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FOURIER-FEYNMAN TRANSFORMS, CONVOLUTIONS
AND FIRST VARIATIONS ON THE SPACE OF ABSTRACT
WIENER SPACE VALUED CONTINUOUS FUNCTIONS

K.S. CHANG, B.S. KIM, T.S. SONG AND I. YOO

ABSTRACT. In this paper, we establish various relation-
ships among the Fourier-Feynman transform, convolution and
first variation of functionals in some Banach algebra, defined
on the space of abstract Wiener space valued continuous func-
tions, which corresponds to the Banach algebra defined on
classical Wiener space introduced by Cameron and Storvick.

1. Introduction. The concept of an L; analytic Fourier-Feynman
transform for functionals on classical Wiener space was introduced by
Brue [2]. In [3] Cameron and Storvick introduced an Lo analytic
Fourier-Feynman transform on classical Wiener space. In [14] John-
son and Skoug developed an L, analytic Fourier-Feynman transform
theory for 1 < p < 2 which extended the results in [2, 3] and gave
various relationships between the L; and the Ly theories. In [11, 12,
13], Huffman, Park and Skoug defined a convolution product for func-
tionals on classical Wiener space, and they showed that the analytic
Fourier-Feynman transform of convolution product is the product of
transforms. In [18], Park, Skoug and Storvick investigated various re-
lationships among the first variation, the Fourier-Feynman transform
and the convolution product for functionals on classical Wiener space
that belong to the Banach algebra S introduced by Cameron and Stor-
vick in [4]. Recently, Ahn, Chang, Kim, Song and Yoo studied the
Fourier-Feynman transform theory on abstract Wiener space [1, 7, 8,
9]. For a detailed survey of this topic, see [20].

Let (H, B, v) be an abstract Wiener space. Let Co(B) = Cy ([0, T, B)
denote the space of abstract Wiener space valued continuous functions
x(t) which are defined on [0,7] with 2(0) = 0. From [17] it follows
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that Cy(B) is a real separable Banach space with the norm

(1.1) lellcosy = sup [|lz(s)l|s

s€[0,T]
and the minimal o-algebra making the mapping x — z(s) measurable
consists of the Borel subsets of Cy(B). Moreover, the Brownian motion
in B induces a probability measure mp on (Cy(B), B(Co(B))) which is
mean-zero Gaussian.

The Feynman integration and Fourier-Feynman transform theory for
functionals defined on Cy(B) was studied in [5, 6, 19, 22]. In this pa-
per, we continue to study the Fourier-Feynman transform for function-
als defined on Cy(B). In particular, we investigate various relationships
involving two or three concepts of the Fourier-Feynman transform, the
convolution product and the first variation for functionals in the class
S, p and 8} which correspond to the classes S;; and §" of functionals
on classical Wiener space introduced by Cameron and Storvick [4].

2. Preliminaries. Let §= (s1,...,8,) be given with 0 = 59 < 81 <
-+ < 8, <T, and let Tz : B™ — B" be defined by

(2.1) Ty(zy,2a,...,2,) = (\/81 — S0T1,--- , Z \/ Sk — sk,lmk>.
k=1

Define a Borel measure pz on B(B") by us(E) = (x7v)(T; '(E)) for
every E € B(B™). Let Jz: Cy(B) — B™ be the function defined by

Jz(z) = (x(s1),2(s2), .- ,2(s,))-

For Borel subsets Ei, FE»,...,E, of B, JS:I(X?ZIEi) is called I-set
with respect to Fy, Es, ..., E,. Then the collection Z of all I-sets is a
semi-algebra. We define a set function mp on 7 by

mp(J7 (X[ Ei)) = ps(x o, E;).

Then mp is well defined and countably additive on Z. Using the
Carathéodory extension process, we have a Borel measure mp on

Co(B).

Now we introduce an integration formula which plays an important
role throughout this paper. This formula is easily obtained by the
change of variable theorem [19].
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Lemma 2.1. Let §= (s1,...,8n) be given with 0 = sp < 51 < -+ <
sp < T, and let f : B® — C be a Borel measurable function. Then

(2.2) /C(B)f(:c(sl),... 2(5n)) dms()

= /n(fng)(:vl,... , Zn) d(XTV) (21, ., Tn)

where by = we mean that if either side exists, then both sides exist and
they are equal.

