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NECESSARY AND SUFFICIENT CONDITIONS FOR
THE OSCILLATION OF A FIRST-ORDER NEUTRAL
DIFFERENTIAL EQUATION OF EULER FORM

KAIZHONG GUAN AND JIANHUA SHEN

ABSTRACT. In this paper we give a necessary and suf-
ficient condition for the oscillation of the first-order neutral
differential equations of Euler form with variable unbounded
delays

d

£ (@t) — cxlat) + © > palBit) =0, t210>0,

i=1

where 0 < ¢ < 1,0 < a < 1,0 < B <1, p; >0,
i = 1,2,...,n. Some relevant results in the literature are
also extended and improved.

1. Introduction. The oscillation theory of delay differential
equations and neutral differential equations has drawn much attention
in recent years. This is evidenced by extensive references in books of
Gyéri and Ladas [7], Erbe et al. [5] and Ladde et al. [10].

The oscillation of all solutions of neutral differential equation with
constant delays and constant coefficients of the form

(1.1) (@(t) —ca(t—7)) + Y pia(t—7) =0, t>to,
i=1
where0 < c< 1, 7,7,p; € (0,00),i =1,2,...,n, has been investigated

by many authors. See, for example, [4, 8, 9, 12] and the references
cited therein. In particular, the following well-known oscillation results
are established.
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Theorem 1.1 ([7, 9, 11]). All solutions of equation (1.1) oscillate
if and only if

(1.2) “A e’ + Zpie)‘” >0, forall A>0.

i=1

Recently, there have been some publications on neutral differential
equations with variable delays and variable coefficients. For example,
see [2, 3, 6, 11] and the references cited therein. In particular, Guan
and Shen [6] investigated the oscillatory behavior of all solutions of the
following first-order neutral differential equation of Euler form with
variable delays

(1.3) % (x(t) — cx(at)) + %x(ﬂt) =0, t>ty>0,

where 0 <c¢<1,0< a, 8 <1, p>0, and the more general one

d 1<
(1.4) = (@(t) — cz(at)) + Z;pim(ﬁit) =0, t>t,>0,
where 0 <c<1,0<a<1,0<8; <1, p;>0,i=1,2,...,n.

For equation (1.3), the authors established the following necessary
and sufficient condition for all solutions of (1.3) to oscillate, which is
similar to Theorem 1.1.

Theorem 1.2. Assume thatp >0,0<c<1,and 0 < < a < 1.
Then every solution of equation (1.3) oscillates if and only if

(1.5) FA\)=-A+cxa+p3 >0, forall A>0.

However, for equation (1.4) as n > 1, they only established a
sufficient condition for the oscillation of all solutions. The question
is posed whether one can establish the conclusion which is similar
to Theorem 1.2. We also note that the condition “8 < «a” which
is essential in the proof of the corresponding result in [6] actually
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restricted the applications of the result. These stimulate the strong
interest in investigating further equation (1.4).

The main purpose of our paper is to introduce a new technique which
is different from [6] to obtain the necessary and sufficient conditions
as well as some explicit sufficient conditions for every solution of
equation (1.4) to oscillate. Our results show that the condition “8 < «”
in Theorem 1.2 is superfluous, and hence the results presented extend
and improve those of [6].

By a solution of equaton (1.4) we understand a function z(t) €
C(|pt,0), R) for some t > tg, such that z(t) — cz(at) is continuously
differentiable, and x(t) satisfies equation (1.4) for all ¢ > ¢, where

p = min{a, 11%1%1”{/81}}
As is customary, a nontrivial solution of equaton (1.4) is said to be

oscillatory if it has arbitrarily large zeroes and nonoscillatory if it is
either eventually positive or eventually negative.

In the sequel, unless otherwise specified, when we write a functional
inequality we shall assume that it holds for all sufficiently large t.

2. Lemmas. We need the following lemmas for the proofs of our
main results.

Lema 2.1 ([1, 6]). Suppose that p > 0, 0 < a < 1, and that x(t) is
an eventually positive solution of the delay differential inequality

p

(2.1) z'(t) + ;x(at) <0.
Then
1

Lemma 2.2. Assume that p > 0, 0 < a < 1, and that a(t) €
C([aT, +0), (0,400)) satisfies the inequality

(2.3) a(t)—pexp(/;@ds>zo, £>T>0.

t
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Then
t
(2.4) lim inf/ als) ds < 4o0.
t—+o0 at S
Proof. Set
¢
z(t) —exp(—/ ﬁds) fort > T/
T s
Then
z(at) b af(s)
2. =
(2.5) 2@ exp</at . ds
and so (2.3) implies that
(2.6) 2/ (t) + %m(at) <0, t>T/a

It follows from Lemma 2.1 that

z(at) 1
z(t) = (2e)2’

o ([, 700) < Gram

This implies that ltimgnf f;t[(a(s))/s] ds < +o00, and so the proof is
— 400

or

complete. u]

Lemma 2.3 ([6]). Let x(t) be an eventually positive solution of
equation (1.4), and set

y(t) = z(t) — cz(at).

