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ALTERNATING SUBSETS AND PERMUTATIONS
AUGUSTINE O. MUNAGI

ABSTRACT. We give new proofs of theorems on alternat-
ing subsets of integers by means of bijective transformations.
It is shown that all known results are consequences of a simple
result on the residue class of an integer. The notion of alter-
nating subset is extended to permutations of {1,2,... ,n}. In
particular, we obtain solutions to the problems of Terquem
and Skolem’s generalization for permutations.

1. Introduction. A finite, increasing, sequence of natural numbers
(z1,22,...) is called alternating [5] if it fulfills the condition

(1) z; Zxi—1 (mod 2), i> 1

The empty sequence and the 1-term sequence are also alternating
sequences by convention.

Such sequences are known as alternating subsets of integers (see for
example [1, 4, 10]). In particular, we recall the fundamental result [1,
2]:

The number h(n,k) of alternating k-subsets of {1,2,... ,n} is given
by

®) iy = (U5 ) 4 (),

where |N| denotes the greatest integer < N. It is known that
> ko h(n, k) = Fny3 — 2, where Fy is the Nth Fibonacci number.
We will adopt the notation [n] = {1,2,... ,n}.

We consider generalizations of (2) and show that practically all known
results are consequences of the following simple lemma on the residue
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class of an integer. Apart from simpler proofs of alternating subset
theorems, a novel contribution of this paper is the extension of the
alternating sequence concept to permutations of [n]. It turns out that
this lemma also plays a critical role in obtaining generalizations of the
permutations.

Lemma 1.1. Given positive integers n,m, m > 1, let ¢ be a fized
element of [m]. The cardinality of the set {c, m+c¢, 2m+c,...} C [n]
is given by [ (n+m —c)/m].

Proof. By Euclid’s algorithm n = mq+r, where ¢, r are integers, ¢ >
0,0 < r < m—1. Let the residue classes of m be V(1),V(2),...,V(m),
where V(c) = {e, m+¢,2m+¢,...} C [n], 1 < ¢ < m. Then the
cardinalities give a unique partition of n, n = |[V(1)| 4+ [V(2)| + --- +
|V (m)], such that |[V(c)|=q+1ifr > cand |V(c)|=¢qif r < c. But
[V(c)| = | (n+m —c)/m] since

] [rbmieee] L ner

m m m
{q+1 T,
B q r<ec. O

The classical problem of Terquem, according to Riordan [7, page 17,
Example 15], is to enumerate increasing k-combinations of [rn] with odd
elements in odd positions and even elements in even positions. This
was generalized by Skolem (see [6, pages 313-314]) as follows: find
the number of increasing k-combinations in which the jth element is
congruent to j modulo m, where m is a fixed modulus > 2.

Skolem’s generalization of the Terquem problem has attracted the
attention of several authors. Church and Gold [3] obtained a proof
by counting lattice paths in a rectangular array, while Abramson
and Moser [1] employed binary digits to prove a more general result.
Goulden and Jackson [4] rediscovered the result of Abramson and
Moser by means of generating functions.

In Section 2 we give a new proof of Skolem’s theorem which is then
used to obtain its own best-known generalization (Theorem 2.4).

In Section 3 we consider k-permutations of [n] in linear order satis-
fying the parity condition (1), to be called permutations with parity-
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alternating entries. We obtain the permutation analogue of (2) and
deduce an important specialization with a combinatorial application.
Section 4 deals with extensions of permutations with parity-alternating
entries, leading to a Skolem-type theorem for permutations (Theorem
4.1). Lastly, in Section 5 we obtain a generalization of the Skolem-type
theorem for permutations.

2. Alternating subsets. All results in this section rely on the
following proposition which is derived from Lemma 1.1. Note that m
represents a fixed integer > 1.

Proposition 2.1. Given an integer ¢ € [m], the number b(c,n, k, m)
of k-combinations, with repetitions allowed, of {c, m+c, 2m+ec,...} C
[n], is given by

(3) b(c, n, k,m) = <Ln+mT]”J>.

The recurrence relation is

b(e,n,k,m) =b(c,n,k —1,m) + b(c,n — m, k,m),
(4) kE>0,2<m<n,
b(c,n,0,m) =1, b(c,n,k,n) = 1.

Proof. Equation (3) follows at once from Lemma 1.1 and the formula
for the number of k-combinations of [n] with repetitions, namely
().

Letn=mqg+7r,¢g>0,0<r<m-1.Ifr>c,then0<r—c<m
and n =mg+c+ (r—c)orn— (r—c) =mg+ c. Similarly, if r < ¢,
then0 <m+r—c<mandn— (m+r—c) =m(g—1)+c Thus,
the greatest element of {c¢, m+¢, 2m+c¢,...} isn—s, where s =r —¢
or s = m + r — ¢ depending upon whether » > ¢ or not. This gives a
recurrence relation for b(c,n, k, m) according to whether n — s is or is
not selected:

b(c,n,k,m) =b(c,n — s,k —1,m)+b(c,n — s — m,k,m).

