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POINTWISE CONVERGENCE OF
QUASICONTINUOUS MAPPINGS
AND BAIRE SPACES

LUBICA HOLA AND DUSAN HOLY

ABSTRACT. The notion of quasicontinuity was perhaps
the first time used by Baire in [1]. Using the Choquet game
for Baire spaces X we give a complete answer to the question
when the pointwise limit of the sequence of real-valued qua-
sicontinuous functions defined on X is also quasicontinuous.
Moreover, in the class of metrizable spaces and in the class
of quasi-regular 77 topological spaces with locally countable
m-base ([27]) we give a characterization of Baire spaces by the
above mentioned fact.

1. Introduction. In what follows let X, Y be Hausdorff topological
spaces and R the space of real numbers with the usual metric.

In the paper [17] Kempisty introduced a notion similar to continuity
for real-valued functions defined in R. For general topological spaces
this notion can be given the following equivalent formulation.

Definition 1.1. A function f: X — Y is called quasicontinuous at
x € X if for every open set V C Y, f(z) € V and open set U C X,
x € U there is a nonempty open set W C U such that f(W) C V. If f is
quasicontinuous at every point of X, we say that f is quasicontinuous.

The notion of quasicontinuity was perhaps the first time used by
Baire in [1] in the study of points of continuity of separately contin-
uous functions. As Baire indicated in his paper [1] the condition of
quasicontinuity has been suggested by Vito Volterra.

There is a rich literature concerning the study of quasicontinuity (see,
for instance [7, 18, 20, 26, 28]).
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The notion of quasicontinuity recently turned out to be instrumental
in the proof that some semitopological groups are actually topological
ones (see [5, 6]), in the proof of some generalizations of Michael’s
selection theorem (see [10]) and also in characterizations of minimal
usco maps and densely continuous forms via their selections (see [13,
14, 22]).

Quasicontinuity of real-valued separately continuous functions of two
variables was studied very frequently in connection with the existence
of points of joint continuity for such functions (see [21, 25, 28-30]).

Continuity points of quasicontinuous mappings were studied in many
papers; see for example [3, 15, 18, 19].

2. Pointwise convergence of quasicontinuous mappings. Of
course it is very easy to verify that the pointwise limit of a sequence of
even continuous functions need not be quasicontinuous.

However it is known that the pointwise limit of an equicontinuous
sequence of functions is continuous. Of course equicontinuity is too
strong; it is not necessary to guarantee continuity of the pointwise
limit of a sequence of continuous functions.

In [2] necessary and sufficient conditions for continuity of the point-
wise limit of a net of continuous functions are given.

Bledsoe in his paper [3] studied the pointwise limit of a sequence of
quasicontinuous mappings with values in a metric space. He proved
that if {f,, : n € w} is a sequence of quasicontinuous mappings defined
on a topological space X with values in a metric space Y pointwise
convergent to f : X — Y, then the set D(f) of discontinuity points of
f is of the first Baire category in X.

The same result was rediscovered later by Giles and Bartlett in their
paper [10].

For simplicity we will work only with real-valued functions.

Definition 2.1. Let {f, : n € w} be a sequence of real-valued
functions defined on a topological space X. We say that the sequence
{fn : n € w} is equi-quasicontinuous at x € X if for every ¢ > 0 and
every open neighborhood U of = there is an nyg € w and a nonempty
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open set W C U such that
|fn(z) - fn(x)| <Ee

for every z € W and for every n > ny.

We say that {f, : n € w} is equi-quasicontinuous if it is equi-
quasicontinuous at every z € X.

Remark. Notice that in a natural way we can define the equi-
quasicontinuity also for a net of functions.

Of course every equicontinuous sequence is also equi-quasicontinuous
and there are easy examples of equi-quasicontinuous sequences which
are not equicontinuous.

Proposition 2.2. Let {f, : n € w} be a sequence of real-valued
functions defined on a topological space X pointwise convergent to
a real-valued function f defined on X. If {fn : n € w} is equi-
quasicontinuous at x € X, then f is quasicontinuous at x.

Proof. Let ¢ > 0, and let U be an open set with x € U. There is an
no € w and a nonempty open set W C U such that | f,, (z)—f.(2)| < &/3
for every n > ng and every z € W.

