A NOTE ON MORITA EQUIVALENCE OF GROUP ACTIONS ON PRO- C^* -ALGEBRAS

MARIA JOIŢA

ABSTRACT. In this paper, we prove that two continuous inverse limit actions α and β of a locally compact group G on two pro- C^* -algebras A and B are strongly Morita equivalent if and only if there is a pro- C^* -algebra C such that A and B appear as two complementary full corners in C and there is a continuous inverse limit action γ of G on C which leaves A and B invariant and such that $\gamma|_A = \alpha$ and $\gamma|_B = \beta$. This generalizes a result of Combes [3].

1. Introduction and preliminaries. Pro- C^* -algebras are generalizations of C^* -algebras. Instead of being given by a single C^* -norm, the topology on a pro- C^* -algebra is defined by a directed family of C^* -seminorms. The *-algebra $C_{cc}([0,1])$ of all complex-valued continuous functions on [0,1] with the topology of uniform convergence on the countable compact subsets of [0,1] is a pro- C^* -algebra which is not topologically isomorphic with any C^* -algebra [4]. If X is a Hausdorff countably compactly generated topological space (that is, there is a countable family of compact spaces $K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n \subseteq \cdots$ such that $X = \lim_{n \in \mathbb{N}} K_n$ [9]), then the *-algebra C(X) of all continuous complex-valued functions on X equipped with the topology defined by the family of C^* -seminorms $\{p_{K_n}\}_n$, where

$$p_{K_n}(f) = \sup\{|f(x)|, x \in K_n\},\$$

is a unital commutative metrizable pro- C^* -algebra [9, Proposition 5.7]. Other very nice examples of pro- C^* -algebras are presented in [9, Section 1]. In the literature, pro- C^* -algebras have been given different names such as b^* -algebras (Apostol), LMC^* -algebras (Lassner and Schmüdgen) or locally C^* -algebras (Inoue and Fragoulopoulou).

Received by the editors on May 9, 2008, and in revised form on September 42008.

 $DOI:10.1216/RMJ-2011-41-3-777 \quad Copyright © 2011 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \ Mat$

²⁰¹⁰ AMS Mathematics subject classification. Primary 46L08, 46L05, 46L55. Keywords and phrases. Pro- C^* -algebra, Hilbert module over pro- C^* -algebra, group action, inverse limit group action. Received by the editors on May 9, 2008, and in revised form on September 4,

By a morphism of pro- C^* -algebras we always mean a continuous morphism and by an isomorphism of pro- C^* -algebras a bijective morphism φ of pro- C^* -algebras such that φ^{-1} is also a morphism of pro- C^* -algebras.

In fact a pro- C^* -algebra can be identified up to an isomorphism of pro- C^* -algebras with an inverse limit of C^* -algebras. For a given pro- C^* -algebra A, the set S(A) of all continuous C^* -seminorms on A is directed with the order $p \geq q$ if $p(a) \geq q(a)$ for all $a \in A$, and for each $p \in S(A)$, $\ker p = \{a \in A; p(a) = 0\}$ is a two-sided *-ideal of A. The quotient *-algebra $A/\ker p$, denoted by A_p , is a C^* -algebra in the C^* -norm induced by p, for each $p \in S(A)$ (see, for example, [9]). For $p, q \in S(A)$ with $p \geq q$ there is a canonical surjective morphism of C^* -algebras $\pi_{pq}^A: A_p \to A_q$ such that $\pi_{pq}^A \circ \pi_p^A = \pi_q^A$, where π_p^A is the canonical map from A to A_p . Then $\{A_p; \pi_{pq}^A\}_{p,q \in S(A), p \geq q}$ is an inverse system of C^* -algebras, and moreover, the map $\varphi: A \to \lim_{p \in S(A)} \bigoplus_{p \in S(A)} A_p$ defined by $\varphi(a) = (\pi_p^A(a))_p$ is an isomorphism of pro- C^* -algebras.

Let G be a locally compact group and let A be a pro- C^* -algebra. An action of G on A is a morphism of groups $t \mapsto \alpha_t$ from G to Aut (A), the group of all isomorphisms of pro- C^* -algebras from A to A. The action α is continuous if the function $t \mapsto \alpha_t(a)$ from G to A is continuous for each $a \in A$.

