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GLOBAL BEHAVIOR OF
A REACTION-DIFFUSION VOLTERRA EQUATION
WITH VARIABLE COEFFICIENTS

YONG-HONG FAN AND LIN-LIN WANG

ABSTRACT. By using the method of sub- and supersolu-
tions, the technique of monotone iteration and the Lyapunov
functional method, we investigated the permanent behavior
and global stability of a reaction-diffusion Volterra equation
with variable and constant coefficients.

1. Introduction. In [7] Volterra proposed a simple model to
describe the evolution of a single species population which has the form

(1.1) 7' (t) = z(t) <a — bx(t) — /Ot H(t— s)z(s) ds>, t>0.

This model describes the growth of a single species whose population
density at time ¢ is z(t). Here a and b are positive constants, the term
z(t)(a — bz(t)) stands for logistic growth and z(t) fot H(t — s)z(s)ds
means a hereditary effect, representing competition for resources, which
depends on the population’s history.

It is worth considering equation (1.1) with diffusion. We assume that
the population lives in a bounded domain 2 C R™ and that there is no
migration of individuals across the boundary 0f2; we further assume
that 09 is a C2-manifold.

Define the Laplace transformation f of f by

fy = [ et f(s)ds.
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In [9], Yamada studied global asymptotic stability of equation (1.1)
with diffusion

(1.2) u=Au+tula—bu—fxu), z€Q, t>0,
where

t
(1.3) fru= / f(t = s)u(z,s)ds,

0

and obtained the following theorem.

Theorem A. Let 5 = inf{Re f(in); n € R'} and suppose b+ 3 > 0.
Then the solution u of (1.2) with initial condition

(1.4) u(z,0) =up(z) >0, =z€Q,

and boundary condition

ou
1.5 — =0 o, t>0
( ) an ) Z 6 b} - )
satisfies
a
li t) = ——
A u(@,t) = 2=

uniformly for x € Q, where a = fooo f(s)ds.

In nature, competition exists among species not only for resources,
but also for spaces. Based on this consideration, Gourley and Britton
[3] studied the following integro-differential equation

(1.6) ug = u+ au® —bu® — (14 a — b)uf *u+ Au,
where f * u is defined in (1.3) and satisfies
(1.7) f € C(0,+00) N L*(0, +00),

and

(1.8) /00o f(t)dt = 1.
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Here b > 0, and the term —bu® represents competition for space itself
rather than resources.

From the above assumption, they obtained

Theorem B. Suppose that f satisfies (1.7) and (1.8) and that the
coefficients of (1.6) satisfy

(1.9) 0<b<1l+a;
furthermore,

1
(1.10) a<1[3(b—1)+ b2+6b+1}.

If ug(z) € CY(Q) and (1.5) hold, then the solution u(z,t) of (1.6)
satisfies

(1.11) lim u(z,t) =1

t—o0

uniformly for x € Q.

Remark. The condition (1.10) implies

a <b.

Naturally, we may ask if [(3(b— 1) + Vb2 +6b+1]/4 < a < b, then
does the conclusion in Theorem B still hold true? Furthermore, if all
the coefficients in (1.6) are not constants, what may occur? In the
present paper, we consider the equation with variable coefficients
(1.12)

uy — eAu = u(w, t) (a(@, t) + b(z, t)u — c(z, t)u? — d(z,t) f * u)

for (z,t) € Q x (0, 00),
Ou/on =0 for (z,t) € 92 x (0,00),
u(z,0) = ¢(x) for x € Q,

where f % u is defined in (1.3), e > 0, 0 < a; < a(z

7) S a27
by < b(z,t) < by, 0<cl<c(mt)<czand0<d1<d(mt)§d
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z € Q x [0,00). Here a1, az, by, ba, c1, o, dy and dy are all constants.
In what follows, we always assume the initial function ¢(z) € C1(Q).

For existence, uniqueness and regularity of solutions for the initial
boundary value problem (1.12), we refer to [5, 6, 8].

2. Global behavior of equation (1.12) with constant coef-
ficients. In this section, we assume that, in (1.12), a; = as = a,
by =by =0, c1 =cy =candd; =dy =d, where a, ¢ and d are positive
constants and b is a constant. Still we denote the equation by (1.12).