Let w € W. The pointwise convergence of {f,, : n € w} to f implies
that there is an ny > ng such that
|fn(w) — f(w)| < e/3 and |fn(z) — f(z)]| < /3 for every n > n;.
Then we have:
[f(z) = f(w)] < [f(2z) = fa, (2)]
+ [ fni (@) = fry (w)]
+ [ fry (w) = f(w)]
<e/3+¢e/3+¢/3. o

A topological space is a Baire space, provided countable collections of
dense open subsets have a dense intersection (equivalently, nonempty
open subsets are of second Baire category).
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We will use Oxtoby’s characterization of Baire spaces. In [16] we can
find the following theorem:

Definition 2.3 ([16]). Let X be a nonempty topological space. The
Choquet game Gx of X is defined as follows: Players I and II take
turns in playing nonempty open subsets of X

I U, U,
Im v wmn
so that Uy D Vo D Uy D Vi DO ---. We say that II wins this run of the

game if (), Vao(=(,, Un) # @. (Thus I wins if (), Un(=, Va) = 2.)

A strategy for I in this game is a “rule” that tells him how to play,
for each n, his nth move U,, given II's previous moves Vy,...,V,_1.
Formally, this is defined as follows: Let T be the tree of legal po-
sitions in the Choquet game Gx, i.e., T consists of all finite se-
quences (W, ... ,W,), where W; are nonempty open subsets of X and
Wo D Wy D--- D W,. A strategy for I in Gx is a subtree o C T such
that

i) o is nonempty;

it) if (Uo, Vo,...,U,) € o, then for all open nonempty V,, C U,,
(UOa%a" . 7Un7V’n) € 0,

iii) if (U, Vo, - -+ ,Un—1, V1) € o, then for a unique U,, (Uy, Vb, ... ,
Unflv anla Un) €o.

Intuitively, the strategy o works as follows: I starts playing Uy where
(Up) € o (and this is unique by iii)); II then plays any nonempty open
Vo C Uyp; by ii) (Ug, Vi) € o. Then I responds by playing the unique
nonempty open U; C Vj such that (U, Vo, U;) € o, etc.

A position (Wy, ... ,W,,) € T is compatible with o if (Wy,... ,W,,) €
o. A run of the game (Uy, Vo, Uy, Vi,...) is compatible with o if for
every n € w we have

(U(], Vb, . ;Un—la Vn—l; Un) € o and (Uo, ‘/0, . ,Un, Vn) € o.

The strategy o is a winning strategy for I if he wins every compatible
with o run (Uy, Vp,...) (i-e., if (Up, V,...) is a run compatible with o
then N, Un(=,, Va) = 9).
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The corresponding notions of strategy and winning strategy for II are
defined mutatis mutandis.

Theorem 2.4 [16]. A nonempty topological space X is a Baire space
if and only if player 1 has no winning strategy in the Choquet game Gx.

Theorem 2.5. Let X be a Baire space. Let {f, : n € w}
be a sequence of real-valued quasicontinuous functions defined on X
pointwise convergent to a function f: X — R. Then the following are
equivalent:

(1) f is quasicontinuous;

(2) {fn:n € w} is equi-quasicontinuous.

Proof. (2) = (1) is established by Proposition 2.2. Now we prove
(1) = (2). Suppose, by way of contradiction, that {f, : n € w} is
not equi-quasicontinuous at xg. Then there are ¢ > 0 and an open
neighborhood U of x( such that for every n € w and every nonempty
open subset W C U there is a £ > n and a point w € W such that

| fr(w) = fr(zo)| > e

For everyn € wput A, = {w € U : there is k > n, | fi(w)— fi(zo)| >
e}. By the above, A, is dense in U for every n € w.

The quasicontinuity of f at xg implies that there is a nonempty open
set O C U such that

|f(z) = f(zo)] <e/4 for every z € O.

Now we will define a strategy o for the first player I:

To define Uy € o, realize that the set Ag is dense in U; thus also in
O. There are ky > 0 and z(ko) € O such that

| o (z(ko)) = fro (T0)| > €,

and there is a nonempty open set O(kg) C O such that
[ Fro(@(Ko)) — fro ()] < /4

for every z € O(ky). Put Uy = O(ko).
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Now let V be a nonempty open subset of Uy. We will define U;:
There are k; > ko, k; > 1 and z(k;) € V; such that

|[fra (2(R1)) = Fro(20)] > €

and there is a nonempty open subset O(k;) of V; such that

[ frs (2(R1)) = fry (2)] < €/4

for every z € O(ky). Put Uy = O(ky).