A subset E of Cy(B) is said to be scale-invariant measurable provided
aF is measurable for each o > 0, and a scale-invariant measurable set
N is said to be scale-invariant null provided mp(aN) = 0 for each
a > 0. A property that holds except on a scale-invariant null set is said
to hold scale-invariant almost everywhere (s-a.e.). If two functionals F
and G are equal s-a.e., then we write F' ~ G.

Let C and C, denote respectively the complex numbers and the
complex numbers with positive real part.

Next we introduce the analytic Wiener integral and the analytic
Feynman integral over Cy(B). Let F be a C-valued measurable
functional on Cy(B) such that

(2.3) Je(z) = /C " Pz 2g) dmy(z)

exists as a finite number for all real z > 0. If there exists a function
J3 (%) analytic in C, such that J5(z) = Jp(z) for all z > 0, then
J3(z) is defined to be the analytic Wiener integral of F over Cy(B)
with parameter z, and for z € C; we write

anw

(2.4) / F(z) dmp () = Jp(2).
Co(B)

If the following limit exists for nonzero real g, then we call it the analytic

Feynman integral of F over Cy(B) with parameter g, and we write

anf, anw
(2.5) / F(z)dmg(z) = lm F(z)dmg(z)
Co(B) 7 1J 0o (B)

where z approaches —ig through C; .
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Notation 2.2. (i) For z € C; and y € Cy(B), let

(2.6) T.(F)(y) = /C (; F(z +y) dm(z).

(i) Let 1 < p < 00, and let G,, and G be scale-invariant measurable
functionals such that, for each o > 0,

(2.7) lim |Gn(az) — G(az) P dmp(z) =0

n—oo Co(B)
where 1/p+1/p’ = 1. Then we write

(2.8) Lim.G,~G

n—roo

and call G the scale-invariant limit in the mean of order p'. A similar
definition is understood when n is replaced by a continuously varying
parameter.

Now we also introduce the definitions of L,, analytic Fourier-Feynman
transform, convolution product and the first variation 6 F' for function-
als defined on Cy(B).

Definition 2.3. Let ¢ be a nonzero real number. For 1 < p < oo,

we define the L, analytic Fourier-Feynman transform Tq(p )(F ) of F on
Co(B) by the formula, z € C,,

(2.9) TP(F)(y) = 1.i.m. T.(F)(y),

z——1iq

whenever this limit exists. We define the L; analytic Fourier-Feynman
transform Tq(l)(F) of F by (€ Cy)

(2.10) T (F)(y) = lim T.(F)(y),

z——1q

for s-a.e. y € Cy(B), whenever this limit exists.
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Definition 2.4. Let I} and F, be functionals on Cy(B). For z € CY
and a nonzero real number ¢, we define their convolution product (if it
exists) by
(2.11) (F1x F2).(y)

S Fi((y +2) V) Fa((y — 2) /v2) dm(x) = € Cy

ot Fu((y + 2)/V2) Fa((y — 2)/v/2) dmp(z) 2 = —iq.

Definition 2.5. Let F be a measurable functional on Cy(B), and let
w € Cp(B). Then the first variation of F in the direction w is defined
(if it exists) by

(2.12) O0F (z|w) = %F(m + tw) o

We next introduce the classes S, p and Sp of analytic Feynman
integrable functionals on Cy(B) which correspond to the classes S/
and 8" introduced by Cameron and Storvick.

Let {e,} be a complete orthonormal system in H such that the e,s
are in B*, the dual of B. For each h € H and z € B, a stochastic inner
product (-,-)~ on H X B is defined by

(2.13) (hy2)™ = nh_{r;o ;%(h, ej)(x,e;) if the limit exists

0 otherwise,
where (-,-) denotes the natural dual pairing between B and B*. For
every h # 0in H, (h,-)” is a Gaussian random variable on B with mean
zero, variance |h|?. Also if both h and z are in H, then (h,2)~ = (h,z)
15, 16].

Let A, = {(s1,82,-.-,8,) €[0,T]" : 0 =859 < 81 < -+ < 8, < T}
Let M!" = M!"(A,, x H™) be the class of complex Borel measures on
A, x H", and let ||u|| = var p be the total variation of u € M.