First we give some preliminaries.

For 1 < p < oo, LP(Q) denotes the Banach space of measurable
functions u on 2 with the normal norm

1/p
lull = | [ @r | it1<p <,
Q
|lu]|oo = ess sup Ju(z)| < 0o if p = c0.
€N

In particular, if p = 2, L?(Q2) becomes a Hilbert space with the usual
inner product (-, ). We write ||-|| instead of ||-||2 so there is no confusion.

The following definition and two lemmas are due to Gopalsamy [2].
Definition. A real valued function K € L{ (0,+00) is of positive
type, if
T t
vt [ @ deae = 0
0 0

for every v € C(R4, R) and for every T > 0. The kernel K is called
strongly positive, if there exist numbers ¢ > 0 and a > 0 such that
K(t) — eexp{—at} is a positive kernel.

Lemma A. Let K : Ry — R be a bounded function, if
Re (I?(A)) > 0 for Re (\) > 0;
then K 1is a positive kernel.

Lemma B. Assume that K satisfies
(1) K € C[0,+00) N C?%(0, +00).
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(2) (—1)i(d?Jdt')K(t) >0 fort >0, j=0,1,2.
(3) K(t) # constant.
Then K (t) is a strongly positive kernel.

Consider a logistic integrodifferential equation of the form

dw(t) =X o — t S)x(t — S S
o 2 —a(0)|a— [ 1(o)ale—s)as]
z(0) = zy € (0,400), « € (0,+00).

Yamada [9, Theorem 4.2] obtained a sufficient condition for all
solutions of (2.1) to converge. He got the following theorem.

Theorem C. Assume that
(1) f is a strongly positive kernel;
(2) . o
/ £(6)dt = B, 2/ LE(E) dt < 1.
0 B Jo

Then every solution of (2.1) satisfies

. L_a
tlggloac(t)—x =3

It seems that Theorem B can be improved for the special delay kernel;
thus, we consider equation (1.12) with constant coefficients again and
obtain

Theorem 2.1. Assume that

1) b< g

(2) f is positive when ¢ # b and strongly positive when ¢ = b;

(3) f(t) € L(0,00) and tf(t) € L*(0,00).

Then every solution of (1.12) satisfies

(2.2) lim u(z,t) = u*

t—o0
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uniformly for z € Q, where u* is the unique positive root of the algebraic
equation
cA? — (b—dé)\ — a = 0;

here

(2.3) d= /000 f(s)ds.

Remark. If we choose f(t) = exp{—at} with a > 0, then conditions
(2) and (3) in Theorem 2.1 naturally hold true. Thus, for a special
delay kernel, Theorem 2.1 improves Theorem B.

Now we give some lemmas which will be useful in the sequel.

Lemma 2.1. Let u € L*°(Q). Then
(2.4) llullp < (fulla-a)/2-a) T~ (|[ul)*/?,
for any p > 2 and a < 2, especially if a = 2, then

(2:5) llullp < (lulloo) P22 (| ul]) 7.

Proof. If a = 2, then (2.5) is a direct result of (2.4). In the following,
we assume that a < 2. Then it is easy to see that p > «. From the
Holder inequality, we have

ey >/ ([ >/ |
< (</Q(up_a)p/> 1/((p—a)p )> (p—a)/p<(/ﬂ(ua)q,> 1/(aq )> a/p‘

Choose ¢' =2/a > 1 and p’ = 2/(2 — ). Then (2.4) follows. O

Lemma 2.2. Assume that

(2.6) lullo < H,  [[Vulloo < H,
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and
(2.7) Jim [[u(e,t) ~ @ =0, Jim ||Vul| =0,
where H and w are positive constants. Then

(2.8) lim u(z,t) =,

t—o0

uniformly for x € Q.

Proof. From (2.5), (2.6) and (2.7), we can easily obtain

29)  Jim (@t -, =0, Jim [[Vull, =0,

for p > 2. Notice that when p > n, W'?(Q) — C%(Q). Choose
p > max{2,n}. Then, from (2.9) and the Sobolev imbedding theorem,
we have

lim ||u(z,t) — U/ =0,

t— o0

which implies that (2.8) holds uniformly for = € Q. This completes the
proof. |

The following lemma is a direct result of the maximal principle.

