ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 39, Number 1, 2009

GERM FIELDS FOR
HARMONIZABLE SYMMETRIC STABLE PROCESSES
WITH RATIONAL SPECTRAL DENSITIES

S. REZAKHAH AND A.R. SOLTANI

ABSTRACT. A Hilbert space technique to treat continu-
ous time complex-valued strongly harmonizable symmetric o
stable processes was developed in [9, 15]. In this work we ap-
ply the technique to prove that such a process {X(¢),t € R}

L]
will satisfy ZZ:O cnO" X (t) = Z(t), if its spectral density is

given by | Zi:o cn(i)\)"| 2. A germ field is introduced by
using the time domain constructed in the cited works. It is
also proved that the germ field for such a process with ratio-
nal spectral density is of finite dimension, generated by certain
derivatives of the process at zero, that will be introduced. The
process Z(t) is fully specified as well. This work is analogous
to that of [5] in the context of Gaussian processes.

1. Introduction. Suppose X = {X(t), t € R}, R the set of real
numbers; is a complex-valued continuous time strongly harmonizable
symmetric « stable process, SH(SaS)P. In this work we assume that
1 < a < 2. It is known that X (¢) is the Fourier transform of a complex-
valued SaS random measure with independent increments @,

(1.1) X(t) = /Oo e®(d)), teR.

— 00

The quantity f(X) = ||®(dN)||%/dA, where || - || is the Schilder’s norm,
defines the spectral density of the process, [3, 6, 13]. In this work we
assume that f(-) is a rational function. More precisely,

q()
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where ¢(-) and p(-) are polynomials of i\ with no common factors, the
degree (¢(+)) < degree (p(+)) and p(X) has no real root.

The customary time domain of a stable process {X(t), t € R}, not
necessarily harmonizable, is the closed linear span of {X(¢), t € R}
under || - ||o, denoted by (A, || - ||o). The space A is a Banach space
and consists of jointly complex-valued SaS random variables generated
by the process under the Schilder norm. For a harmonizable process,
it is possible to define an inner product and consequently provide
an alternative time domain, namely (S, (-,-)s), which is a Hilbert
space of jointly complex-valued SaS random variables generated by the
process. The inner product is given by the covariation, (X (¢), X (s))s =
[X (¢), X (s)]q; details are given below in Theorem 1.1. We have learned
from a referee that the covariation on the time domain 4 is an inner
product if and only if the process X is sub-Gaussian, [13, Proposition
2.9.3]. Therefore, the inner product given in Theorem 1.1 is not
induced by the covariation, as defined in the cited reference. As it
is demonstrated in Nikfar and Soltani [9, 10] and Soltani and Tarami
[15], (S, (-,-)s) can be used to apply classical Gaussian techniques for
the purpose of filtering and prediction. In this work we extend our
study to the class of SH(SaS)P with rational spectral densities. Let

SO+ — m ST with ST :@S{X(t) st < T3,
T>0

where 5p° denotes the closure of the span in the Hilbert space
(S, (-,)s). We call S°* the S-germ field of the process. Germ fields for
stationary processes and random fields have intensively been studied
by several authors, see [7] and references therein. To the best of our
knowledge, no other work has been produced on germ fields of stable
processes. There are, however, very few works on related issues, such
as the Markov property for stable processes, see [1, 8]. Our aim in this
article is to stimulate research work on germ fields of stable processes.
As this work indicates, a germ field characterization will lead to useful
structural characterizations for the process itself. The following are
furnished in this article.

(i) If the spectral density is rational, given by (1.2), then the S-germ
field will be of finite dimension, generated by certain derivatives of the
process at zero. Indeed, it is proved that, at each ¢, the process X (t)
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possesses certain finite derivatives that fall in the time domain S, as
well as in A.

(ii) If the spectral density f(\) = |ZZ:0 cn(iA)"|72 with real coef-

ficients ¢, then ZZ:O 0" X (t) = Z(t), t € R, where Z is a complex-
valued SH(SaS)P with orthogonal values in S.

These results are analogous to that of the celebrated work of Hida [3]
in the context of Gaussian processes. Interestingly, as convergence in
A is implied by convergence in S, the derived representations are also
valid in A.

The domain of integration, if not specified, is over the real line R, and
L2 stands for the classical space of absolute square integrable complex-
valued functions with respect to Lebesgue measure on R. The Hardy
space of absolute integrable complex-valued functions on R is denoted
by H2. For more on H? theory and its applications in second order
processes, see [4]. For covariation and more on stable random vectors
and processes, see [2].

The following theorem is brought from Soltani and Tarami [15]. It
provides a Hilbert space as a time domain for an SH(SaS)P.

Theorem 1.1. Let X = {X(t), t € R} be a purely nondeterministic
complez-valued SH(SaS)P given by (1.1). Then there is a Hilbert space
of jointly SaS complex-valued random variables, denoted by (S, (-,-)s),
for which the following are satisfied:

(i) S C A, as a point inclusion.

(ii) |Yla < C|Y||s, for every Y € S, where C is a constant

independent of Y.