Since 0 < s < m, this relation agrees with (4). O
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An immediate consequence of Proposition 2.1 is the following general
theorem by Skolem. Note that Terquem’s problem is the case m = 2.

Theorem 2.2. The number f(n,k,m) of combinations (z1,... <)
of [n] which satisfy

(5) zj=j (modm), 1<j<Ek,
s given by

Ln+(M71)kJ
(6) ko) = (),

The following relation holds:

f(nakam):f(n_lak_lam)+f(n_makam)

(M) f(n,0,m) =1, f(n,k,n) =1

Proof. Let F(n,k,m) and B(e,N,k,m) denote the sets of objects
enumerated by f(n, k,m) and b(c, N, k, m), respectively, for a fixed ¢ €
[N]. We give a bijection ¢ between F(n, k,m) and B(1,n—k+1,k,m).
Let (z1,x2,... ,zr) € F(n,k,m), then

(8) ¢!($1,£L‘2,...,:Uk)}—>($1,332—1,...,a?k—k—l—l).

Clearly ¢((x1,22,...,7x)) € B(l,n —k + 1,k,m) and ¢! is readily
obtained.

For example, (1, 5,6, 13,17, 18,22, 29) € F(30, 8, 3) maps to (1,4, 4, 10,
13,13,16,22) C B(1,23,8,3). It follows from Proposition 2.1, with
¢ = 1 and replacing n by n — k+ 1 = r (mod m), that f(n,k,m) is
given by

f(nakam) :b(l)n7k+lakam)

The recurrence relation (7) is correspondingly deduced from (4). o
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A natural extension of Skolem’s theorem is the following corollary
which is a special case of the next, general theorem (Theorem 2.4),
which in turn happens to be a consequence of Theorem 2.2.

Corollary 2.3. Let ¢ be a fixzed element of [m]. The number

fe(n,k,m) of combinations (x1,... ,zx) of [n] which satisfy
(9) zij=j+c—1 (modm), 1<j<k,2<m<n,
s given by

LnchrlJr(mfl)kJ

(10) fetnkm) = (175,

Combinations satisfying (9) have the property that, when reduced
modulo m, each object gives a finite number of repetitions of the
sequence c,c+1,...,m,1,2,...,¢c— 1, of the first m residues followed
by the first ¢ residues in order, 0 <7 < m.

For example, an object enumerated by f5(50,11,4)is A = (7,8,13,18,
19,24, 25, 34,39, 40,45), and A mod 4 = (3,4,1,2,3,4,1,2,3,4,1).

Notice that h(n, k) (see equation (2)) is given by h(h, k) = fi(n, k,2)+
f2 (n, k, 2) .

The most general extension of Skolem’s theorem which is explicitly
known is the following result by Abramson and Moser [1]. Even though
Goulden and Jackson [4] discovered a generating function that properly
contains the same result, no further explicit generalization was stated.

Theorem 2.4 (Abramson and Moser). Given integers m;, 0 < m; <
m —1, j € [k], the number f(n,k,m | my,...,my) of combinations
(21,...,2k) of [n] which satisfy

z1 =1+ m; (mod m), zj =x;j—1+14+m; (mod m),

11
() L<j<k,

s given by

n+(m—1)k—(mi+-+myg) J>

(12) f(n,/’ﬁ,m|m1,...,mk)_(L 7};1
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Moreover,
f(nk,m |my,... ,mg)=f(n—1—mp,k—1,m|my,...,mg_1)
+ f(n—m,k,m | my,... ,mg).
f(n707m|m17"' 7mk):]-a
f(n,k,n|m1,... amk):]'

Proof. The condition (11) is equivalent to
(13) zj=j+mi+me+---+m; (modm), 1<j<k,

sincez; —zj_1 =G +mi+--+mi)— (G- +mi+--+mj_1) =
1+ mj, and conversely. Now each object (z1,...,zy) satisfying (13)
corresponds to a unique object enumerated by f(n —m; —mg — -+ —
myg, k,m) via the transformation

(X1,...,2k) — (1 — My, 1 — M1 — Ma,... , Tk — My — -+ — Mg).

Hence, f(n,k,m | my,...,mg) = f(n —my —mg — -+ — mg, k,m),
and the result follows from (6). The recurrence relation follows from
equation (7). o

Remark 2.5. We note some specializations of Theorem 2.4:

e The solution to Terquem’s problem is given by f(n,k,2|0,...,0).

e Skolem’s generalization (Theorem 2.2): f(n,k,m) = f(n,k,m |
0,...,0).

e Extension of Skolem’s theorem (Corollary 2.3): f.(n,k,m) =
f(n,k,m|c—1,0,...,0).

