ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 38, Number 4, 2008

A NESTED EMBEDDING THEOREM FOR
HARDY-LORENTZ SPACES WITH APPLICATIONS TO
COEFFICIENT MULTIPLIER PROBLEMS

MARC LENGFIELD

ABSTRACT. We prove a nested embedding theorem for
Hardy-Lorentz spaces and use it to find coefficient multiplier
spaces of certain nonlocally convex Hardy-Lorentz spaces into
various target spaces such as Lebesgue sequence spaces, other
Hardy spaces and analytic mixed norm spaces.

1. Introduction. In this paper we characterize coefficient multipli-
ers between certain types of analytic function spaces on the open unit
disk. We are primarily concerned with multipliers having one of the
nonlocally convex Hardy-Lorentz spaces HP?, 0 < p < 1,0 < g < o0,
for the domain space. For such multipliers we will consider a vari-
ety of target spaces including Lebesgue sequence spaces, other Hardy
spaces and various analytic function spaces of mixed norm type. Our
method depends upon a nested embedding theorem for Hardy-Lorentz
spaces (Theorem 4.1) obtained through interpolation from embedding
theorems of Hardy and Littlewood and of Flett. Thus, the strategy
is to trap HP'? between a pair of mixed norm spaces of Bergman-type
and then deduce multiplier results for H?'? from corresponding known
multiplier results for the endpoint spaces.

The paper is organized as follows. In Section 2 we define the Hardy-
Lorentz spaces and the analytic mixed norm spaces. Also included in
this section are some results from interpolation, fractional calculus and
HP- theory needed for the sequel. Our primary references for Lorentz
spaces and Hardy spaces are [5, 10], respectively. Section 3 covers
preliminary material on coefficient multipliers. In Section 4 we state
and prove the embedding theorem for HP¢. We then indicate how
this theorem may be used to obtain the duality results of [33]. In
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addition, we determine the Abel dual of HP**°. In Sections 5, 6 and
7, respectively, we find multipliers of HP'? into the Lebesgue sequence
spaces [®, into mixed norm spaces of Bergman-type and into certain
Hardy spaces. In Section 8 we discuss the case when the target space
is an analytic Lipschitz or Zygmund space, a Bloch space, or BMOA.

Throughout the paper D will denote the open unit disk in the complex
plane and T will denote its boundary. The symbol H(D) is used to
denote the space of analytic functions on D. If X and Y are topological
spaces with X C Y, we write X — Y to indicate continuous inclusion.
All vector spaces are assumed to be complex. By a Frechet space we
mean a locally convex F-space. If E is a topological vector space, then
E* denotes the topological dual space of E consisting of all continuous
linear functionals on E. The symbol A ~ B is used to indicate
the existence of absolute positive constants Cj, j = 1,2, such that
C1 < A/B<Cs.

2. Hardy-Lorentz spaces and mixed norm spaces. Let m
denote normalized Lebesgue measure on T, and let L°(m) be the
space of complex-valued Lebesgue measurable functions on T. For
f € L°(m) and s > 0, we write Af(s) = m({z € T : |f(z)| > s}) for
the distribution function and f*(s) = inf({t > 0 : Af(t) < s}) for
the decreasing rearrangement of | f|, each taken with respect to m. Let
0 < p, ¢ < oco. For the reader’s convenience, we recall the definition of
the Lorentz spaces LP?(m). The Lorentz functional || - ||, 4 is defined
at f € L°%(m) by ||fllpq = (fol[f*(s)sl/p]q (ds/s))'/4 for 0 < ¢ < oo
and ||f][p.co = SUpPssq[f*(s)s*/P]. The corresponding Lorentz space is
LPa(m) = {f € L%(m) : |[fllp,q < oo} Since [|fllpp = |If|lp, where
| f]l, denotes the standard LP-functional on L°(m), the Lorentz spaces
form a 2-parameter array {(LP4(m), || - ||p,q) to<p,g<oo Of quasi-Banach
spaces containing the Lebesgue space scale {(LP(m),||f||p)}o<p<oo as
the main diagonal. Inclusions among the Lorentz spaces are given by

(1) IP9m) o IPT(m), 0<p< oo, 0<q<r< oo,
and, since m(T) < oo,
(2.2) L™*(m) = LP9(m), 0<p<r<oo, 0<q,s < 0.