Lemma 2.3. For any solution u(z,t) of (1.12), we have
0 < u(z,t) < max{||®[|o0,7},
where v is the unique positive solution of equation

a+bx—ecA?=0.

Lemma 2.4. The mazimal existence interval of solution u(z,t) of
(1.12) is [0, +00) provided that @ € C*(9Q).

Proof. The local existence is obvious, from the maximal principle,
we have u(z,t) > 0 on its maximal existence interval [0,T); thus from
equation (1.12), we can obtain
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u < au + bu? — cu® + eAu,

which implies that T = oco. u]

Lemma 2.5. Assume that L, a3, b3 and c3 are all positive constants,
@, 1 € C'las, +00) satisfy

(2.10) ¢ < —bsih + caw,
where ' = d/dt, w € L'[as, +00), ¥ > 0, [¢'| < L and ¢ is bounded

below. Then
lim ¥(t) = 0.

t—o0
Proof. Integrate both sides of (2.10) from a3 to (¢ > asz), we have

o(t) — p(as) + bs / ¥(s)ds < / csw(s) ds;

thus,

bs /tdz(s)ds <ecs /tw(s) ds + ¢(az) — p(t) < oo fort > as.

Therefore, ¢ € L'[as,+00), also in view of |¢'| < L and Barbilat
lemma [3], we reach the conclusion. O

Remark. One can see that this lemma is an extension of Lemma 1 in

[6].

Proof of Theorem 2.1. Define a Lyapunov function

V(t) = / (u —u" —u*log %) dz.
Q u



A REACTION-DIFFUSION VOLTERRA EQUATION 1343

Vi = [ 1=y ds
:/ﬂ(u—u*)[a+bu—cu2—f*u]dx
%Audm
(e b)(
- [ = [ 1= ute0) -] ] ao
) [T reas- [ vl a
< [e=bu-u)d
7/ {(uu /ftfs)[ (z, s)u]ds] dz
/[/ £(s ds] dm—/ |Vl ? da,

where K > max{||®||c,7} is a constant. Integrating both sides of the
above inequality from 0 to 7', we have

V(T)+/0T[/Q;?2 Vu)? d:c] dt
+(c—b)/0T[/Q(u—u*)2da:]dt
<vo) - [ [ w-w) [ 10-otuters) -l as] a] as
con [ roe]e

where || represents the volume of Q. In view of (1) and (2) of
Theorem 2.1, we obtain that two positive constants 5 and § exist such
that

u— u*)2

y
)

*

T T T
“—/ \|Vu\|2dt+(cfb)/ \|u7u*\|2dt+ﬂ/ llu — u*|[dt < 6.
K2 0 0 0



1344 YONG-HONG FAN AND LIN-LIN WANG

Since conditions (1) and (2) imply that ¢ — b+ 8 > 0, we have
lu —u*||? € L*[0,00) and ||Vul?* € L]0, 0).

By Lemma 2.5, we only need to prove that there exists some constant
K5 such that

lu = u]|? < K.

d
< K, and ‘EHVUHZ

a
dt

Multiplying both sides of (1.12) by —u and then integrating on €2, we
have

02 S Ll = [ [ oot bucwt —df v do el
Q

By Lemma 2.3, we know that there exists a constant K; such that

(2.11) [Vul? < K.
Since

‘i|u—u*||2 = ‘/ 2(u — u")up de
dt 0 ¢

= ‘/ 2(u — u*) [au+ bu® — cu® — duf x u + eAu] dz
Q
<2(a+bK3 + cKy + dKs) ||u — u*||?
—i—du*/ [/ f(t—s)u(z, s) ds] dz + e|| Vul?,
oL/t
where
K3 =K +u*, K;=K?+Ku"+u*?, K5:(K+u*)/ f(s)ds;
0

also notice that

[lu — u*||2 = /Q(uf u*)2 dz < (K2 +u*2) |,
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and

du*/Q [/too f(t—=s)u(z,s) ds] dz < du*K|Q| /000 f(s)ds

We know that there exists a constant K5 such that

2| < K.