3. Permutations with parity-alternating entries. Let n
and k be positive integers, k < n. We consider the enumeration
of k-permutations of [n] with parity-alternating entries, that is, all
permutations (p1,p2,... ,pk) of [n] satisfying the condition

(14) Pi g'—épi—l (Il’lOd 2), 1> 1.

Let pa(n, k) denote the number of such permutations.
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It is assumed throughout that a product containing an undefined
factor is equal to zero.

Theorem 3.1.

(15)

Proof. By (14) each object (pi,...,pr) enumerated by pa(n,k)
admits a decomposition into two distinct sequences of elements with

the same parity, namely, p;,p3,... ,p, and pa,ps,... ,py, where p; €
{pz,py}, |z —y| € {0,1}. Since the relative sizes of elements are
immaterial, each object (p1, ... ,px) can be obtained by taking an - (or

respectively y-) permutation of {1,3,...} C [n] and a y- (or respectively
x-) permutation of {2,4,...} C [n], and combining the permutations
in a unique way. Hence, the number of such permutations for the p; of
fixed parity is given by the product of the number of z-permutations
of the subset of [n] containing elements with the parity of p; and the
number of y-permutations of the set of the remaining elements. Since
p1 is either even or odd the full enumeration can be expressed as

(16) pa(na k) = pa(na k)odd + pa(na k)evena

where the two summands denote the numbers of k-permutations in
which the first element is odd and even, respectively. Note that
pa(n, k)oad counts k-permutations of [n] with odd numbers in odd
positions and hence with even numbers in even positions. pa(n, k)even
is similarly interpreted. If we write O[n] and E[n] for the number
of odd and even numbers in [n], respectively, then the explicit result
corresponding to (16) is

pa(n, k) = p(O[n], O[k])p(E[n], E[k]) + p(E[n], O[K])p(O[n], E[K]),

where p(n, k) is the number of k-permutations of [n].
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Since O[n] = |(n+1)/2] and E[n] = |n/2], we obtain
patn ) = (1521 1552 ) (1510 15))

n, k+1 n+1l, k
(150151 15)):
The theorem follows upon applying the known formula p(n,k) =
n!/(n — k)L u]

(17)

Equation (15) simplifies to more specific results on fixing the parity
of n or k. In particular, the case n = k gives

Corollary 3.2. The number pa(n) of permutations of [n] with parity-
alternating entries is given by

2
pa(n) = 2((%) !> if n is even,

pa(n) = (n—2|—1>!(n;1>! if n is odd.

It is of interest that pa(n) solves a Traveling Salesman problem
described below. The combinatorial problem, due to David Singmaster,
appeared in Mathematics Magazine [8, pages 321-322] (also reported
in [9, A092186)):

Traveling Salesman: A salesman’s office is located on a straight
road. His n customers are all located along this road to the east
of the office, with the office of customer 7 at distance i from the
salesman’s office. The salesman must make a driving trip whereby
he leaves the office, visits each customer exactly once, then returns
to the office. Because he makes a profit on his mileage allowance,
the salesman wants to drive as far as possible during his trip.

Find the number of trips in which he covers the maximum dis-
tance.

Assume that if the travel plans call for the salesman to visit
customer j immediately after he visits customer ¢, then he drives
directly from i to j.
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A little reflection shows that this traveling salesman problem is solved
by pa(n).

Indeed since each customer’s location is to be visited exactly once,
and successive visitations of customers is allowed, a linear arrangement
of the n locations which gives the maximum distance corresponds
bijectively to a permutation with parity-alternating entries, provided
the salesman first visits the locations corresponding to entries with a
fixed parity and returns via the locations corresponding to entries of
the opposite parity. Thus, if n is odd, n = 2m + 1, the m + 1 locations
corresponding to odd entries can be visited in (m + 1)! orders, and
the remaining m locations can be visited in m! orders. Hence, the
required number of trips is (m 4 1)!m!. The enumeration is similar
when n is even, n = 2m, except that the entry corresponding to the first
location may be even or odd. Hence, there are 2(m!)? trips of maximum
distance. (Two, longer, solutions of the problem are presented in [8]).

In view of this connection, we conclude that Theorem 3.1 is related
to the solution of a more general form of Singmaster’s problem.

4. The Terquem problem for permutations. We consider
the permutation analogues of the problem of Terquem and Skolem’s
generalization which have been defined for subsets in Section 1.

The Terquem problem for permutations is then to find the number
of k-permutations of [n] such that odd elements are in odd positions
and even elements are in even positions. The solution may be deduced
from equations (15) and (16), and is given by

ESalbiL
(eSS ey
n>kifn#k (mod 2).