Definition 2.6. Let S, 5 = S, p(An, x H") be the space of

functionals of the form
(2.14) F@) = [ e {i o als) } dus )
A, xH™" —

j=1
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for s-a.e. © € Co(B) where p € M. Here we take ||F||/} = inf{||x|}
where the infimum is taken over all us so that F' and p are related by
(2.14).

Let M" = M"(3>_ A, x H") be the class of sequences of measures
{pn} such that each p, € MJl and > 77 | ||pn]| < oco.

Definition 2.7. Let S} = SE(O_ A, x H™) be the space of
functionals of the form

(2.15)
F(z) =) Fu(x)

=S [ e {3 hals)) f duals R
n=1YAnxH" j=1
for s-a.e. z € Co(B) where each F,, € S}/ g and 377 | || Fy||;; < oo. The
norm of F is defined by ||F||” = inf{>" ", ||F,||’} where the infimum
is taken over all representation of F' given by (2.15).

Note that if n and k are positive integers then S ; C S, p-

And if F € S then ||F| > ||F|[2,, and [F(z)| < |[F||! for s-a.e.
z € Co(B). For completeness, we define Sy ; to be constant functionals
and define their norms to be their absolute values. For F € S}, the
series in (2.15) converges absolutely and uniformly over Cy(B). Also if
F € S}, then |F(z)| < ||F||" for s-a.e. € Cy(B). Moreover, we can
show that 8% is a Banach algebra with norm || - || which corresponds
to Theorem 4.1 in [4].

3. Fourier-Feynman transform and convolution. In this
section, we obtain some properties of Fourier-Feynman transform and
convolution product for functionals in S 5 and S%.

The following theorem is due to Chang, Cho, Song and Yoo [5].

Theorem 3.1. Let 1 < p < oo, and let g be a nonzero real number.
Let F' € S) p be given by (2.14). Then the L, analytic Fourier-

Feynman transform Tq(p )(F ) exists, belongs to S, p and is given by
the formula
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2q

10w = [ e {i o) - L VED )

j=1

for s-a.e. y € Cy(B) where

n

2
(52) VER) =3 (550 Yoml |
j=1
Moreover, if F € S} is given by (2.15), then the L, analytic Fourier-

Feynman transform Tq(p)(F) also exists, belongs to S and is given by
the formula

> h
1=j

(3-3) TP (F)(y) = Y TP (Fa)(y)
n=1
for s-a.e. y € Cy(B).
Remark 3.2. We adopt the convention 1/+oco = 0 throughout this
paper. Thus, if ¢ = 00 and F belongs to S;{’B or Sp, then we mean

TP (F) to be F itself.

By Theorem 3.1 and Remark 3.2, we can extend Theorems 3.3 and
3.7 in [5] as follows.

Theorem 3.3. Let 1 < p < oo, and let q1,q2 be nonzero extended
real numbers. Let F belongs to S, p or Sp. Then

(34) TP (13 () ~ 17 (F)
where q is an extended real number satisfying 1/q1 +1/q2 = 1/q.

If ¢ = —¢o in (3.4), then we obtain the following inverse transform
theorem for a functional F' in S} 5 or Sp.
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(3.5) T® (TP (F)) ~ F

for any nonzero extended real number q.

Let § = (s1,...,8,) with 0 = sp < 81 < -+ < 8, < T and
= (t1y--- ytm) With 0 =1t < t; < -++ < t,, < T. For any nonnegative
integers my,... ,Mpy1 With m =mq 4+ -+ +mpy1, let
(3.6)

Ay smnys = EE AR 1 0=t <t1 <+ <ty < 81 < byt

<...

< tm1+---+mn < s, < tm1+---+mn+1 < e <y, < T},

and foru=1,... ,n+1, let

(3.7)
by o tmy 1 +1 — Su—1 v=1
Ay, = tm1+---+mu,1+v - tm1+---+mu,1+v71 vV=2,3,... , My
Su — tm1+---+mu V= My + 1.

Our next theorem gives a formula for the convolution product of
Fourier-Feynman transforms of functionals in S, p and Sy, 5.