The study of the group actions on pro- C^* -algebras is motivated by the following example. If (G,X) is a transformation group with X a Hausdorff compactly countably generated topological space (this means that there is a continuous map $(t,x) \mapsto t \cdot x$ from $G \times X$ to X such that $e \cdot x = x$ and $s \cdot (t \cdot x) = (st) \cdot x$ for all $s, t \in G$ and for all $x \in X$), then the map $\alpha_t : C(X) \to C(X)$ defined by $\alpha_t(f)(x) = f(t^{-1} \cdot x)$ is an isomorphism of pro- C^* -algebras for each $t \in G$, and moreover, the map $t \to \alpha_t(f)$ from G to C(X) is a continuous action of G on C(X). Therefore, the transformation group (G,X) induces a continuous action of G on C(X).

An action α of G on A is an inverse limit action if we can write A as inverse limit $\lim_{\substack{\lambda \in \Lambda \\ \lambda \in \Lambda}} A_{\lambda}$ of C^* -algebras in such a way that there are actions α^{λ} of G on A_{λ} , $\lambda \in \Lambda$ such that $\alpha_t = \lim_{\substack{\lambda \in \Lambda \\ \lambda \in \Lambda}} \alpha_t^{\lambda}$ for all t in G [10, Definition 5.1].

A transformation group (G, X) with X a Hausdorff countably compactly generated topological space and G a compact group induces a continuous inverse limit action of G on C(X) [10].

In [5] we introduced the notion of strong Morita equivalence for pro- C^* -algebras and proved that two metrizable pro- C^* -algebras A and B both possessing countable approximate unit are strongly Morita equivalent if and only if they are stably isomorphic. The notion of strong Morita equivalence for group actions on pro- C^* -algebras was introduced in [8]. In [6, Theorem 2.9] we showed that two pro- C^* algebras A and B are strongly Morita equivalent if and only if there is a pro- C^* -algebras C such that A and B appear as complementary full corners in C. This extends a well-known result of Brown, Green and Rieffel [2, Theorem 1.1]. It is known that two continuous actions α and β of a locally compact group G on two C*-algebras A and B are strongly Morita equivalent if and only if there is a C^* -algebra Csuch that A and B appear as two complementary full corners in Cand there is a continuous action γ of G on C which leaves A and B invariant and such that $\gamma|_A = \alpha$ and $\gamma|_B = \beta$ [3]. In this paper we extend this result to the case of group continuous inverse limit actions on pro- C^* -algebras.

A Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle \cdot, \cdot \rangle$: $E \times E \to A$ which is \mathbf{C} - and A-linear in its second variable and satisfies the following relations:

- (1) $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$;
- (2) $\langle \xi, \xi \rangle \geq 0$ for every $\xi \in E$;
- (3) $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$

and which is complete with respect to the topology determined by the family of seminorms $\{\overline{p}_E\}_{p\in S(A)}$, where $\overline{p}_E(\xi) = \sqrt{p(\langle \xi, \xi \rangle)}, \xi \in E$.

A Hilbert A-module E is full if the linear space $\langle E, E \rangle$ generated by $\{\langle \xi, \eta \rangle; \xi, \eta \in E\}$ is dense in A.

Let E be a Hilbert A-module. For $p \in S(A)$, $\ker \overline{p}_E = \{\xi \in E; \overline{p}_E(\xi) = 0\}$ is a closed submodule of E and $E_p = E/\ker \overline{p}_E$ is a Hilbert A_p -module with $(\xi + \ker \overline{p}_E)\pi_p^A(a) = \xi a + \ker \overline{p}_E$ and $\langle \xi + \ker \overline{p}_E, \eta + \ker \overline{p}_E \rangle = \pi_p^A(\langle \xi, \eta \rangle)$. Moreover, the map $U: E \to \mathbb{R}$

 $\lim_{\substack{p \in S(A) \\ p \in S(A)}} E_p$ defined by $U(\xi) = (\sigma_p^E(\xi))_p$ is an isomorphism of Hilbert modules (that is, U is a surjective linear map with the property that $\langle U(\xi), U(\eta) \rangle = \langle \xi, \eta \rangle$ for all $\xi, \eta \in E$).

A module morphism $T: E \to E$ is adjointable if there is a module morphism $T^*: E \to E$ such that $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$ for all $\xi, \eta \in E$. If T is an adjointable module morphism on E, then, for each $p \in S(A)$, there is a positive constant M_p such that $\overline{p}_E(T\xi) \leq M_p \overline{p}_E(\xi)$ for all $\xi \in E$.