(18) pa(n, k)odd =

Lastly, we extend permutations with parity-alternating entries to all
moduli m > 2 by defining a Skolem-type generalization for permuta-
tions. Consider the problem of enumerating the class of permutations
(p1,p2,---) of [n] in which

(19) pj =37 (modm),

for a given integer m > 2.
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Denote the number of k-permutations of [n] satisfying (19) by
sk(n,k,m). Then, invoking Lemma 1.1, we state the general result
as follows.

Theorem 4.1. The number sk(n,k,m) of permutations (p1, ... ,pk)
of [n] which satisfy
pj=j (modm), 1<j<k,
s given by
nd e

(20) sk(n,k,m) = H

o (-5 DY

(Note that Equation (18) corresponds to the case m = 2.)

Proof. The proof is obtained by extending one half of the proof of
(15). By (19) each object (p1, ... , pr) enumerated by sk(n, k, m) can be
split into m distinct sequences of elements with the same parity, namely,
(pl;lerm, cee 7pm1)7 (p27p2+m7 ce apwz)v cee (pm;perm, cee 7pEm)7 where
Pk € {Peyy--- Pz, } and |z; — x| € {0,1,... , m—1},1 < i < m.
Thus, each object (p1,...,pr) can be formed by obtaining an x;-
permutation of the residue class V(i,n,m) C [n] of i modulo m, for
every ¢ € [m], and combining the m permutations in a unique way.
From Lemma 1.1, [V (i,n,m)| = [(n + m — i)/m|. Hence, the number
of such permutations is

([ e )
5([2][2])

where |
n!
]{; = —

In particular, the following result holds.
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Corollary 4.2. The number sk(n,m) of permutations (p1,... ,Pn)
of [n] which satisfy

pj=Jj (modm), 1<j<n,

s given by

(21) sk(n,m) = H |

5. A generalization of Theorem 4.1. In this section we extend
Theorem 4.1 by enumerating the permutations of [n] which fulfill the
parity condition

(22) pj=j+c—1 (modm).

As already noted immediately after Corollary 2.3, sequences fulfilling
(22) possess a nice underlying periodicity property when reduced mod-
ulo m.

Denote the number of permutations (ps, ... ,px) of [n] satisfying (22)
by sk.(n,k,m). Then an obvious special case is

ske(n,m,m) = sk(n,m,m),

since (p1,- .. ,Pm) is counted by sk(n, m,m) if and only if (p¢, Pet1, - - - »
DmsD1,D2, - -+ yDe—1) is counted by sk.(n,m,m).

The general formula is stated below.

Theorem 5.1. Let ¢ be a fized element of [m]. The number
ske(n, k,m) of permutations (p1, ... ,pr) of [n] which satisfy

pj=j+c—1 (modm), 1<j<k,2<m<n,

is given by

R (e NS

ﬁp({nijnl_sJ’erc;zl_sJ)’

where p(n, k) =n!/(n — k)!.
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(Note that skq(n, k,m) = sk(n,k,m) as expected).

Proof. Let P = (p1,...,pr) be an object counted by sk.(n,k,m),
and let V(¢c,n,m) C [n] denote the residue class of ¢ with v(¢,n,m) =
[V(e,n,m)| = [(n+m —c)/m]. Then the fixed allocation numbers of
the k positions in P is given by the vector A = (v(1, k, m),v(2,k, m),.. .,
v(m, k,m)), where v(1,k,m) + --- + v(m, k,m) = k. This means that
the residue class of ¢ can occur in P exactly v(1, k,m) times, that of c+1
can occur exactly v(2, k,m) times, and so forth. Thus, in particular,

ske(n,k,m) >0 < v(1,k,m) < v(c,n,m).

Therefore, to obtain sk.(n, k, m), we proceed as in the proof of Theorem
4.1, but associate V(c¢,n,m) with V(1,k, m) by taking the number of
v(1, k, m)-permutations of v(c,n,m) times the number of v(2,k,m)-
permutations of v(c + 1,n,m), and so forth. More precisely, we take
the product of p(By, A;) for 1 < ¢t < m, where A = (Ay,...,A,) is
defined above and B = (By,... ,B,,) is the vector defined by

B = (v(c,n,m),v(c+ 1,n,m),...,v(m,n,m),v(l,n,m),v(2,n,m),

.,v(e—1,n,m)).

Hence,
m—c+1
ske(n, k,m) = H p(v(e—14i,n,m),v(i, k,m))
i=1

c—1
Hp(v(s,n,m),v(mfc—i—l+5,k,m)). O
s=1

Remark 5.2. We are presently unable to obtain the permutation
analogue of Theorem 2.4. The interested reader is invited to take a
shot at this open question.
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