Theorem 3.4. Let F' € S]] p be given by (2.14), and let G € S,
be given by

39 o= [ e (i Wel) i@

for s-a.e. x € Cy(B) wheren € M. Let 1 < p < oo, and let q1,q2 be
nonzero extended real numbers. Then, for all nonzero real number gq,

the convolution product (Tq(f’)(F) * Tq(zp) (@))q exists and is given by the
formula

(3.9) (TP(F) * T®(G))q(
7; - -
— > exp{ —=W(y; 5, h;t, k)
/Aan m1+ FMng1= m/m'"l"" mpgr XH™ {\/5

—gw h) —
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for s-a.e. y € Cy(B) where

(310) WS ELR) = D (hu(s)” + (ki u(t),

R(gaﬁafa];) = Zzau,v Zhg - Z K
u=1v=1 j=u l=mqy_1+v
n n m 2
(3.11) +Y Cumei1| D hi— Y. ki
u=1 j=u l=m,+1
Myl m 2
+ Z An+1,0 Z kl ’
v=1 l=mi1+-+mnp+v

and V (3, l_{), V(t, E) are given by (3.2) with corresponding vectors (3, i_i)
and (t, E), respectively.

Proof. Because of Theorem 3.1 and Remark 3.2, it is enough to show

that
mitetmap1=m /Am;ml gy XHT

(3.12) (FxG)) = |
R(3, k58, K) b dn(@, ) da(5, F)

ApxH™
exp { =W (y 5 RidF) -

V2 4q
for s-a.e. y € Cy(B). By (2.14), (3.6) and the Fubini theorem, we have
for all z > 0 and s-a.e. y € Cy(B),

(F* Q) (y)

g A A

mi+-t+mpp1=m MMy, Myt

7 = = PR —
exp W (x; 8, h;t,—k) ¢ dmp(z) dn(t, k) du(s, h).
/CO(B) {\/2z }

Using the integration formula (2.2) and relabeling s; = sjo =
85— 1,m;+1s tmyt-tm;+rt = Sjt, Bj = hjo0, kmytoopm;+1 = kji, we ob-
tain

i Y -
expy —W/(x; s, h;t,—k) p dmp(x
L el )} dms (z)
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i n J my+1
= eXP{—/—[Z(ha‘,o,z > VouaTu1)”
/Bn+m 2z j=1 u=1 v=1
no Mj+1 J mu+1
DI TTS 3 SIC D Sl
7j=0 [=1 u=1 v=1
d(X;hLm )(37071,... 7$"7mn+1)

where oy, = Sy—1,0 — Su—1,0—1. Evaluating the last Wiener integral
and restoring the indices to the original ones, we see that it is equal to

1 s
exp{ — ER(é', h;t, )}

Hence,

(F*G»(y):/Aann 3 /A

mi+-t+mpp1=m

i g
exp {EW(y; 8 h;t k) —
But the last expression above is analytic in z € C, and is bounded
continuous in z € C7 since p and 7 are finite Borel measures. Hence

(F * G)y(y) exists and is given by (3.12) for s-a.e. y € Cy(B) and this
completes the proof. a

Our next theorem shows that Fourier-Feynman transform of convo-
lution product is the product of the Fourier-Feynman transforms of
functionals in S]] 5 and S}, p.

Theorem 3.5. Let F,G,p,q1 and q2 be given as in Theorem 3.4.
Then, for all nonzero real numbers q,

313) TP (F) 1P @l = 1) ()10 (L)

for s-a.e. y € Co(B), where q; are nonzero extended real numbers
satisfying (1/q) + (1/q;) = 1/q; for i =1,2.
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Proof. Using expression (3.9) and the Fubini theorem, it is easy to
see that for z > 0 and s-a.e. y € Cy(B),

T.(TP (F) * T(G))q(y)

1 - o - T oo 1 o o
exp{ W (y; 5, E8) — —V(5,]) — ——V(E,k) — R, I T k
xp{ﬁ@ >2q1<>2q2<>4q< )}
i L Lo .
exp s —W(x; 8, h;t, k) p dmp(z) dn(t, k) du(s, h)

/Co(B) {\/QZ }

Comparing the Wiener integral in the last expression with the Wiener
integral in the proof of Theorem 3.4 (—k is replaced with &k in this
proof), we know that

T.(TP(F) « TP (G))a(y)

—~

- —R(s h;t,—k)}d (T, k) du(3, 7).