The *-algebra L(E) of all adjointable module morphisms on E is a pro- C^* -algebra with respect to the topology defined by the family of C^* -seminorms $\{\widetilde{p}_{L(E)}\}_{p\in S(A)}$, where

$$\widetilde{p}_{L(E)}(T) = \sup\{\overline{p}_E(T(\xi)); \xi \in E, \overline{p}_E(\xi) \le 1\}.$$

For $\xi, \eta \in E$ the map $\theta_{\eta,\xi} : E \to E$ defined by $\theta_{\eta,\xi}(\zeta) = \eta\langle \xi, \zeta \rangle$ is an adjointable module morphism. The linear subspace of L(E) spanned by $\{\theta_{\eta,\xi}; \xi, \eta \in E\}$ is denoted by $\Theta(E)$, and the closure of $\Theta(E)$ in L(E) is denoted by K(E).

A generalized morphism of Hilbert modules from E to E is a map $u: E \to E$ with the property that there is a morphism of pro- C^* -algebras $\alpha: A \to A$ such that

$$\langle u(\xi), u(\eta) \rangle = \alpha(\langle \xi, \eta \rangle)$$

for all $\xi, \eta \in E$. A generalized isomorphism of Hilbert modules is a bijective map $u: E \to E$ such that u and u^{-1} are generalized morphisms of Hilbert modules.

An action of a locally compact group G on E is a morphism of groups $t \mapsto u_t$ from G to Aut (E), the group of all generalized isomorphisms of Hilbert modules from E to E. The action $t \mapsto u_t$ of G on E is continuous if the map $t \mapsto u_t(\xi)$ from G to E is continuous for each $\xi \in E$.

An action $t \mapsto u_t$ of G on E is an inverse limit action if we can write E as an inverse limit of Hilbert C^* -modules $\lim_{\substack{\leftarrow \\ \lambda \in \Lambda}} E_{\lambda}$ in such a way that for each $t \in G$, $u_t = \lim_{\substack{\leftarrow \\ \lambda \in \Lambda}} u_t^{\lambda}$, where $t \mapsto u_t^{\lambda}$ is an action of G on E_{λ} , $\lambda \in \Lambda$.

An action $t \mapsto u_t$ of a locally compact group G on a full Hilbert A-module E induces two actions $t \mapsto \alpha^u_t$ and $t \mapsto \beta^u_t$ of G on the pro- C^* -algebras A and K(E) defined by

$$\alpha_t^u(\langle \xi, \eta \rangle) = \langle u_t(\xi), u_t(\eta) \rangle$$

for all $t \in G$ and for all $\xi, \eta \in E$, respectively

$$\beta_t^u \left(\theta_{\xi,\eta} \right) = \theta_{u_t(\xi), u_t(\eta)}$$

for all $t \in G$ and for all $\xi, \eta \in E$. Moreover, if $t \mapsto u_t$ is a continuous inverse limit action of G on E, then the actions of G on A and K(E) induced by u are continuous inverse limit actions.

Two continuous actions $t \mapsto \alpha_t$ and $t \mapsto \beta_t$ of G on two pro- C^* algebras A and B are conjugate if there is an isomorphism of pro- C^* algebras $\varphi: A \to B$ such that $\alpha_t = \varphi^{-1} \circ \beta_t \circ \varphi$ for all $t \in G$.

Two continuous actions $t \mapsto \alpha_t$ and $t \mapsto \beta_t$ of a locally compact group G on two pro- C^* -algebras A and B are strongly Morita equivalent if there is a full Hilbert module E over A, and there is a continuous action $t \mapsto u_t$ of G on E such that the actions of G on A and K(E) induced by u are conjugate with α , respectively β .

2. Main results. A pro- C^* -algebra A is a full corner in a given pro- C^* -algebra C, if there is a projection e in the multiplier algebra M(C) of C such that A = eCe and CeC is dense in C.

Proposition 2.1. Let G be a locally compact group, C a pro- C^* -algebra and $t \mapsto \gamma_t$ a continuous action of G on C. If A is a full corner in C invariant under γ , then the actions $t \mapsto \gamma_t$ and $t \mapsto \gamma_t|_A$ of G on C and A are strongly Morita equivalent.