(iii) fY € S, then Y = [gdM where g € L* and M(A) =
J41/h*d®, and h € H? is the outer function for which f = |h|?.

(iv) For Y1 =>", diX(t;) and Yo =37, b; X (s;),

(Y1,Ys)s = Zdlb;[X(tl)vX(Sj)]a
lL,j

= QWZdlb’;fv(Sj — tl),

L,j
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where f¥(t) = 1/2n [ f(u)e " du is the inverse Fourier transform
of f, where x stands for the complex conjugate and [-,-]o stands for

the covariation. Furthermore, if Y1 = [g1dM and Y = [godM,
(Y1,Y2)s = (91,92) g2

The following corollary follows immediately from Theorem 1.1 (iii).

Corollary 1.1. Let g, be a sequence in £*. Then g, — g in E*
if and only if Y,, = [ g dM — Y = [gdM in (S,(-,-)s), and only if
Y, =Y in A.

The outer function h € H? that satisfies f = |h|? is called the
outer factor of the density f in H2. The outer factor is unique up
to a multiplicative constant of absolute value one. Rational densities
(rational integrable functions on R) are intensively studied in [4, 12].
The construction of the outer factor of a rational density is given in
[12, page 44]. A deep insight to the rational spectral densities is given
in [4], from where the following facts, Lemmas 1.1-1.4, are recalled. In
this work we take the outer factor to be either

(13) h = pOPl,
b2

where pg, p1 and p- are polynomials of ¢\ with real coefficients, with no
common factors, of degrees ng, n; and d, ng+n; < ng = d, respectively,
and the roots of pg lie on the line and the roots of p; and p, lie in the
lower half plane; or

d
. \\n
(1.4) h= ’ with p(A) = g en(—iN)", [po=p1 =1, p2 =p].

n=0

Lemma 1.1. Let £ = span £* — closure {*h(\) : |t| < T} and
L0 = NpsoLT. Assume the function h is an outer rational function
given by (1.3). Then L% will be the class of polynomials of degree less
than d — ng —ny. Also, 0¥hY, 0 < k < d—ng —n, — 1, is a basis for
L0+,
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Lemma 1.2. Let D = (2w) Y/2p(id) be a real differentiable operator
of degree d, where the polynomial p(-) is given in (1.4). Also let
{en, 0 < n < d} be a basis for the solutions of D[l]| = 0 that satisfies

1 ifn=k<d

k _
9 e”(0+)_{0 ifn#k < d.

Then the solution of D[l] = g, with initial data 0"1(0+), 0 < n < d, is

Cd

d—1 t
I(t) = Z 0"1(0+)en(t) + i/0 eq—1(t — s)g(s) ds.

Lemma 1.3. Suppose that D and p are as given in Lemma 1.2 and
the outer factor h is given by (1.4). Then D[RV (t)] =0 for t > 0, and
O"hV(0+)=0,0<n<d—2, and 0¥ 1RV (0+) = 1/cq.

Lemma 1.4. Suppose the function h is given by (1.4). Then
hY = eq—1/cq, where {e,, 0 < n < d} is the basis given in Lemma 1.2.

Proof. Apply Lemmas 1.2 and 1.3 and note that g = 0.

We also need the following results from Soltani and Tarami [15]. For
feL? let f(u) = f_oooo f(t)ei* dt denote the Fourier transform of f.

Theorem 1.2. Let X = {X(¢),t € R} be a purely nondeterministic
SH(SaS)P. Then

(1.5) X(t):/t hY(t —s)dZ(s), teR,

in (S, (-, )s), and consequently in (A, || - ||), where for bounded Borel
sets A C R, Z(A) = [Ia(\)dM()). Furthermore, (Z(A),Z(B))s =
0, ANB = &, and §(X) = Si(AZ), t € R, where §(X) =
5p°{X(s), s <t} and S;(AZ)=5p°{Z(A) : A C(—0o0,t] and bounded}.

The process {Z(t), t € R} given in Theorem 1.2 is an S-orthogonal
SasS process for which || Z(t)—Z(s)||s = t—s, and it is the Fourier trans-
form of the SaS process with independent increments M (\). Although
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the process {Z(t), t € R} does not necessarily have independent values,
but, in studying harmonizable stable processes, it is a good substitute
for the noise process related to a stationary second order process. This
process will play a crucial role in the subsequent section.

2. The structure of the Germ field. In this section we will prove
that the Germ field S° is the finite-dimensional subspace generated
by the SaS random variables

*X(0):0<k<d—ng—ng—1,

whenever the outer factor is given by (1.3). Let us first prove that these
are well-defined stable random variables.

Lemma 2.1. Let {X(t), t € R} be a complex-valued SH(SaS)P with
a rational spectral density whose outer factor h is given by (1.3). Then
%X (0):0 < k <d—ng—ni—1 are well-defined jointly complez-valued
SaS random variables that generate the Germ field S°*.