But the last expression above is analytic in z € C, and is bounded
continuous in z € C7 since p and 7 are finite Borel measures. Moreover,
a direct calculation shows that

-

(3.14) R(3, ks T, k) + R(8, iy t, —k) = 2]V (5, k) + V(£ k).

Hence, we have

(3.15) TW/(TP(F) x TP(G)),

S S [——

mi+--F+mpp1=m Amimy ..,

7 g 7 . = -

exp { =W (y; 5,33, F) - 2 VE h)—gw k)}dn( k) dp(3, h)
1 2

and, by Theorem 3.1, it is equal to the righthand side of (3.13). |
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Now we obtain a version of Parseval’s identity for functionals in S}/ 5
" ’
and Sy,

Theorem 3.6. Let F,G,p,q1 and g2 be given as in Theorem 3.4.
Then the following Parseval’s identity

(3.16) TE/(TP/(TWP(F) « TP(G))4)(0)
=T (@2 () (5) TP @) (- 75))©

holds for all nonzero real numbers q.

Proof. Having the proofs of Theorems 3.4 and 3.5 in mind, the proof
of this theorem is not difficult. Taking the Fourier-Feynman transform
of the expression in (3.15) yields the formula (the procedure is the same
as the proof of Theorem 3.5 except ¢ is replaced by —q)

[P SR NS

mi+--F+mpp1=m Amimy, ..,

- 7

i e - . "
exp{—EV(s,h)—@V( R+ R(sht —F)} dn(E, F) du(3, B).

But by relationship (3.14), the above expression is equal to

(3.17) / /
A, xH™ Amimy,...

mi+-+mpr1=m sy XH™
i - Lo o - .
ex ——V§,h——Vtk——R§htk dn(t, k) du(3, h).
p{ = 5 VER) = o VER) = LRERED ol B du(s. )

On the other hand, by Theorem 3.1,

T (F)(75) T2 (- %> - /A H/A o

V(& h)- e S VB dn(E,F) du(3, R).

i L
—W(y; 8, h;t,—k)—
( ) 2q1

ex
o
By taking the Fourier-Feynman transform of the above expression, it is
easy to see that the righthand side of (3.16) is also expressed as (3.17)
and this completes the proof. O



WIENER SPACE VALUED CONTINUOUS FUNCTIONS 801

From now on, we extend the results in Theorems 3.4, 3.5 and 3.6 to
the functionals in Sp.

Theorem 3.7. Let F € S} be given by (2.15), and let G € S% be
given by

(3.18)
=3 Gula Z /mme exp {i (ks (7)™ } din (£ F)

m=1

for s-a.e. z € Cy(B). Let 1 < p < oo, and let q1, g2 be nonzero extended
real numbers. Then, for all nonzero real numbers q, the convolution

product (Tq(f) (F) * Tq(f) (@))q exists and is given by the formula

(3.19) (TP (F) = TP( Z Y. (TP (F)*TE (Gm))a(y)

r=0 n+m=r

for s-a.e. y € Cy(B). Of course, the above series can be expressed
explicitly using (3.9).

Proof. Using the dominated convergence theorem, we have for z > 0

TPE) P TP@)W =Y Y TP (E) TP (C)-0).

r=0n+m=r

But the last series above converges uniformly in z € C7 since
Yoo i llpnll < o0 and Y °_ |Imm|| < oo. Hence, the series is ana-
lytic in z € C4 and is bounded continuous in z € C7. Hence, the
convolution product exists is given by the series in (3.19). O

Theorem 3.8. Let F', G, p, 1 and g2 be given as in Theorem 3.7.
Then for all nonzero real numbers q,

(3:20) TP(TP (F) « TE(G))g(y) = T (F) (%)T;f)(G) <\/i§>

for s-a.e. y € Co(B), where the g are nonzero extended real numbers
satisfying (1/q) + (1/q;) = (l/qj) fori=1,2.
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Proof. By the dominated convergence theorem, we have for z > 0

T.(TP(F) = TG Z Y TATP(F) * TP (Gm))a(v).

r=0n+m=r

But, by the same method as in the proof of Theorem 3.7, the series in
the last expression is analytic in z € C and is bounded continuous in
z € C7. Hence,

LI T (@)alw) = >0 >0 TP (I (Fa) ¥ T (Gm))aw)-
r=0n+m=r
Finally, using Theorems 3.5 and 3.1, we obtain (3.20). o

The proof of the following Parseval’s identity for functionals in S% is
quite similar to that of Theorem 3.8 and so we will not give it here.