Proof. By [6, Proposition 2.8], the pro- C^* -algebras A and C are strongly Morita equivalent. Moreover, if e is a projection in M(C) such that A = eCe and CeC is dense in C, then the Hilbert A-module Ce implements a strong Morita equivalence between A and C.

Let $t \in G$. Since $\gamma_t \in \text{Aut}(C)$, there is $\overline{\gamma_t} \in \text{Aut}(M(C))$ such that $\overline{\gamma_t}|_{C} = \gamma_t$. We will show that $\overline{\gamma_t}(e) \in A$. If $\{e_i\}_{i \in I}$ is an approximate

unit of C [9, Proposition 3.11], then the net $\{ee_ie\}_{i\in I}$ converges to e and so the net $\{\gamma_t(ee_ie)\}_{i\in I}$ converges to $\overline{\gamma_t}(e)$. But $\gamma_t(ee_ie)\in A$, and then $\overline{\gamma_t}(e)\in A$. Thus we have

$$\gamma_t(ce)e = \gamma_t(c)\overline{\gamma_t}(e)e = \gamma_t(c)\overline{\gamma_t}(e) = \gamma_t(ce)$$

and so $\gamma_t(ce) \in Ce$ for each $c \in C$. Therefore, we can consider the linear map $u_t : Ce \to Ce$ defined by $u_t(ce) = \gamma_t(ce)$. Since

$$\langle u_t(ce), u_t(de) \rangle = \langle \gamma_t(ce), \gamma_t(de) \rangle = \gamma_t (ec^*de) = \gamma_t|_A (\langle ce, de \rangle)$$

for all $c, d \in C$ and since u_t is invertible and $(u_t)^{-1} = u_{t-1}, u_t \in \operatorname{Aut}(Ce)$. It is not difficult to check that $t \mapsto u_t$ is an action of G on Ce. Moreover, since the map $t \mapsto \gamma_t(c)$ from G to C is continuous for each $c \in C$, the map $t \mapsto u_t(ce)$ from G to Ce is continuous for each $c \in C$. Therefore, $t \mapsto u_t$ is a continuous action of G on Ce. Since

$$\langle u_t(ce), u_t(de) \rangle = \gamma_t|_A (\langle ce, de \rangle)$$

for all $t \in G$ and for all $c, d \in C$, $\alpha^u = \gamma|_A$.

Let φ be the isomorphism from K(Ce) onto C defined by $\varphi(\theta_{ce,de}) = ced^*$. Then

$$(\varphi \circ \beta_t^u) (\theta_{ce,de}) = \varphi (\theta_{u_t(ce),u_t(de)}) = u_t(ce)u_t(de)^*$$
$$= \gamma_t(ce)\gamma_t(de)^* = \gamma_t(ced^*) = (\gamma_t \circ \varphi) (\theta_{ce,de})$$

for all $t \in G$ and for all $c, d \in C$, and so the actions β^u and γ are conjugate. Thus we proved that the actions $\gamma|_A$ and γ are strongly Morita equivalent. \square

Let α be a continuous inverse limit action of a locally compact group G on a pro- C^* -algebra A. The vector space $C_c(G,A)$ of all continuous functions from G to A with compact support becomes a *-algebra with convolution

$$(f \times h)(s) = \int_G f(t)\alpha_t \left(h(t^{-1}s)\right) dt,$$

where dt denotes the Haar measure on G, as product and involution defined by

$$f^{\sharp}(t) = \Delta(t)^{-1} \alpha_t \left(f(t^{-1})^* \right)$$

where Δ is the modular function on G [7].

The Hausdorff completion of $C_c(G, A)$ with respect to the topology defined by the family of submultiplicative *-seminorms $\{N_p\}_{p\in S(A)}$, where

 $N_p(f) = \int_G p(f(s)) \, ds$

is a complete locally m-convex *-algebra $L^1(G, A, \alpha)$ with bounded approximate unit [7]. The crossed product of A by the action α , denoted by $G \times_{\alpha} A$, is the enveloping pro- C^* -algebra of $L^1(G, A, \alpha)$ [4, 7].

Corollary 2.2. Let G be a locally compact group, C a pro- C^* -algebra and $t \mapsto \gamma_t$ a continuous inverse limit action of G on C. If A is a full corner in C invariant under γ , then the pro- C^* -algebras $G \times_{\gamma} C$ and $G \times_{\gamma|A} A$ are isomorphic.

