. We can then use the recursion property to show
that Nn = f2n+1.

Example 5. For the multiplicative function τ (number-of-divisors
function), using Theorem 13 and the methods above, we find that
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degN(τ) = 2 = deg (τ), where t1 = 1, t2 = −1 andNn = n+1 = τ(pn),
n1 = 2, n1 = −1.
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