Theorem 3.9. Let F, G, p, ¢1 and g2 be given as in Theorem 3.4.
Then the following Parseval’s identity

(3.21) TUUTP (TP (F) «TE(G)))(0)
=T (@@ () (5) TP @) (- 75)) O
holds for all nonzero real numbers q.

4. First variation. In this section we establish various relationships
and expressions involving two or three concepts of the Fourier-Feynman
transform, the convolution product and the first variation of functionals
in S, p and Sp. We begin with a formula for the first variation of
functionals in S]] 5.

Theorem 4.1. Let F € S, p be given by (2.14) with

/ \/—|h|d|,u|(§' h) < oo forallj=1,.
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Let 1 < p < o0, and let g be a nonzero extended real number. Then for
s-a.e. w € Cy(B) the first variation SF (y|w) exists, belongs to S, p as
a function of y and is given by the formula

i(fj(hj,w(snr)

exp {1 Y2 (g, (53))" = 5-VIER) pdu(s. )

j=1

(@1 ST (F)plw) - [

A, xH™

for s-a.e. y € Cy(B).

Proof. Using (3.1) we have for s-a.e. w € Cyp(B)

st = ([ e i)

Jj=1

+ iti(hjaw(sj))N - 2%‘/(5’ ﬁ)} du(s, ﬁ)> ‘

t=0

s-a.e. y € Co(B). Then we obtain the expression (4.1) provided we can
Justify interchanging the differentiation and the integral sign. To do
this, we have to show that [ .. 220, (hy,w(s;))~|du|(8h) < oo
for s-a.e. w € Cy(B). But this can be easily obtained by the fact that

v/Cjo(B) n/An xXH™

S (g ()™ | il (3, ) dms (w)

9 1/2 n/ .
<al-— s;lhji|d|pl(s,h) < oo
(2) X[, vemiaueh

for all @ > 0. Finally we can rewrite
ST E) o) = [ exp {i D2 (hy vl } i

ApxH™ j=1

s-a.e. y € Cy(B) where [ is the measure in M.’ defined by
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A(E) = /E i(i(hj,w(sj)r) exp{—%wsﬁﬁ)}du(aﬁ),

j=1

and this completes the proof. u]

In Theorem 4.2, we fix w € Cy(B) and consider 5Tq(p) (F)(ylw) as a
function of y, while in Theorem 4.3, we fix y € Cy(B) and consider

(5Tq(p) (F)(y|lw) as a function of w.

Theorem 4.2. Let F' and p be given as in Theorem 4.1, and let q;
and qo be nonzero extended real numbers. Then for s-a.e. w € Cy(B),

(4.2) TP (ST (F)(Jw)(y) = ST (TP (F)(ylw) = 6T (F)(y|w)

for s-a.e. y € Co(B), where q is a nonzero extended real number
satisfying (1/q1) + (1/g2) = (1/q).

Proof. By Theorem 3.3, the second equality is obvious. Applying
Theorems 3.1 and 4.1 in succession to the expression (3.1), we obtain

TP (ST (F)(|w)(y)

q2

which is equal to 6T.") (F)(yw) by Theorem 4.1. o

Theorem 4.3. Let F, p, q1 and g be given as in Theorem 4.2. Then
for s-a.e. y € Cy(B),

(4.3) TP (6T (F)(y])) (w) = 6TF (F)(ylw)

for s-a.e. w € Cy(B).
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Proof. Using Theorem 4.1, we have for all z > 0 and s-a.e. y € Cy(B),

T. (0T (F)(y|-)) (w)

A e

Jj=1

exp{ Z(hj,y(s])) _ v ﬁ)}de(m) du(3, R).