Proof. Clearly, $t\mapsto \gamma_t|_A$ is a continuous inverse limit action of G on A and so there is $G\times_{\gamma|_A}A$. By Proposition 2.1, the actions $t\mapsto \gamma_t$ and $t\mapsto \gamma_t|_A$ of G on C and A are strongly Morita equivalent, and then by [8, Theorem 5.6], the pro- C^* -algebras $G\times_{\gamma}C$ and $G\times_{\gamma|_A}A$ are isomorphic. \square

Corollary 2.3. Let $t \mapsto \alpha_t$ be a continuous inverse limit action of G on A. Then the pro- C^* -algebras $G \times_{\alpha} A$ and $G \times_{\gamma} M_2(A)$, where $t \mapsto \gamma_t$ is the action of G on the pro- C^* -algebra $M_2(A)$ of all 2×2 matrices over A defined by $\gamma_t([a_{ij}]_{i,j=1}^2) = [\alpha_t(a_{ij})]_{i,j=1}^2$, are isomorphic.

Proof. Clearly, A can be identified with a full corner of $M_2(A)$ invariant under γ . Then, by Proposition 2.1 the actions α and γ of G on A respectively $M_2(A)$ are strongly Morita equivalent, and since α is an inverse limit action, by [8, Remark 4.7], γ is an inverse limit action. Therefore, the pro- C^* -algebras $G \times_{\alpha} A$ and $G \times_{\gamma} M_2(A)$ are isomorphic. \square

Let E be a full Hilbert module over a pro- C^* -algebra A. The linking algebra $\mathcal{L}(E)$ of E is the pro- C^* -subalgebra of $L(A \oplus E)$ generated by $\{L_{a,\xi,\eta,T}; a \in A, \xi, \eta \in E, T \in K(E)\}$, where $L_{a,\xi,\eta,T}$ is the module

morphism on $A \oplus E$ defined by

$$L_{a,\xi,\eta,T}(b\oplus\zeta)=(ab+\langle\xi,\zeta\rangle)\oplus(\eta b+T(\zeta)).$$

Moreover,

$$\mathcal{L}(E) = \lim_{\stackrel{\leftarrow}{p \in S(A)}} \mathcal{L}(E_p)$$

where $\mathcal{L}(E_p)$ is the linking algebra of E_p for each $p \in S(A)$, up to an isomorphism of pro- C^* -algebras [6]. But $\mathcal{L}(E_p) = K(A_p \oplus E_p)$ for each $p \in S(A)$ [11], and then, by [9, Proposition 4.7], $\mathcal{L}(E)$ can be identified with $K(A \oplus E)$.

Proposition 2.4. Let G be a locally compact group, and E a full Hilbert module over a pro- C^* -algebra A. Any action $t \mapsto u_t$ of G on E induces a unique action $t \mapsto \gamma_t^u$ of G on the linking algebra $\mathcal{L}(E)$ of E such that

$$\gamma_t^u\left(L_{a,\xi,\eta,T}\right) = L_{\alpha_t^u(a),u_t(\xi),u_t(\eta),\beta_t^u(T)}$$

for all $a \in A$, $\xi, \eta \in E$, $T \in K(E)$ and for all $t \in G$. Moreover, if $t \mapsto u_t$ is a continuous inverse limit action, then $t \mapsto \gamma_t^u$ is a continuous inverse limit action.

Proof. Clearly, if there is an action $t \mapsto \gamma^u_t$ of G on $\mathcal{L}(E)$ such that

$$\gamma_t^u\left(L_{a,\xi,\eta,T}\right) = L_{\alpha_t^u(a),u_t(\xi),u_t(\eta),\beta_t^u(T)}$$

for all $a \in A$, $\xi, \eta \in E$, $T \in K(E)$ and for all $t \in G$, then this action is unique.

Let $t \in G$. The map $w_t^u : A \oplus E \to A \oplus E$ defined by

$$w_t^u(a \oplus \xi) = \alpha_t^u(a) \oplus u_t(\xi)$$

is a generalized morphism of Hilbert modules, since

$$\langle w_t^u (a \oplus \xi), w_t^u (b \oplus \eta) \rangle = \langle \alpha_t^u (a), \alpha_t^u (b) \rangle + \langle u_t (\xi), u_t (\eta) \rangle$$
$$= \alpha_t^u (\langle a \oplus \xi, b \oplus \eta \rangle)$$

for all $a, b \in A$ and for all $\xi, \eta \in E$, and since α_t^u is an isomorphism of pro- C^* -algebras. Moreover, since w_t^u is invertible and $(w_t^u)^{-1} = w_{t-1}^u$,

 w_t^u is a generalized isomorphism of Hilbert modules. It is not difficult to check that $t \mapsto w_t^u$ is an action of G on $A \oplus E$.