-
On the other hand,

IVull* = (ue, —Au)

&.'Q‘

1
2 dt
(2.12)

IN A

(a + |6l K) [|Vul[* — ef| Aul*.

By virtue of (2.12), we have
d 2
S IVull” < 2(a + oK) Ky,
and
1
1Aul* < =2 (a + [bIK) K1;

also from (2.12) we know

1345

(Vu, V [au + bu® — cu® — duf xu]) — e||Aul?

3|70l = It 8
< (a 1 BIE + 2K + 2dK/ £(s) ds) IVul? + el Aul?
0
K

5 "

Then, by Lemma 2.2, it remains to prove that there exists a constant

H such that [|Vul|, < H.
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Let {T'(t)}+>0 be the semi-group generated by the linear equation

0/(0t)u(z,t) =eAu x€Q,t>0,
0/(0n)u(z,t) =0 z €00, t>0.
Then {T(t)};>0 is an analytic semi-group. Assume that —A is the

infinitesimal generator of {T'(¢)};>0. Then A : Dom A C LP(Q) —
LP(Q) is defined by

—Au = eAu, u € Dom A,

where 5
Dom A = {u € W?P(Q); o —0on 89}.
on
Obviously, A is a linear operator, and A is closed and dense in the
space LP(Q). For each 0 < v < 1, we introduce the fractional power
space X” = D(A") equipped with the graph norm of A”, i.e., for any
u € XY, ||ull, = ||A%ul|. If we let p > n be fixed, then we have

XY — C7(Q) f0r0§0<21/—2
p

(the inclusion is continuous), and if v is chosen so closed to 1 that
2v —n/p > 1, then

— Ou
v 1 L —_— =
(2.13) XY — {u e C(Q); o 0 on 89}.

Notice that the solution w(z,t) of equation (1.12) is also a solution

of the following integral equation

t

(2.14) w(t) = T(t)p + /0 T(t — s)F(s) ds,

where
F(s) = u(s) (a + bu(s) — cu®(s) — df * u(s)).

If 0 < t <1, then operating A” on both sides of (2.14), we have
(2.15)
1A% u(®)]lp < [|A”T(#)¢llp

1
1-v’
where C,, is a positive constant.

+C, (a+ b K + cK? + dK6) K |Q|'/7
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If ¢ > 1, we use another integral equation
t
(2.16) u(t) =T)ut—1)+ / T(t— s)F(s)ds.
t—1

Operating A” on both sides of (2.16), we get
(2.17)

al
1A u(®)lp < Cllullp + C, / N aro

(t—s)”

<C,K|Q|"? {1 + (a+ |b| K + cK? + dKJ§) -
— VvV

Equations (2.15) and (2.17) imply that
A w(t)|l, < M, fort > 0.
Then from (2.13), we have
[Vull < H.

By Lemma 2.2, we reach the conclusion. |

3. Qualitative analysis of equation (1.12) with variable
coefficients. In this section, we consider equation (1.12) with variable
coefficients; we adopt the method of successive improvement of sub- and
supersolutions due to Redlinger [5] for semi-linear parabolic systems
with functionals.

The following two theorems show that equation (1.12) is permanent
under certain assumptions.

Theorem 3.1. If
a1 > dap30,

where p} is the unique positive solution of equation as +ba X —c1 A\ = 0
and § is defined as in (2.3), then

w1 <lim inf minu(z,t) < lim sup maxu(z,t) < ug,
t—o0 z€EN t—oo zEQ
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where p1 and py are given by the following system

(a2 — d1u15) + bapo — Cl#% =0,
(3.1) (a1 — dapad) + bypy — copuf =0,
wi >0 fori=1,2.

The following theorem is an extension of Theorem 2.1.

Theorem 3.2. Assume that
(1) b2 < cp;
(2) f is positive when ¢y # by and strongly positive when c; = bo;
(3) f(t) € L(0,00) and tf(t) € L*(0,00).
Then every solution u(x,t) of (1.12) satisfies

71 <lim inf minu(z,t) < lim sup maxu(z,t) < 79,
=00 4cQ t—oo e

where n1 and mny are, respectively, the unique positive solutions of

equation ay + (by — dod)A — c2A% = 0 and ay + (by — d16)A — c1 A% = 0.