= 292

Fubini’s theorem and the fact fCo(B)(hj’ z(s;))~ dmp(z) = 0 enable us
to conclude that

T (5T (F) (y]-)) (w) = /

]:1
R SR L7
exp {z Z(hj, y(s;))~ — 2—q2V(s, h)} du(s, h),
j=1
and hence the proof is complete. ]

From now on, we examine some relationships involving all of the
concepts of the Fourier-Feynman transform, the convolution product
and the first variation of functionals in S}, p

Theorem 4.4. Let F and G be given as in Theorem 3.4 with
corresponding measures p and 1, where p and n satisfy the con-
ditions fAann \/§|hj|d|u\(§,ﬁ) < oo for all j = 1,...,n and
S, scim VGlkildn|( k) < oo for all 5 = 1,...,m. Let p,q; and
q2 be given as in Theorem 4.3, and let q be any nonzero real number.
Then for s-a.e. y,w € Co(B),

(4.4) ST (F) * TP (G))q(ylw)

q1

1 - oo
= —W(w; 8, h; t, k)
/Aan Z /mm1 ,anrlem \/5

myi+-tmpp1=m oo

exp{ ‘ W (y; 3, ﬁ,f,E) — _V(g’, h)y — —V( 7E)
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Proof. The proof is similar to that of Theorem 4.1. A key point is to
justify interchanging the differentiation and the integral sign. But this
can be done because

[ s D d @) 5.
A, XxH™ JA, xH™

<Y [ il
j=1 A, XxH™

Y [V dnlER) < o0
j=1 Ay x H™

where ||| and ||n|| denote the total variation of u and 7, respectively. O

In the next two theorems, we obtain the convolution product with
respect to the first and second argument of the first variation. Theo-
rem 4.5 is easily obtained by applying Theorem 3.4 to expression (4.1)
for F' and G.

Theorem 4.5. Let F', G, p, q1, g2 and q be given as in Theorem 4.4.
Then for s-a.e. wy,wy € Co(B),

(4.5)
(6T (F)(-|wr) # 6T (G)(-|ws))g(y)

:_/Aan Z / xH™

mi+-tmpp1=m mml,... 'm,n+1
3 Z(k],wuj)r] exp {—W<y, 5 E)
|:]—1 :| |:31 \/—
? T l ndi e l gl R - = —
— —V(8§,h) — —V(t,k) — —R(3, h; t, k) ¢ dn(t, k) du(3, h
e V) = 5 VER) ~ LRGSR b aolE F) du(s.F)

for s-a.e. y € Cy(B).
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Theorem 4.6. Let F', G, p, q1, g2 and q be given as in Theorem 4.4.
Then for s-a.e. y € Cy(B),

(4.6) (6T (F)(yl) * ST (G)(yl))g(w)

1 n m ~ ~
ST A R % > URTON RS

for s-a.e. w € Cy(B).

Proof. Using Theorem 4.1, we have for z > 0 and for s-a.e. y € Cy(B),

(ST (F)(yl-) * 612 (G) (y]))=(w)

Lo |
2 Co(B) JA,xH™ J A, xH™

< ‘jl(hjaw(sj) + z1/2x(sj))~> (i(kj,w(tj) _ Zl/Za:(sj))N>

J

for s-a.e. w € Cp(B). Evaluating the above Wiener integral using the
facts that

[ satspydma(@) =0, [ (h,0())" dms() =0
Co(B) Co(B)
and

/ (hys2(57))™ (ks (1)) dms () = min{s;, i} (hy, ),
Co(B)

we obtain the expressions in the righthand side of (4.6). Since it is
independent of the variable z, it has an analytic extension to z € C,,
and, letting z — —iq, we complete the proof. ]
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In the following two theorems, we obtain the Fourier-Feynman trans-
form of §(TF) (F) TP (G)), with respect to the first and second ar-
gument of the variation.

Theorem 4.7. Let F', G, p, q1, g2 and q be given as in Theorem 4.4.
Then for s-a.e. y € Cy(B),

(p) Y (p) y | w
+1P(F) (L )or? (G —‘—)
2o )= o (s
for s-a.e. y € Co(B), where q; are nonzero extended real mumbers
satisfying (1/q) + (1/q;) = (1/q;) for j =1,2.

Proof. Using Theorem 3.5, we obtain the second equality. Taking
the Fourier-Feynman transform, with respect to the first argument
of the variation, of the expression in equation (4.4) shows that the
first expression in (4.7) is given by (the proof is similar to that of
Theorem 3.5)

i L
L W(w; 3, kTR
/Aan" m1+---+mn+1_m/Am my,...,mp g XH™ \/5
i 7 o= 7 ’l - Z - = - = -
exp s —=W(y: 5, LB — ——V (5, 1) — ——V(ER) L dn(T. F) du(5, ).
p{ S WA TER) — 5L V)~ o VER) | an(E ) du(s

Now, by Theorems 3.1 and 4.1, the last expression is equal to the third
expression in (4.7). O

Theorem 4.8. Let F', G, p, q1, g2 and q be given as in Theorem 4.4.
Then for s-a.e. y € Cy(B)

(4.8) TP (S(TP (F)+ T (G))g(y]) (w) = S(IP (F)*TE (G))q(ylw)

for s-a.e. w € Cy(B).
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Proof. By the same methods as in the proof of Theorem 4.3, (4.8) is
obtained. o

Theorem 4.9. Let F, G, p, q1, g2 and q be given as in Theorem 4.4.
Then for s-a.e. wy,wq € Co(B)

(4.9) (T (GTL (P ) + 0T (@) 102))0) (1)
= TP TP (F) () (%) T 6T(6) ) (2 )

=P () @ ()

for s-a.e. y € Co(B), where ¢; are nonzero extended real numbers

satisfying (1/q) + (1/q;) = (1/q;) for j =1,2.

Proof. The first equality is obtained by Theorem 3.6 and the second
equality is obtained by Theorem 4.2. u]

Next we extend the results in Theorems 4.1 through 4.9 to the
functionals in S;. We give four series expressions ((4.11), (4.15), (4.16),
(4.17)) and five relationships ((4.12), (4.13) and the three relationships
in Theorem 4.13). Again, each of the four series expressions can be
expressed explicitly using the expressions (4.1), (4.4), (4.5) and (4.6),
respectively.

Theorem 4.10. Let F € S, be given by (2.15) with

(4.10) Z/A » (th ) ol 5.7 <

j=1

Let 1 < p < o0, and let g be a nonzero extended real number. Then for
s-a.e. w € Cy(B) the first variation §F(y|w) ezists, belongs to S as a
function of y and is given by the formula

(4.11) (5Tq(p ) (y|lw) = Z §T(p) ) (y|w)

for s-a.e. y € Cy(B).
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Proof. Note that

ST (F)(y <g (T{P(F, yw)>

Hence we obtain (4.11) provided we pass the differentiation under the
infinite summation. But this can be justified by (4.10). O

t=0

The proofs of Theorems 4.11 through 4.13 are similar to that of
Theorem 4.10 and so we will not give those here. For example, to
prove Theorems 4.11 and 4.13, first justify to pass the integration or
the differentiation under the infinite summation, and in the next step
use the relationships (4.2), (4.3), (4.7), (4.8) and (4.9).

Theorem 4.11. Let F and p be given as in Theorem 4.10, and
let g1 and q2 be nonzero extended real numbers. Then, for s-a.e.
Yy, w € CO (B);

(4.12)
TP (ST (F)(-|w)) (y) = ST (TP (F)) (ylw) = 6T (F)(y|w),

(4.13) TP (6T (F)(y])) (w) = 6TF (F) (ylw)

where q is a nonzero extended real number satisfying (1/q1) + (1/q2) =

(1/q).

Theorem 4.12. Let F and G be given as in Theorem 3.4 with
corresponding measures p, in Ml and n,, in Ml where u, satisfies
(4.10) and n, satisfies

(414) z/A . (ka ) il <

j=1

Let p,q1 and g2 be given as in Theorem 4.11, and let q be any nonzero
real number. Then for s-a.e. y, w,wy,wy € Cy(B),

(4.15)  8(T{P(F) + TE(G))q(ylw)

—Z Y TP (Fo) * TP (Gim))g(ylw),

r=0n+m=r



WIENER SPACE VALUED CONTINUOUS FUNCTIONS 811

(4.16)  (OT{P (F)(-Jwr) * ST (G)(|wz))q(y)

and

(4.17)  (OTP (F)(yl-) * STP (G) (yl))g(w)
—Z 7 @TE(F)(yl) # 5T (G) (")) g(w).

r=0 n+m=r

Theorem 4.13. Let F, G, p, q1, q2 and q be given as in Theo-
rem 4.11. Then for s-a.e. y,w,wi,ws € Cy(B), relationships (4.7),
(4.8) and (4.9) hold.
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