Proof. Since the functions A*h()), 0 < k < d —ng—ny — 1 are in L2
by using the inequality

ine gy N (00" / 2V 2|t)‘\n
/[e dX kZ:o’“’ ] d)\‘ min CESE R(X) d),

t € R, we deduce from the dominated convergence theorem that

OFnY (t) = i* / MeetMp(N)dN, t >0,

and
O*nY(04) = i* / Neh(X) dA

in L2, Therefore, by Corollary 1.1,

X (t) =" / Areirp () dM,

OSde—no—nl—l,

(2.1)
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and
X (0+) =" / Mh(N) dM,

0<k<d—ng—ni—1.

To characterize S°F, first note that by Theorem 1.1 (iii), S°* is
isomorphic to £°F. Then apply Lemma 1.1. The proof is complete. O

The following theorem is an SH(Sa)P analogue of the fundamental
result of Hida [5], produced for real stationary Gaussian processes.

Theorem 2.1. Suppose {X (t), t € R} is an SH(SaS)P possessing
an even density function f for which f(\) = [p(A)| 72, p()\) is given in
(1.4). Then

(2.2) S " X (1) = Z(0),

where Z is the so-called generalized derivative of the SaS process Z
given in Theorem 1.2.

Proof. 1t follows from Theorem 1.2 that
t
X(t) = / RV (t - s)dZ(s)
0

:/oohv(ts)dZ(s)—i-/thv(tS)dZ(S)

0

0 ° t .
:/ hv(tfs)Z(s)ds—i—/O RY(t — s)Z(s)ds,

— 00

where Z(t) is an (-, -)s-orthogonal SaS process in S and we consider it
as the generalized derivative of the process Z(t). Now apply Lemma 1.4
to observe that

0 .
X(t) :/7 RV (t —s)Z(s)ds
+i ted—l(tfs)é(s) ds, teR,

cd Jo
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where {e,, 0 < n < d} is given in Lemma 1.2. Since by Lemma 1.3
D[hY] =0, it will follow from Lemma 1.2 that

0 . d—1
/ BY(t— 8)Z(s)ds = 3 "X (0)ent), tER.

The existence of 0" X (0) was established in the proof of Lemma 2.1.
Therefore,

d—1 t
1
X() =3 0" X(O)enlt) + —/ ca 1(t—s)Z(s)ds, teR,
n=0 €d Jo
giving the result.

Corollary 2.1. Suppose X (t) is an SH(SaS)P possessing an even
density function f for which f(A) = |(po(N)p1(N))/(p2(N))|?, where
po(A), p1(N), p2(A) are given in (1.3). Then

no+mni

(2.3) X(t)= Y b.0"Y(t), teR,
n=0

where Y1 b, (10)" = po(AN)p1(N) and Y (t) = [ e*1/(pa(N)) M (dN).

Proof. Observe that

no+ni 1

bn/ i) et —— M (dN),
n; (i) 2 (dX)
t € R.

X(t) = / ei“pio(p);)g)()\)M(d)\) -

Apply (2.1), with ngp = ny = 0 and d = ng, and (2.2) to arrive at (2.3).

3. Discussion and concluding remarks. The work of Hida [5]
was produced for real stationary Gaussian processes. For this reason
the spectral density was taken to be even, forcing h()\) = h(—)) and
hV to be real, h the complex conjugate of h. This assumption is not
restrictive, and the results of the previous section also will be true, if f
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is not even. This will be discussed in the next paragraph. In connection
with this work, the following distinguishes the harmonizable stable
processes from the stationary Gaussian processes. A real harmonizable
stable process is very naive. According to Rosinski [11, Proposition
5.2], if {X;, t € R} is a real harmonizable SaS process, then X; = Xy,
t € R. Thus, in contrast to the Gaussian processes, a harmonizable Sa:S
process with an even spectral density necessarily is complex. Indeed,
in (1.5), Y is real, but the process Z(t) is complex-valued, resulting in
X (t) being complex-valued.

By using the same technique as in Section 2, Theorem 1.2 can be
applied to do similar work as in Rozanov [12, pages 49-50] for a
harmonizable SaS process with a spectral density given by (1.2), giving

that
[ (g o]

_ /o:o {q(%)d)(ts)]é(s) ds, teR,

for any differentiable function of compact support ¢. Let us apply
(3.1) to derive (2.2), alternatively. Let ¢ = 1; then, choose a sequence
of infinitely differentiable functions with compact supports ¢, that
converges to the unit mass at 0. We know that ¢, — 1. Thus, since
f is bounded, it will follow from the dominated convergence theorem
that [*_|¢y(A) — 1|2 f(A)dA — 0, n — oo. This will allow us to pass
the limit through the integral signs in (3.1), arriving at (2.2).

(3.1)

The method presented in this article is based on the structure of the
outer factor of the spectral density and L2 convergence. This will make
the extension of the work to the cases of nonrational spectral density,
treated for stationary Gaussian processes, promising. The case that
the outer factor is the reciprocal of an entire function, discussed in [4,
page 128], can be worked out for harmonizable SaS processes.

Similar to the S-germ field, the A-germ field can be defined. Our
approach is only suitable for the time domain S. The germ field under
the Schilder norm is larger than the germ field under the L? norm. We
believe an approach different from the one presented here is needed to
characterize the germ field under the Schilder norm.

Acknowledgments. The authors are grateful to a referee for
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