Since $A \oplus E$ is a full Hilbert A-module, the action $t \mapsto w_t^u$ of G on $A \oplus E$ induces an action $t \mapsto \gamma_t^u$ of G on $K(A \oplus E)$ such that

$$\gamma_t^u\left(\theta_{a\oplus\xi,b\oplus\eta}\right) = \theta_{w_t^u(a\oplus\xi),w_t^u(b\oplus\eta)} = \theta_{\alpha_t^u(a)\oplus u_t(\xi),\alpha_t^u(b)\oplus u_t(\eta)}$$

for all $a, b \in A$, for all $\xi, \eta \in E$, and for all $t \in G$.

Let $t \in G$, $a \in A$, $\xi, \eta \in E$ and $T \in K(E)$. We will show that

$$\gamma_t^u\left(L_{a,\xi,\eta,T}\right) = L_{\alpha_t^u(a),u_t(\xi),u_t(\eta),\beta_t^u(T)}.$$

For this, let $\{e_i\}_i$ be an approximate unit for A. From

$$\widetilde{p}_{L(A \oplus E)} (L_{a,0,0,0} - \theta_{a \oplus 0,e_i \oplus 0}) \le p (a - ae_i)$$

$$\widetilde{p}_{L(A \oplus E)} (L_{0,\xi,0,0} - \theta_{e_i \oplus 0,0 \oplus \xi}) \le \overline{p}_E (\xi - \xi e_i)$$

and

$$\widetilde{p}_{L(A \oplus E)} \left(L_{0,0,\eta,0} - \theta_{0 \oplus \eta,e_i \oplus 0} \right) \leq \overline{p}_E \left(\eta - \eta e_i \right)$$

for all $p \in S(A)$ and for all $i \in I$, and taking into account that γ_t^u , α_t^u and u_t are continuous, $ae_i \to a$, $\xi e_i \to \xi$ and $\eta e_i \to \eta$, we conclude that

$$\gamma_t^u(L_{a,\xi,\eta,0}) = L_{\alpha_t^u(a),u_t(\xi),u_t(\eta),0}.$$

If $T \in K(E)$, then there is a net $\{\sum_{k \in I_j} \theta_{\xi_k, \eta_k}\}_j$ in $\Theta(E)$ which converges to T. From

$$\widetilde{p}_{L(A \oplus E)} \bigg(L_{0,0,0,T} - \sum_{k \in I_i} \theta_{0 \oplus \xi_k,0 \oplus \eta_k} \bigg) \leq \widetilde{p}_{L(E)} \bigg(T - \sum_{k \in I_i} \theta_{\xi_k,\eta_k} \bigg)$$

for all $p \in S(A)$, and taking into account that γ^u_t and β^u_t are continuous and

$$\begin{split} \sum_{k \in I_j} \gamma_t^u \left(\theta_{0 \oplus \xi_k, 0 \oplus \eta_k} \right) &= \sum_{k \in I_j} \theta_{0 \oplus u_t(\xi_k), 0 \oplus u_t(\eta_k)} \\ &= \sum_{k \in I_j} L_{0,0,0,\theta_{u_t(\xi_k), u_t(\eta_k)}} \\ &= \sum_{k \in I_j} L_{0,0,0,\beta_t^u \left(\theta_{\xi_k, \eta_k}\right)}, \end{split}$$

we deduce that

$$\gamma_t^u(L_{0,0,0,T}) = L_{0,0,0,\beta_t^u(T)}.$$

Thus we have

$$\gamma_t^u (L_{a,\xi,\eta,T}) = \gamma_t^u (L_{a,\xi,\eta,0}) + \gamma_t^u (L_{0,0,0,T})$$