Let D = Q x (0,00). We now introduce Redlinger’s definition of sub-
and supersolutions. A pair of sub- and supersolutions for (1.12) is a
pair of suitable smooth functions v and w such that

1) v < w in D;
2) the differential inequalities

vt§v+avz—bv3—dvf*<1>+Av,
wt2w+aw2—bw3—dwf*<b+Aw,

are satisfied for all functions ® € C(D) with v < ® < w in D;
3) Vu-n <0 and Vw-n >0 on 0 x (0,00);
4) v(,0) < ¢(z) < w(z,0) for z € Q.

The following lemma is from [3].
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Lemma 3.1. Let v and w be sub- and supersolutions for (1.12).
Then there exists a unique regular solution u such that v < u < w in
D.

Consider the following two companion equations

(3.2)
%:eAv—l—v(m+b1v—021;2—d2f*v) for (z,t) € D,
=9 for (z,t) € 90 x (0,00),
0 < v(z,0) <inf_ 5 ¢(z,0) for (z,t) € D,
and
(3.3)
%_1::eAw+w(a2+b2w—clw2—dlf*w) for (z,t) € D,
v — for (z,t) € 0N
x (0, 00),
w(z,0) > sup, 5 #(z,0) for (z,t) € D.

By Lemma 3.1, we have

Lemma 3.2. If v(z,t), u(z,t) and w(z,t) are, respectively, the
unique solution of (3.2), (1.12) and (3.3), then

0 <v(z,t) <u(z,t) <w(z,t), for (z,t) € D.

The following lemma is a trivial conclusion from the comparison
theorem of ODEs.

Lemma 3.3. Suppose that p(t) is the unique solution of the Cauchy

problem
{ dp(t)/dt = p(t)(az + bap(t) — c1p?(t)),
p(0) = po > 0.
Then p(t) satisfies
lim p(t) = ps,

t—o0
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and if pg > p3, then p(t) > p3 fort > 0; if po < p3, then p(t) < p; for
t >0 and if py = ph, then p(t) = p} fort > 0.

Notice that v =0 and w = K for Ky > max{p}, ||#||-} are, respec-
tively, the sub- and supersolutions of (1.12); thus, from Lemma 3.1,
there exists a unique regular solution u of (1.12) such that 0 < u < K,
which implies that liminf; . min g u(z,t) and limsup,_,, max g
u(z,t) both exist.

For simplicity, we denote u; = liminf; ,, min g u(z,t) and uz =
limsup,_,,, max, g u(z,t). Then, by Lemma 3.2, we have 0 < u; <
uz < Ky. In fact, we can show 0 < uy < ug < p5. Let w; be the
solution of the initial value problem

wi (t) = wi (a2 + bawi(t) — clwf(t)) , wi(0) = [|#]leo > 0.
Then the functions v = 0 and w = w; are sub- and supersolutions
for (1.12). Therefore, from Lemma 3.1, there exists a unique regular
solution % of (1.12) such that 0 < @ < wy in D. Now we only need to
prove u = u, and it is enough to show that u < Ky for all £ > 0. From
Lemma 3.3, this is obvious. From us < p} and f € L'(Q), we know
that, for any given ¢ > 0, there exists a T such that u(z,t) < p5 +¢
and f;l f(s)ds < e for t > Ty and z € Q. By virtue of (1.12), for
t > 2T, we have

t
% > eAu+ u(al +biu — cou® — d2/ f(t = s)u(z,s) ds>
0

t—T4
=eAu + u(al + biu — cou? — dy / f(t—s)u(z,s)ds
0

—dy /;Tl f(t = s)u(z,s) ds>

t
=eAu + u(al + biu — cou? — dy f(s)u(z,t —s)ds
T

~dy /tt f(ts)u(:c,s)ds)

—-T
>eAu-+u (al +biu — cou® — dyKe — do (ph +¢) 5) ,
which implies that u; > p}, where p} is the unique positive solution of

equation
(a1 — d2p§5) + bl)\ - Cg)\z =0.
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Set P(l) = pi and P(z) = p5. For any € > 0 small enough there
exists a Ty > 2T} such that u(z,t) > P(l) —-e>0, fT s)ds < € and

OTzf( Yds > 6 —¢e>0fort > T, and z € Q. Thus, fortZZTg, we

have

t
% < eAu+ u<a2 + bou — cyu® — dy / f(t — s)u(z,s) ds)
ot 0

t
=eAu+ u(ag +bou—cru? —dy [ f(s)u(x,t —s)ds
T2

t
—d / f(t— s)u(z,s) ds)
t—Ts
<eAu-+u (ag + bou — cyu? — dy (Pl(l) — 5) (6 — 5)) .