Suppose now that (Up, Vg, ... ,Up—1,Vp—1) € o, where U; = O(k;),
ko < ki < -+ <kn_1and k; > i for every i < n — 1. We will define
U,. There are k,, > k,,_1,k, > n and z(k,) € V,,_1 such that

i (@(kn)) = fi,(z0)] > €

and there is a nonempty open subset O(k,,) of V;,_1 such that

| frn (2(kn)) = i, (2)] < /4
for every z € O(ky,). Put U, = O(ky).

Since X is a Baire space, by Theorem 2.4 there is no winning
strategy for the first player I. Thus, for an appropriate choice of
Vo, Vi,Vay ... s, Un # @. Let b € ), Unp.

The pointwise convergence of {f, : n € w} to f implies that there is
an n € w such that for every k > n

[f(0) = f(b)] <e/4 and [fi(z0) = f(zo)| < e/4.
Now k,, > n. Consider |f, (z(kn)) — fr, (20)|. We have

| fien (@(kn)) = frn (@0)| < | frn (@(kn)) = frn (O)] + | frn (b) = frn (z0)]-

Since b € O(k,,) we have that |fi, (z(kn)) — fx, (b)] < €/4. Now

| fn () = fe (20)| < | i, (0) = F(B)| + | (B) = f(0)| + | f (20) — fi,. (z0)]
< 3e/4.

Thus | fx, (¢(kn)) — f, (20)| < €, a contradiction. o
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A collection G of nonempty open subsets of a topological space X
is called a m-base ([23, 24, 31]) (also known as a pseudo-base) for X
provided that every nonempty open subset of X contains some member

of G.
There is a characterization of quasicontinuity in terms of 7-bases:

Proposition 2.6. Let X,Y be topological spaces, and let f : X —Y
be a function. Then f is quasicontinuous if and only if there exists a
w-base T for the topology of X such that, whenever U is open in X and
V is open in' Y with f(U)NV # &, there exists a T € 7 with T C U
such that f(T) C V.

Proof. Suppose first that f : X — Y is quasicontinuous. Put

r={Int (f 1(V)NU): f 2 (V)NU # @,V open in Y,U open in X}.

To prove that 7 is a w-base for the topology of X, let U be a
nonempty open set in X. Take x € U. Let V be an open set in Y
such that f(z) € V. The quasicontinuity of f at x implies that there
is a nonempty open set H such that H C U and f(H) C V. Then
Hc f~Y(V)NU. Thus T = Int(f~'(V)NU) # @ and T C U. Thus
T is a w-base for the topology of X. It is easy to verify that 7 satisfies
the condition of the Proposition.

Suppose now that f : X — Y is such a function that there is a 7-base
7 for the topology of X such that whenever U is open in X and V is
open in Y with f(U)NV # & and there exists a T € 7 with T' C U such
that f(T) C V. We show that f is quasicontinuous. Let z € X. Let U
be an open neighborhood of # and V' an open neighborhood of f(x).
By the assumption there is a T € 7 such that T C U and f(T) C V.
Since T is a nonempty open set in X, the quasicontinuity of f at z is
proved. ]

Theorem 2.7. Let (X,d) be a metric space. Then the following are
equivalent:

(1) X is Baire;
(2) If {fn. : n € W} is a sequence of real-valued quasicontinuous func-

tions defined on X pointwise convergent to a quasicontinuous function
f:X — R, then {f, : n € w} is equi-quasicontinuous.
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To prove Theorem 2.7 we will use the following lemma which was
proved in [8]:

Lemma ([8]). Let (X,d) be a metric space without isolated points.
Let D be a nonempty closed nowhere dense subset of X. Then there is
a quasicontinuous function f : X — [0,1] such that f is continuous at
each point x ¢ D, f(z) =0 for every z € D and in every neighborhood
V of z € D there are x,y € V N D° with f(z) =0 and f(y) = 1.