$$= L_{\alpha_t^u(a), u_t(\xi), u_t(\eta), 0} + L_{0,0,0,\beta_t^u(T)}$$

$$= L_{\alpha_t^u(a), u_t(\xi), u_t(\eta), \beta_t^u(T)}.$$

If u is a continuous inverse limit action, then we can suppose that $u_t = \lim_{p \in S(A)} u_t^p$ [8, Remark 3.6], where $t \mapsto u_t^p$ is a continuous action of G on E_p for each $p \in S(A)$. Let $p \in S(A)$, and let $t \mapsto w_t^{u^p}$ be the action of G on $A_p \oplus E_p$ induced by u^p . Since

$$\begin{aligned} \left\| w_{t}^{u^{p}} \left(a_{p} \oplus \xi_{p} \right) - a_{p} \oplus \xi_{p} \right\|_{A_{p} \oplus E_{p}} \\ &= \left\| \alpha_{t}^{u^{p}} \left(a_{p} \right) \oplus u_{t}^{p} \left(\xi_{p} \right) - a_{p} \oplus \xi_{p} \right\|_{A_{p} \oplus E_{p}} \\ &\leq \left\| \alpha_{t}^{u^{p}} \left(a_{p} \right) - a_{p} \right\|_{A_{p}} + \left\| u_{t}^{p} \left(\xi_{p} \right) - \xi_{p} \right\|_{E_{p}} \end{aligned}$$

and since the actions $t\mapsto u^p_t$ and $t\mapsto \alpha^{u^p}_t$ of G on E_p and A_p are continuous, the map $t\mapsto w^{u^p}_t(a_p\oplus \xi_p)$ from G to $A_p\oplus E_p$ is continuous for each $a_p\oplus \xi_p\in A_p\oplus E_p$. Therefore, $t\mapsto w^{u^p}_t$ is a continuous action of G on $A_p\oplus E_p$.

It is not difficult to check that $(w_t^{u^p})_p$ is an inverse system of generalized isomorphisms of Hilbert C^* -modules for each $t \in G$ and $t \mapsto \lim_{p \in S(A)} w_t^{u^p}$ is a continuous inverse limit action of G on $A \oplus E$.

Moreover, $w_t^u = \lim_{\substack{p \in S(A) \\ p \in S(A)}} w_t^{u^p}$ for each $t \in G$. By [8, Proposition 3.8], the action γ^u of G on $K(A \oplus E)$ induced by w^u is a continuous inverse limit action, and moreover, $\gamma_t^u = \lim_{\substack{p \in S(A) \\ p \in S(A)}} \gamma_t^{u^p}$ for each $t \in G$, where γ^{u^p} is the action of G of $\mathcal{L}(E_p)$ induced by u^p .

Remark 2.5. Let G be a locally compact group, E a full Hilbert A-module, and $t\mapsto u_t$ an action of G on E.

(1) Since the map $a \mapsto L_{a,0,0,0}$ from A to $\mathcal{L}(E)$ identifies A with a pro- C^* -subalgebra of $\mathcal{L}(E)$ and $\gamma_t^u(L_{a,0,0,0}) = L_{\alpha_t^u(a),0,0,0}$ for all $a \in A$

and for all $t \in G$, the restriction of γ^u to A can be identified with the action of G on A induced by u.

(2) Since the map $T \mapsto L_{0,0,0,T}$ from K(E) to $\mathcal{L}(E)$ identifies K(E) with a pro- C^* -subalgebra of $\mathcal{L}(E)$ and $\gamma^u_t(L_{0,0,0,T}) = L_{0,0,0,\beta^u_t(T)}$ for all $T \in K(E)$ and for all $t \in G$, the restriction of γ^u to K(E) can be identified with the action of G on K(E) induced by u.

Recall that two corners eCe and fCf in the pro- C^* -algebra C are complementary if $e + f = 1_{M(C)}$.

The following theorem is a version of [6, Theorem 2.9] for continuous inverse limit group action on pro- C^* -algebras.

Theorem 2.6. Let G be a locally compact group, and let $t \mapsto \alpha_t$ and $t \mapsto \beta_t$ be two continuous inverse limit actions of G on two pro- C^* -algebras A and B. Then the actions α and β are strongly Morita equivalent if and only if there is a pro- C^* -algebra C such that A and B appear as two complementary full corners in C and there is a continuous inverse limit action $t \mapsto \gamma_t$ of G on C such that A and B are invariant under γ and the actions $t \mapsto \gamma_t|_A$ and $t \mapsto \gamma_t|_B$ of G on A and B can be identified with α , respectively β .