Then y(t) > 0 and y'(t) < 0 for sufficiently large t.
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3. Main results.

Theorem 3.1. Assume that 0 <c<1,0<a<1,0<b; <1, and

p; >0,i=1,2,... ,n. Then every solution of equation (1.4) oscillates
if and only if

(3.1) FA)=-A+cxa™+) pifi* >0, forall x> 0.
i=1

Proof. When ¢ = 0, Theorem 1 of [1] can be applied. Below we
consider the case 0 < ¢ < 1.

Assume firstly that (3.1) does not hold, which means that there
exists at least a positive number A; such that F()\;) < 0. Since
F(0) = Y0, p; > 0, there exists a A\g € (0, A\1] such that F()\g) = 0.
It is easy to check that x(t) = ¢t~ is a nonoscillatory solution of
equation (1.4), a contradiction.

Assume, conversely, that not all solutions of equation (1.4) oscillate.
This will imply that there exists at least one nonoscillatory solution of
equation (1.4). Without loss of generality, we assume that z(¢) is an
eventually positive solution. Let

y(t) = z(t) — cz(at).
By Lemma 2.3, then y(¢) > 0, y'(t) < 0 for ¢t > T > ty.

From (1.4), we have

0 =~ Lpial5)

(3.2) = f% > pily(Bit) + cx(aBit)]
i=1

1 — d
= =2 >_piy(Bit) + cy(at).
i=1

Set
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Then A(¢) > 0, and it follows from (3.2) that

A(t) = eA(at) exp ( /a t Als) 5>

(3.3) + sz exp (/t ¥ ds)
(3.4) > ;pi exp </5t AS) ds>,

where § = max {Bi}.

It follows from (3.1) that
: L1y
oo e 1m0 o,
or

. i - : - 1.
(3.5) t2%7n§>0{cexp<)\/atsds> Zp exp< /,3,t3d8>}>

This implies that there exists a § € (0,1) such that

1 n
. a1 =X
(3.6) 5}\12% {ca + \ Z-,E lpzﬁz } >1

or
b1
6tZ%P£>O{cexp ()\/atgds> )\Zplexp( /Bt;ds>} > 1.

On the other hand, using Lemma 2.2 and (3.4), we have

t
liminf/ M ds < +00.
B

t—+oo t S

This and the expression f;t(l/s) ds = In(1/8) > 0 imply that 0 <
liminf A(t) < 4o0.
t— 400
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Now we turn to showing that 1tim +inf A(t) > 0. Otherwise, if
—+o0
liminf A(t) = 0, then there exists a sequence {t;} such that 112121 {at,
SN

t—+oo <i<
Bitk} > T, klirf ty = 4oo, and A(tg) < A(t), for t € [T,t],
— 400

k=1,2,....
From (3.3), we have

A(tr) > eA(aty) exp (A(tk) /a " %ds) + il pi exp <)\(tk) /ﬁ " lds),

tr ity S

ie.,

te 1 1 < te q
At Sds) +—— S prexp (At Sds) <1,
cexp< (@/Mks 8>+)\(tk);p exp( <k>/ﬂitks s)_

which contradicts (3.5), and therefore,

liminf A\(t) = A¢ € (0, 4+00).

t—+oo

Then there exists a 71 > T such that A(t) > dAg, t > T7.
Thus, by (3.3), we have

A(t) > edhoa 20 + 3 "B, £ > T,

i=1

Taking the inferior limit as ¢ — oo, we get

(3.7) Xo > edhoa 0 + 3 " pyar 0%,
i=1

Letting A\; = d)\o in (3.7) yields

(38) e+ Yoms ™) <1
153

Since Ay > 0, (3.8) contradicts (3.6) and so the proof is complete. o
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Remark 3.2. When n = 1, Theorem 3.1 reduces to Theorem 1.2,
namely, Theorem 3.1 of [6]. And moreover, it is easy to see that the
condition “8 < a” is superfluous and our method employed is different
from that of [6].

Theorem 3.1 is of theoretical interest. But the assumptions are not
easy to verify. Hence, it is necessary to establish some explicit sufficient
conditions for the oscillation of every solution of equation (1.4). Here
we give the following theorems.

Theorem 3.3. Assume that 0 < o, B; <1, p; >0,i=1,2,... ,n,
and 0 < ¢ < 1. Then every solution of equation (1.4) oscillates if

1/n n

09 (TTn) " Y078 > 1- o @m0
i=1 i=1
Proof. Clearly, (3.1) can be rewritten as
(3.10) gN) = —1+ca*+ % ipiﬂﬁ >0, forall A> 0.
i=1
Using the arithmetic-geometric means inequality, we have

n 'l/n A n
o2 14 ea + MR g (2 ;ma/@-)), A>0.

Set

n N\1/n n
fO) =—-1+ca*+ M exp <% Zln(l/ﬂi))
=1

By Theorem 3.1, the proof will be completed if we can prove f(\) >0
for all A > 0.