Note that a; > dop56 implies ag > dq P} )(5 Then, from Lemma 3.1, we
have uy < P2(2) where P2( ) is the unique positive solution of equation

(a2 - d1P1(1)5> + bgA - Cl)\2 =0.
After some simple calculations, we know that P2(2) < Pl(z).

Define two sequences {P,El)} and {P,52)} as follows:
2
(a2 = d1P18) + 6P — e (PP) " =0,
2
(3.4) (al _ 4P )5) b PO ey (P,E”) =0,
—p2, P,(f) >0fori=1,2andn=1,2,....
Then we have
Lemma 3.4. Let {PT(LI)} and {P,?)} be defined as in (3.4). Then

35 PY<pPP<...<pPO<..<p® <. <p®<p®

Proof. Notice that
2 2
as + b2P1(2) — C1 <P1(2)> =0= (a1 - d2p§5) + blpl(l) — C2 <P1(1)>

2
S as + bgPl(l) —C1 <P1(1)> .
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‘We have
r® > pW.

From (3.4), we know
as + b PP — ¢ <P1(2)>2 =0 = (a2 - lefl)J) + b, PP — ¢ (PZ(Z))2
<az+ b2P2(2) - (PQ(Z))27
which implies that
(3.6) P? < p®.

By virtue of (3.6) and (3.4), we obtain

(3.7) (al - d2P2(2)5> + b, P — ¢ (P2(1)>2

2

=0> (a1 = d:P5) + 5P — e (PV
= by (" = P(V) ey (P{" = PV) (P{" + PV)
= (A" = PO) b1 — 2 (P +P(1 )]
Note that
b PD e, (PTED)2 . (a1 - d2P,52>5) <0,
leads to

b1 —co (P2(1) + P1(1)> <0

Thus, from (3.7),
pY > pM.

By mathematical induction, we complete the proof. ]

Lemma 3.4 shows that the limit values of sequences {P,El)} and

{P,(lz)} both exist, denoted by w1 and pe respectively. Then by the

constructions of these two sequences, we have
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Lemma 3.5. P{" <y < uy < P{*, for any n > 0, where P{" and
P satisfy (3.4).

Proof of Theorem 3.1. By Lemmas 3.4 and 3.5, we can easily reach
the conclusion.

If all the coefficients in (1.12) are constants, we have

Corollary 3.1. Ifa; = a3 = a, by = by =b, c1 = c3 = ¢ and
dy = dy = d, then any solution u(z,t) of equation (1.12) satisfies (2.2)

uniformly for x € € provided that a > ddvy, where v is defined in
Lemma 2.3.

Proof. We only need to show, in this case, p1 = po, where pg and po
satisfy (3.1). Assume that it is false. Then, from (3.1), we obtain

—dé —b+c(p1 + p2) =0,
and

2a — d6 (1 + p2) + b (1 + p2) — ¢ (pa + p2)” + 2cpapz = 0.

Hence,
d?6% + bds§ — ac

Hi1p2 = >

c
Note that a > ddé~ implies
ac > d25% + bdé.

Thus,
pipe < 0.

This is a contradiction, and so we complete the proof. o

Remark. Obviously, Corollary 3.1 improves Theorem B, and the
method we used here is different from that of [3].

Proof of Theorem 3.2. By Theorem 2.1, under the assumptions of
Theorem 3.2, for any solution v(z,t) of (3.2), we have

tlgglov(m,t) =M,
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and for any solution w(z,t) of (3.3),

tllglow(xat) = n2.

Then, by Lemma 3.2, we complete the proof. a

Remark. Theorems 3.1 and 3.2 remain true, if we replace the
Laplacian operator A by a linear, uniform elliptic operator.
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