The space LP?(m) is separable if and only if ¢ # co. The class of
functions f € LP*°(m) satisfying lim,_,q [f*(s)s'/?] = 0 is a separable
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closed subspace of LP'*°(m) which is denoted by LP:>°(m). We observe
here that for ¢ # oo, the space L°?(m) = 0. In the sequel we will follow
the convention that in all discussions concerning the space LP'9(m) it
is assumed that ¢ = co whenever p = co.

For w € D, and f € H(D), the function f, is defined on |z| <
1/|w| by fw(z) = f(wz). The space of continuous complex-valued
functions on T will be denoted by C'(T'). The function f,, is considered
as both an analytic function on the disk |z| < 1/|w|, and as a
function in C(T). For 0 < r < 1, the functions f, are called
the dilations of f. Recall that the means Mj(r, f) are defined in
the usual way by My(r,f) = ([p|fr(2)[Pdm(2))Y/?, 0 < p < oo
and Moo (r, f) = sup,cr |fr(2)|. The Hardy space HP? is defined as
H = {f € HD) : | fllu» < o0}, where ||f]lu» — supo, <1 My (1, f).
The Nevanlinna class N is the subclass of functions f € H(D) for
which supg., 1 [y log™ |f:(2)| dm(z) < co. Functions in N are known
to have nontangential limits m-almost everywhere on T. Consequently,
every f € H(D) determines a boundary value function which we also
denote by f. Thus, f(z) = lim,_,;- f-(2), m-almost all z € T. The
Smirnov class N7 is the subclass of N consisting of those functions f
for which lim, ;- [ log™ [f,(2)| dm(z) = [;log™ | f(2)| dm(z).

It follows from standard HP-theory that a function f € H(D) belongs
to HP if and only if f € N* with boundary value function in L?(m),
in which case ||f||g» = ||f||p, [10]. Motivated by this characteriza-
tion of H?, we define the Hardy-Lorentz space HP?, 0 < p, g < oo,
to be the space of functions f € NT with boundary value function in
L749(m), and we put || |5 = || fllpg- Then {(HP, |- | z5:) ho<pg<oo
is an array of quasi-Banach spaces of analytic functions on D with the
standard Hardy space scale as the main diagonal. As with L??(m),
HP 4 is separable if and only if ¢ # co. The functions in HP*° with
boundary value function in L *°(m) form a closed separable subspace
of HP*° which is denoted by H}*. Analogs of the inclusion relations
(2.1) and (2.2) hold for the Hardy-Lorentz spaces and HP? — HE'>
for all ¢ # co. The polynomials are dense in H{"™ and in HP?, g # oo.
For f € HPY g # oo, the dilations f,. — f in HP? as r — 17. If
f € HP*°, then the dilations f, — f in H»*> as r — 17 if and only if
f € HP"™. We note that a similar statement can be made for the disk
algebra A(D) which is defined as the subspace of H* with boundary
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function in C'(T). That is, the polynomials are dense in A(D) and the
dilations f. — f in H>® as r — 17 if and only if f € A(D), [32].

An important result in the theory of Lorentz spaces is the identifi-
cation of these spaces with the intermediate spaces arising in the real
interpolation theory of the Lebesgue spaces. An analytic analog of this
result is given in Theorem 2.1 below. Theorem 2.1 is one of two in-
terpolation theorems needed for the sequel. It was proved in [15] but
omitted the endpoint case corresponding to H*°. The complete version
was proved in [29], see also [44].

Theorem 2.1. Let 0 < 6 <1 and for j = 0,1, let 0 < p;, g¢; < o0
with po # p1.

(i) Set 1/p = (1 —0)/po + 0/p1. Then for every 0 < g < oo, we
have, with equivalent quasinorms,

(Hpoﬂo,HPl’(h)a’q — HP9,

(ii) Set 1/g = (1 —0)/q0 + 0/q1. Then for every 0 < p < oo, we
have, with equivalent quasinorms,

(pr(IO,HPaQI)e’q — HPY.