Let

n n N\1/n n
fy = MU=l (% Zln(l/ﬂi)),
i=1
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and
f2(A) =1—ca™™.

It is not difficult to verify that fi(\) has only a global minimum at
Xo=n/ <Z ln(l/Bi)> and the minimum value is e (]}, pi)'" >
i=1
In (1/8;).

Calculating the value of f(X) = f1(A\)—f2(A\) at A = n/ <,u i ln(l/ﬁi)>
(u > 0), we have =

1/n n
F(A )|>\ ”/(“Zn n(1/8:)) (HM) ;ln(l/,@i)@l/l‘

+ea ™ (B30, m/BY) g
1/n n

> ,u(if[lpi) > In(1/8:) +e-1.

i=1
Thus, if p > (1= o)/((TT_p0)" Sy (1/5), then fO) =
fl()\) - fg()\) > 0. This shows that f()\) = fl()\) - fg()\) > 0,
e (0, (T )™/ (n(1 = 0))).
Now we are in a position to consider the case where A > (T]}"_, pi)l/" /
n(1 — ¢) and note,

SE (}j[lpi)l/neZln 1/8) = (1= ca™)

5 1/ n 1/n
Z (sz) 62111(1/52) +Ca7(HI 1 ) / /n(l c) 1.
i=1

i=1

By (3.9), we obtain

(Tiap)"™

SOV = HO) =S >0, for A> LR

Up to this, we have shown that
g(A) = f(A) = fi(A) = f2(A) >0, forall A> 0.
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Therefore, (3.10) holds and so the proof is complete. o

Theorem 3.4. Assume that 0 < o, B; <1, p; >0,i=1,2,... ,n,
and 0 < ¢ < 1. Then all solutions of equation (1.4) are oscillatory if

(3.11) eZpi In(1/8;) >1—c.

Proof. Let g be defined as in (3.10), i.e., g(A\) = —1 + ca™ +
(1/X) X piB;*, A > 0. One can easily find that, for every fixed i

i=1
(i = 1,2,...,n), the function fi(\) = (1/A)p;B8;* (A > 0) has only
a global minimum at A; = 1/In(1/8;), and the minimum value is
ep; In(1/5;).
Thus, it follows from (3.11) that

gA) > —1+ca+ed piln(1/B;) > -1
i=1

+c+ed piln(1/8;) >0, forall A > 0.

i=1

By Theorem 3.1, all solutions of equation (1.4) are oscillatory and so
the proof is complete.
Set 8 = max {Bi}. Using Corollary 4 of [11], we can obtain the

following

Corollary 3.5. All solutions of equation (1.4) are oscillatory if

(3.12) eipi In(1/8) > 1.

Remark 3.6. It is easy to see that Y p;In(1/8;) > > p;In(1/8).
i=1 i=1
This shows that (3.11) improves (3.12).
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4. Examples. In this section, we give some examples to show the

applications of our results.

Example 4.1. Consider the neutral differential equation

d

(4.1) — {x(t) - %x(e”t)] + %x((fw%t)—i— %I(€73/2ﬂ't) =0, t>2.

dt

Calculation shows that ,/pips (ln ,6_11 +In 5%) e =4mre > 1— %e”

1 — ca~VPiP2/2(0=¢) " Thus, equation (4.1) satisfies the conditions
Theorem 3.3 and so all solutions of (4.1) oscillate. Indeed, z(¢)

sin(Int) is such a solution.

Again, it is easy to see that

1 1 4l 1 237r>1,c 1
n— n—=—— = —.
b1 2 b2 B, 4 o %

Therefore, equation (4.1) also satisfies all conditions of Theorem 3.4

and so every solution oscillates.

Example 4.2. Consider the neutral differential equation

d 1 /¢ 1

(4.2) — [x(t) - Zm(—)] + —x(e”'t) + %x(e‘l/gt) =0, t>1,

dt 2 9t

Straightforward computing gives us

1 1 10
VP In— +In—)e=—
plp2<n,81+ n52>€ 276

and

1\ 16/9
1 — ca™VPP2/21=e) — 1 _ (—> .
2

Thus, Theorem 3.3 implies that every solution of (4.2) oscillates.
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Here we also note that p;ln 6% + po lnﬂi2 =2 < 3= %, which

9
implies that Theorem 3.4 cannot be applied.

Example 4.3. Consider the neutral differential equation

(4.3) %[:p(t) — <1 — §>x<<§>4t>] + %x(e—l/‘*t)

1 1/8
+ — = > 1.
4et.’c(e t)=0, t

Simple calculation shows that

! 1 Yol 1 33 S 1—c¢ 2
n— n—— —— = .
P 51 bz Bz 32e e e?

By Theorem 3.4, every solution of (4.3) is oscillatory.

However, calculating yields

1 1
\/ITPZ(Inﬂ— +In 6—)6 = % and 1 — cq VPP2/2(17¢)
1 2

o |w
N | =

Since % < (% - %), Theorem 3.3 cannot be applied to equation (4.3).
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