Proof of Theorem 2.7. Only (2) = (1) needs some explanation.
Suppose X is not a Baire space. Let G be a nonempty open set in
X which is of the first Baire category. Let {K,, : n € w} be a sequence
of nowhere dense subsets of G such that G = U{K,, : n € w}. For every
n€wput L, =U{K; :i <n}U(G\G). Then G = U{L, : n € w}. Of
course every L, is a closed nowhere dense set in G.

Let n € w. We will apply the above lemma on G and L,. Of
course G has no isolated point. There is a quasicontinuous function
fr: G — [0,1] such that f}(z) = 0 for every z € L, and for every
z € L, and every neighborhood V of z € L,, there is a y € V with
fi(y) = 1. Let f, : X — [0,1] be a function defined as follows:

fn(z) = fi(z) for every z € G and f,(x) = 0 otherwise. Of course also
fn is quasicontinuous.

It is easy to verify that the sequence {f, : n € w} pointwise
converges to the function identically equal to 0. However the sequence
{fn : n € w} is not equi-quasicontinuous. Let z € G be arbitrary. We
will show that {f, : n € w} is not equi-quasicontinuous at z. In fact,
we claim that with e = 1/2, for every n € w, for every nonempty open
set V C @ there are k > n, 2z € V with

|fe(2) — fr(z)] > €.

Let n € w and V C G be a nonempty open set. Let z € V be
arbitrary. There is a k > n with z,z € L. Thus fx(z) = 0 and also
fr(2) = 0. There is a 2z € V with fi(z;) = L. o

It is easy to verify that the above theorem also works for a quasi-
regular Tj-topological space X with a w-base, elements of which
are metrizable. A topological space is quasi-regular ([23]) if every
nonempty open set contains a closed subset with nonempty interior.
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A notion which will be helpful for us further is one of locally countable
m-base (see [27] and also [32]). A m-base is a locally countable w-base
if each member of it contains only countably many members of the
m-base.

Theorem 2.8. Let X be a quasi-regular Ty topological space which
has a locally countable w-base. The following are equivalent:

(1) X is Baire;

(2) If {fn : n € w} is a sequence of real-valued quasicontinuous func-
tions defined on X pointwise convergent to a quasicontinuous function
f:X = R, then {f, : n € w} is equi-quasicontinuous.

Proof. Only (2) = (1) needs some explanation. Suppose X is not a
Baire space. Let U be a nonempty open set in X which is of the first
Baire category. Let 7 be a locally countable w-base of X. Let G € 7
be a nonempty subset of U. Then of course also G is of the first Baire
category.

Let {V, : n € w} C 7 be a countable m-base of G, and let
{K, : n € w} be a sequence of nowhere dense subsets of G such that

G =U{K, :n € w}
For every n € w we will define a function f,, as follows:

U{K; : i < n} is nowhere dense in G (so also in X); i.e., V,, \ U{K; :
i < n} # &. Moreover the quasi-regularity of X implies that there is
an open set H,, such that

anFchn\U{E:ign}.

Define the function f,, as follows: f,(z) =1 for x € H,, and f,(z) =0
otherwise. It is easy to verify that f, is quasicontinuous for every n € w
and that the sequence {f, : n € w} pointwise converges to the function
f identically equal to 0.

We will show that the sequence {f, : n € w} is not equi-
quasicontinuous. Let z € G be arbitrary. We will show that {f, :
n € w} is not equi-quasicontinuous at z. In fact, we claim that with
e = 1/2, for every n € w, for every nonempty open set V' C G there are
k >n, z; € V with

|fr(2k) — fr(z)] > €.
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Let n € w and V C G be a nonempty open set. There is m € w
with V,,, C V. Since G is of the first Baire category it has no isolated
points; thus, every open subset of G contains infinitely many points
and infinitely many elements of the sequence {V,, : n € w}. Let ng € w
be such that x € K,,,. There are k € w, k > max{n,ng} with Vi, C V;,.
Then we have

| fi(zr) — fe(z)| =1 > e.

Thus {f, : n € w} is not equi-quasicontinuous at z, a contradiction
with (2). o

In [4] the authors proved that property (2) in previous theorems does
not characterize Baire spaces in the class of 77 topological spaces.

Acknowledgments. The authors are grateful for the helpful com-
ments of the referee.
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