The second collection of domain spaces F < H(D) that we define
are spaces of mixed “norm” type. Before introducing these spaces, we
describe the fractional calculus that we will be using. Let 0 < 8 < o0
and suppose f € H(D) with Taylor series representation

(2.3) f(z) = ianz", z € D.
n=0

The fractional derivative and fractional integral of f of order 3 are the
functions respectively defined at z € D by

oo

FO) =Y [T+ 6 +1))/n] 2

n=0
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and
oo

fig(2) =Y I/ (C(n + B +1))] =",

n=0

where T' is the gamma function. The symbols D? and Dg stand
for the associated operators defined on H(D) by D?(f) = flfl and
Ds(f) = fig, f € H(D). We adopt the convention that for —oco <
B <0, flBl = fi=py fig = fI=P1 and similarly for D? and Dg. The
operators D? and Dy are understood to be the identity on H(D) and
= fig = 1.

Suppose then that 0 < p, ¢ < 00, 0 < a < o0, and let f € H(D).
We set || flln(paa = (Jy Mp(r, f)1(1 = r)©=1dr)1/4, q # oo, and
I fll 2 (p,00,0) = SUPg<rc1[Mp(r, f)(1 —7)?]. Then the weighted mixed
Bergman space (H(p,q,«a) is defined as H(p,q,«) = {f € H(D) :
I fllap,ga) < oo} We also define Hy(p,00,a) to be the subspace
of functions f € H(p,o0,a) satisfying My(r,f)(1 — r)* — 0 as
r — 17. In this notation, H(p,p,1/p) is the standard Bergman space
AP = {f € HD) : [ |f(2)[Pdv(z) < oo}, where v is Lebesgue mea-
sure on D. For —oo < 3 < oo, we set ||flla(p,qg,a,8) = Hf[ﬁ]||H(p7q7a).
The weighted mixed Bergman-Sobolev space H(p,q, @, ) is then de-
fined as H(p,q,o,8) = {f € HD) : |fllapgap < oo} Simi-
larly Hy(p, 00, a, B) is the subspace of H(p, o0, a, ) consisting of those
functions f satisfying fl%! € Hy(p,00,a). The spaces (H(p,q,),] -
| 2(p,q,0)) and (H(p,q,,0), || - |z (p,q,a,0)) are of course identical and
we will continue to use the former notation when 8 = 0. As with
HP1 H(p,q,a,f) is separable if and only if ¢ # oo. The space
Hy(p,00,a,3) is a closed separable subspace of H(p,oc0,a,3). The
polynomials are dense in H(p,q,®,),q # oo and in Hy(p, o0, a, 3).
If f € H(p,q,a,8),q # oo, then f, — f in H(p,q,a,3) asr — 1.
On the other hand, for f € H(p,00,a, ), fr — f in H(p,00,, ) as
r — 17 if and only if f € Hy(p,o0,a, ), see [28, 50]. The spaces
H(p,q,a, B) are often called mixed norm spaces. In the sequel we will
simply say H(p,q,a, ) is a Bergman-Sobolev space and H(p, q, @) is
a Bergman space. Many authors use an equivalent definition of these
spaces obtained by replacing the fractional calculus operators D? and
Dg, 0 < B < o0, in the definition of H(p,q,a,3) with the multiplier
operators J? and Jz defined at a function f € H(D) with Taylor series
representation (2.3) by JP(f)(z) = Yoo o(n+1)Pa, 2™ and Jg(f)(2) =
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S o(n+1)"Pa, 2", 2 € D. Then the mixed norm space obtained
using J? or Js is identical to the space H(p, g, c,3) as previously de-
fined. For the equivalence of the fractional calculus operators with

the multiplier operators in defining the spaces H(p, g, a,3) as well as
proofs of the following results, the reader is referred to [16, 48, 49].

Lemma 2.1. Let 0 <p, g <00, 0 < a, B < oco. Then the following
mappings are continuous surjective isomorphisms.

(i) D7 : H(p,q,0) — H(p,q, + B),

(i) D? : Ho(p, 00, ) = