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ABSTRACT. Let R be a commutative integral domain, let
* be a semistar operation of finite type on R, and let I be
a quasi-x-ideal of R. We show that, if every minimal prime
ideal of I is the radical of a x-finite ideal, then the set Min (1)
of minimal prime ideals over I is finite.

1. Introduction. In [12, Theorem 88|, Kaplansky proved that:
Let R be a commutative ring satisfying the ascending chain condition
(a.c.c. for short) on radical ideals, and let I be an ideal of R. Then
there are only a finite number of prime ideals minimal over I.

This result was generalized in [9, Theorem 1.6] by showing that (see
also [1]): Let R be a commutative ring with identity, and let I # R be
an ideal of R. If every prime ideal minimal over I is the radical of a
finitely generated ideal, then there are only finitely many prime ideals
minimal over I.

In 1994, Okabe and Matsuda [13] introduced the concept of semistar
operation to extend the notion of classical star operations as described
in [8, Section 32]. Star operations have been proven to be an essential
tool in multiplicative ideal theory, allowing one to study different classes
of integral domains. Semistar operations, thanks to a higher flexibility
than star operations, permit a finer study and new classifications of
special classes of integral domains.

Throughout this note let R be a commutative integral domain, with
identity, and let K be its quotient field.

The purpose of this note is to prove the semistar analogue of Ka-
plansky’s [12, Theorem 88| and Gilmer and Heinzer’s [9, Theorem 1.6]
results. More precisely we prove the following theorem.
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Theorem. Let x be a semistar operation of finite type on the integral
domain R, and let I be a quasi-x-ideal of R. If every minimal prime
ideal of I is the radical of a x-finite ideal, then I has finitely many
minimal prime ideals.

Now we recall some definitions and properties related to semistar
operations. Let F(R) denote the set of all nonzero R-submodules of
K, and let F(R) be the set of all nonzero fractional ideals of R, i.e.,
E € F(R) if E € F(R), and there exists a nonzero r € R with rE C R.
Let f(R) be the set of all nonzero finitely generated fractional ideals of
R. Then, obviously f(R) C F(R) C F(R). A semistar operation on R
is a map  : F(R) — F(R), E — E*, such that, for all z € K, x # 0,
and for all E, F € F(R), the following properties hold:

*1 (zE)* = ¢E*;

*o E C F implies that E* C F*;

x3 E C E* and B** := (E*)* = E*,
cf., for instance, [13]. Recall that, given a semistar operation x on R,
for all E, F € F(R), the following basic formulas follow easily from the
axioms:

(1) (EF)* = (E*F)* = (BEF*)* = (E*F*)%;

(2) (B + F)* = (B* + F)* = (E + F*)* = (E* + F*)",

(3) (ENF)* C B*NF* = (B* N F*)*, it ENF #0.
cf., for instance, [13, Proposition 5].

A (semi)star operation is a semistar operation that, when restricted
to F(R), is a star operation (in the sense of [8, Section 32]). It is easy
to see that a semistar operation x on R is a (semi)star operation if and
only if R* = R.

Let % be a semistar operation on the integral domain R. An ideal I
of R is called a quasi-x-ideal of R if I* N R = I. It is easy to see that,
for any ideal I of R, the ideal I* N R is a quasi-x-ideal. An ideal is
said to be a quasi-x-prime, if it is prime and a quasi-x-ideal. Let x be
a semistar operation, put E*f = UF* where the union taken over all
finitely generated F' C E, for every E € F(R). It is easy to see that
xy defines a semistar operation on R called the semistar operation of
finite type associated to . Note that there is the equality (x7); = *5. A
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semistar operation * is said to be of finite type if x = x¢; in particular,
xs is of finite type. An element E € F(R) is said to be %-finite if
E* = F* for some F € f(R). Note that if I is an ideal of R, then
I* is an ideal of the overring R* of R. Denote by x-Min (I) the set of
minimal quasi-x-prime ideals over I. So that when x = d is the identity
semistar operation, then d-Min (I) = Min (I). It can be seen that if [ is
an ideal of R, then x-Min (I) C Min (I*NR). Using [4, Lemma 2.3 (d)]
we have each minimal prime over a quasi-xs-ideal is a quasi-x¢-ideal.
Therefore, If I is a quasi-x¢-ideal, we have x¢-Min (I) = Min (7).

The most widely studied (semi)star operations on R have been the
identity dg, vg, and tg := (vg)s operations, where EVE := (E~1)~1
with E-! := (R : E) := {z € K|zE C R}. Our terminology and
notation come from [8].

2. Main result. Before proving the main result of this paper, we
need a lemma.

Lemma 2.1. Suppose that x is a semistar operation of finite
typf on the integral domain R, and that I is a quasi-x-ideal. Then
VI NR=+I, that is, VI is also a quasi-*-ideal of R.

Proof. Since VI C VI© N R, it is enough to show that VI'NR c VI.
Let z € VI NR. Then, for every P € Min (I), we have xR* C VI C
P*. Since P is a quasi-x-prime ideal of R by [4, Lemma 2.3 (d)], we
obtain that € P. Hence z € /I as desired. a

Remark 2.2. Suppose that x is a semistar operation of finite type on
the integral domain R, and that I is a quasi-x-ideal. Then v/ I* N R =
V1. Indeed, suppose that & € v/I* N R, then there is a positive
integer n such that ™ € I*. Since [ is a quasi-x-ideal, and z € R,
we obtain that " € I. Hence, z € vI. Consequently, we have
VI*NR C VT C VI*NR = +/T* N R, which gives us the desired
equality.

We next give the main result of this paper.
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Theorem 2.3. Let x be a semistar operation of finite type on the

integral domain R, and let I be a quasi-x-ideal of R. If every minimal
prime ideal of I is the radical of a %-finite ideal, then I has finitely

many minimal prime ideals.

Proof. Note that v/T is a radical quasi-x-ideal by Lemma 2.1. Hence
since we have Min (I) = Min (v/I), it is harmless to assume that I is a
radical quasi-x-ideal.

Let S = {P,--- P,| each P, is a prime ideal minimal over I'}. If for
some C' = P;---P, € S we have C* C I*, hence C C C*NR C
I*NR = I. Then any prime ideal minimal over I contains some
P;, so {Py,---,P,} is the set of minimal prime ideals of I. Hence
we may assume that C* ¢ I* for each C € S. Consider the set A
consisting of all radical quasi-x-ideals J of R containing I such that
C* ¢ J* for each C € S. Since I € A we have A # @. The
set A is partially ordered under inclusion C, and we show that it is
inductive under this ordering. Let {J4}acr be a chain in A. Put
J = UJ, so that J is a radical quasi-x-ideal of R containing I such
that J* = (UJ,)* = UJY, in which the second equality holds, since * is
a semistar operation of finite type. Now assume that C* C J* for some
C € S. Suppose that C = Py --- P, and that P; = +/L; for some -
finite ideal L; of R, for ¢« = 1,... ,n. Let F;s be finitely generated
ideals of R, such that L7 = F}, for ¢ = 1,...,n. Now consider
(Fy---F,)* = (Ly-+-Lyp)* C (Py---Py)* C UJ%, which implies that
Fy---F, C UJ,. Therefore there exists an index o € T" such that
Fy---F, C J, and hence (Ly---L,)* = (Fy---F,)* C J%. Thus
Li---L, C J,, and so we have P,---P, C /L -~ L, C /Jy = Ja.
Consequently (P; --- P,)* C JZ which is impossible. Now Zorn’s lemma
gives us a maximal element @) of A. One can actually assume that
Q@ # R. We show that Q is a prime ideal of R. To this end, let a, b be
two elements of R such that ab € @ and assume that a, b ¢ Q. Since

Q< (Q@+aR) C /(Q+aR)*NR, and 1/(Q + aR)* N R is a radical

quasi-*-ideal (by Lemma 2.1) containing I, there exists an element
Cy € S such that CT C /(J +aR)*N R". By the same reason there
exists again an element Cy € S such that C3 C /(Q+bR)*NR .
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Therefore we have

(C1Cy)* = (CTC3)* C Q+aR)*NR /(Q+bR)*NR)*

Q +aR)* N R\/(Q + bR)* N R)*

NN
R
+
Q
=

*
D
=
R
+
o™
=

*
D
=
~%

which is a contradiction. Therefore @ is a prime ideal of R. But, since
I C Q, it contains a prime ideal P minimal over I by [12, Theorem
10]. Thus P € S and P* C Q*, a contradiction. a

Defining different semistar operations, we can derive different corol-
laries.

Corollary 2.4 (Gilmer and Heinzer [9, Theorem 1.6] and Anderson
[1]). Let R be an integral domain, and let I be an ideal of R. If each
minimal prime of the ideal I is the radical of a finitely generated ideal,
then I has only finitely many minimal primes.

The following result proved recently by El Baghdadi and Gabelli
[6, Proposition 1.4] over PuMDs. They used the lattice isomorphism
between the lattice of ¢-ideals of R and the lattice of ideals of the t-
Nagata ring of R over PuMDs.

Corollary 2.5. Let I be a t-ideal of the integral domain R. If each
minimal prime ideal of I is the radical of a t-finite ideal, then Min (I)
18 finite.

Corollary 2.6. Suppose that R has a Noetherian overring S. If I is
an ideal of R such that IS N R = I, then Min (I) is finite.

Proof.  Define a semistar operation *, by E* = ES, for each
E € F(R). Thus I = ISNR = I*NR is a quasi-x-ideal of R. Note that
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* is a semistar operation of finite type. Let P € Min (I). Since S is a

Noetherian ring, we have P* = PS = (z1,...,2,)S = (21,... ,2,)",
for some elements x1,...,z, of P. This means that P is a x-finite
ideal. Now the result is clear from Theorem 2.3. ]

Recall that a semistar operations x on the integral domain R is called
stable, if (EN F)* = E* N F* for every E, F in F(R). Again recall
from the introduction that x-Min (I) is the set of quasi-x-prime ideals
minimal over I.

Lemma 2.7. Suppose that x is a semistar operation stable and of
finite type on the integral domain R, and that I is a nonzero ideal of R,
such that I* N R # R. Then %-Min (I) = Min(I* N R). In particular,

\/I_*HR: VI*ﬂR: ﬂPE*—Min(I)P-

Proof. One sees easily that x-Min (I) C Min (I* N R). For the reverse
inclusion, let P € Min (I* N R). So that I C I* N R C P. Choose
by [12, Theorem 10] a prime ideal @ minimal over I contained in P.
Note that @ is a quasi--ideal, since it is contained in P ([7, Corollary
3.9, Lemma 4.1, and Remark 4.5]). Then I* C @Q* C P* and so
ICIrNRCNR=Q C P NR =P. Thus Q = P, since P
is minimal over I* N R. ]

Corollary 2.8. Let x be a semistar operation stable and of finite
type on the integral domain R, and let I be a nonzero ideal of R, such
that I* N R # R. If every quasi-x-prime ideal minimal over I is the
radical of a x-finite ideal, then x-Min (I) is finite.

Proof. By the above lemma we have x-Min (I) = Min (I* N R). Thus
every prime ideal minimal over I* N R is the radical of a x-finite ideal.
Noting that I* N R is a quasi-x-ideal of R, and using Theorem 2.3, we
have x-Min (I) is a finite set. O

In [5, Section 3] the authors defined and studied the semistar Noethe-
rian domains, that is, domains having the ascending chain condition on
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quasi semistar ideals. In [14] Picozza generalizes several of the classical
results that hold in Noetherian domains to the case of semistar opera-
tions stable and of finite type, for instance, Cohen’s theorem, primary
decomposition, principal ideal theorem, Krull intersection theorem, etc.

Corollary 2.9 ([14, Proposition 2.4 (2)]). Suppose that % is a stable
semistar operation of finite type on the integral domain R, and that R
is a x-Noetherian domain. Then *-Min (I) is finite for every ideal I of
D.

Next we give equivalent conditions that every quasi-x-prime of R is
the radical of a x-finite ideal.

Proposition 2.10 Let x be a semistar operation of finite type on the
integral domain R, the following then are equivalent:

(1) Each quasi-*-prime is the radical of a x-finite ideal.
(2) Each radical quasi-x-ideal is the radical of a x-finite ideal.

(3) R satisfies the a.c.c. on radical quasi-x-ideals.
Proof. (1) = (2). Consider the following set.
A={I|I = VI,I = I*"NR, which is not the radical of a *-finite ideal}.

If A+# @, let 8 = {I,} be a chain of elements of A. Put I = UI,. Hence
I is a radical quasi-x-ideal of R such that I* = (UI,)* = UI%. Suppose
that I = /L for some x-finite ideal L. Let L* = F* for some F € f(R).
So that F* = L* C I* = UI} which implies that F' C UI,. Therefore,
there is an index « such that F' C I,. Consequently, L* = F* C I}
and hence L C I,. So we obtain that I, = v/L, which is impossible.
Hence, I € A. Thus by Zorn’s lemma A has a maximal element P. Let
a, b be two elements of R such that ab € P, and suppose that a, b ¢ P.
Since P ¢ (P +aR) C /(P+aR)*NR, and /(P+aR)*NR is a
radical quasi-+-ideal (by Lemma 2.1), we have /(P + aR)* N R = /L,
for some *-finite ideal. By the same reason /(P + bR)* N R = /N,
where IV is a x-finite ideal. The same proof as Theorem 2.3 shows that
P = /LN, which is impossible, since LN is a -finite ideal. Hence, P
is a quasi-x-prime, a contradiction. Hence, A = @.
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(2) = (3). Suppose that (I,)nen is an ascending chain of radical
quasi-x-ideals, and set I = Up,enI,. Then I is a radical quasi--ideal.
Hence I = v/L for some *-finite ideal L. So, there is an integer ng such
that I,,, = v/L = I. Hence (I,,),en is stationary.

(3) = (1). Suppose that (1) is false. Then we can construct a chain
(I )nen of radical quasi-x-ideals strictly ascending. Indeed, let P be a
quasi-x-prime ideal which is not the radical of a x-finite ideal. Set
I; = /(z), where 0 # z € P. Given I, = /(z1,...,2,)*NR,
where z1,...,x, € P, then [,,4; = \/(:cl,... » &y Tpt1)* N R, where
Tpi1 € P\In m]

Corollary 2.11 (Kaplansky [12, Theorem 88]). Suppose that * is
a semistar operation of finite type on the integral domain R. If R
satisfies the a.c.c. on radical quasi-x-ideals, then =-Min (I) is finite for
every ideal I of R.

Proof. Note x-Min (I) C Min (I* N R) and use Theorem 2.3. o

Remark 2.12. (1) One can prove Theorem 2.3 for arbitrary rings with
zero divisors. Let R be a commutative ring, with total quotient ring
T(R). Let F(R) denote the set of all R-submodules of T'(R). Suppose
an operation * : F(R) — F(R), E — E*, satisfies, for all E, F € F(R),
and for all z € T(R), the following:

x1 eE* C (zE)* and if z is regular, then zE* = (zE)*;
x9 F C F implies that £* C F’*;
x3 E C E* and E** := (E*)* = E*.
Then from these axioms the following directly follow:
(i) (EF)" = (E"F)" = (EF")" = (E"F")";
(i) (E+F)=(E*+F)" = (E+F*)*=(E*+ F*)*
(iil) (ENF)* CE*NF*=(E*NF*)*~.
It is clear that any semistar operation satisfies these axioms.

It is routine to see that [10, Lemma 3.3] the v-operation satisfies,
these axioms, where EV = (E~1)~! in which E~1 = (R: E) = {z €
T(R)|zE C R}, for E € F(R).
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By this operation Theorem 2.3 is true for rings with zero divisors.

(2) It is interesting to note that if we take R to be the ring of
all sequences from Z/2Z that are eventually constant, with pointwise
addition and multiplication, then R is a zero-dimensional Boolean ring
with minimal prime ideals P; = {{a,} € R|a; = 0} and Py, = {{a,} €
R|a,, = 0 for large n} and each P; is principal but P, is not finitely
generated. Thus, while R has infinitely many minimal prime ideals,
only one is not the radical of a finitely generated ideal.

In the rest of the paper we will define a class of rings, that satisfy the
a.c.c. on radical quasi-x-ideals.

Let R be a commutative ring. An ideal I of R is called an ideal of
strong finite type (SFT-ideal for short) if there exist a finitely generated
ideal J C I and a positive integer k such that a* € J for each a € I.
The ring R is called an SFT-ring if each ideal of R is an SFT-ideal.
These concepts were introduced by Arnold in [2]. The condition that
R is an SFT-ring plays a key role in computing the Krull dimension of
the power series ring R[[X]] over R. In [11], Kang and Park defined
and studied the * = ¢ analogue of SFT-rings. Now we define the more
general semistar-SFT-rings.

Let R be a domain and * a semistar operation on it. We define
a nonzero ideal I of R to be a x-SFT-ideal if there exist a finitely
generated ideal J C I and a positive integer k such that a® € J* for
each a € I*f. The ring R is said to be a x-SFT-ring if each nonzero
ideal of R is a x-SFT-ideal. Obvious examples of a *-SFT-ring are
*-Noetherian domains.

Proposition 2.13. Suppose that x is a semistar operation of finite
type on the integral domain R. If R is a x-SFT-ring, then R satisfies
the a.c.c. on radical quasi-x-ideals.

Proof. Let P be a quasi-x-prime ideal. Since P is a *-SFT-ideal,
there is a finitely generated subideal J C P such that v P* = v J*.
Now consider

P=vVP=vVPNnR=vVP*NR=VJ*NR=VJ*NR.

Since J*NR is an x-finite ideal, the result follows by Proposition 2.10. O
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Corollary 2.14. FEach quasi-x-ideal of a x-SFT-ring R, has only
finitely many minimal prime ideals.

We close the paper with the following characterization of x-SFT-rings.

Proposition 2.15 ([3, Proposition 2.2]). Suppose that * is a semistar
operation of finite type on the integral domain R. Then R is a x-SFT-
ring if and only if each quasi-x-prime ideal of R is a x-SFT-ideal.

Proof. Suppose that R is not a *-SFT-ring. Therefore the set
A={I|I =I"NR, and is not a *-SFT-ideal},

is not an empty set. The set A is partially ordered under inclusion,
and is inductive under this ordering. By Zorn’s lemma, A contains a
maximal element P. Assume that a1, as are two elements of R such that
ajaz € P and aj,as ¢ P. Since P G (P+a,R)*NR, (P+a;R)*NRis
a x-SFT-ideal of R. Consequently, there exist a finitely generated ideal
L; C (P+a;R)*NR, and a positive integer k; such that c* € (L;)* for
eachc € (P4+a;R)*. Let L = L1 Ly and k = ky+kz. Then L is a finitely
generated subideal of P such that c* = ck1ck2 € (L)*(L1)* C (L1L2)*,
for each ¢ € P*. Thus P is a x-SFT-ideal, a contradiction. Therefore,
P is a quasi-x-prime ideal which is not a x-SFT-ideal. u]

Acknowledgments. I would like to thank Professor Marco Fontana
for his useful comments on this paper.
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