Proof. First we suppose that α and β are strongly Morita equivalent. Let (E,u) be the pair consisting of a full Hilbert A-module and a continuous action of G on E which implements a strong Morita equivalence between α and β . Let $C = \mathcal{L}(E)$, and let γ^u be the action of G on C induced by u. By $[\mathbf{6}$, Theorem 2.9], A and B are isomorphic with two complementary full corners in C, and by Proposition 2.4 and Remark 2.5, $t \mapsto \gamma_t^u$ is a continuous inverse limit action of G on C such that identifying A and B with corners in C, $\gamma^u|_A = \alpha$ and $\gamma^u|_B = \beta$.

Conversely, we suppose that there is a pro- C^* -algebra C such that A and B appear as two complementary full corners in C, and there is a continuous inverse limit action $t\mapsto \gamma_t$ of G on C such that A and B are invariant under γ and the actions $t\mapsto \gamma_t|_A$ and $t\mapsto \gamma_t|_B$ of G on A and B can be identified with α , respectively β . Then, by Proposition 2.1 the actions $t\mapsto \gamma_t$ and $t\mapsto \gamma_t|_A$ of G on C respectively A are strongly Morita equivalent as well as the actions $t\mapsto \gamma_t$ and $t\mapsto \gamma_t|_B$, and since the strong Morita equivalence is an equivalence relation [8, Proposition 4.13], the actions $t\mapsto \gamma_t|_A$ and $t\mapsto \gamma_t|_B$ are strongly Morita equivalent. Therefore, the actions α and β are strongly Morita equivalent. \square

Corollary 2.7. Let G be a compact group, and let $t \mapsto \alpha_t$ and $t \mapsto \beta_t$ be two actions of G on two pro- C^* -algebras A and B such that the maps $(t,a) \mapsto \alpha_t(a)$ from $G \times A$ to A and $(t,b) \mapsto \beta_t(b)$ from $G \times B$ to B are jointly continuous. Then the actions α and β are strongly Morita equivalent if and only if there is a pro- C^* -algebra C such that A and B appear as two complementary full corners in C and there is an action $t \mapsto \gamma_t$ of G on C with the property that the map $(t,c) \mapsto \gamma_t(c)$ from $G \times C$ to C is jointly continuous and such that A and B are invariant under γ and the actions $t \mapsto \gamma_t|_A$ and $t \mapsto \gamma_t|_B$ of G on A and B can be identified with α , respectively β .

Proof. By [10, Lemma 5.2], the actions α, β and γ of G on A, B and C are continuous inverse limit actions and apply Theorem 2.6.

REFERENCES

- 1. D. Bakic and B. Guljas, On a class of module maps of Hilbert C*-modules, Math. Comm. 7 (2002), 177-192.
- **2.** L.G. Brown, P. Green and M.A. Rieffel, Stable isomorphism and strong Morita equivalence of C^* -algebras, Pacific J. Math. **71** (1977), 349–363.
- 3. F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. 49 (1984), 289-306.
- 4. M. Fragoulopoulou, *Topological algebras with involution*, North-Holland Math. Stud. **200**, Elsevier Science B.V., Amsterdam, 2005.
- 5. M. Joita, Morita equivalence for locally C*-algebras, Bull. London Math. Soc. 36 (2004), 802-810.
- 6. ——, On the linking algebra of a Hilbert module and strong Morita equivalence of locally C*-algebras, Surveys Math. Appl. 1 (2006), 23–32.
- 7. ——, Crossed products of locally C^* -algebras, Rocky Mountain J. Math. 37 (2007), 1623–1644.
- 8. ———, Crossed products of pro-C*-algebras and Morita equivalence, Mediterranean J. Math. 5 (2008), to appear.
- 9. N.C. Phillips, Inverse limits of C^* -algebras, J. Operator Theory, 19 (1988), 159–195.
- 10. ——, Representable K-theory for σ -C*-algebras, K-Theory 3 (1989), 441–478.
- 11. I. Raeburn and P.D. Williams, Morita equivalence and continuous-trace C^* -algebras, Math. Survey Mono. 60, American Mathematical Society, Providence, RI, 1998.

DEPARTMENT OF MATHEMATICS, FACULTY OF CHEMISTRY, UNIVERSITY OF BUCHAREST, BD. REGINA ELISABETA NR. 4-12, BUCHAREST, ROMANIA Email address: m_joita@yahoo.com, maria.joita@g.unibuc.ro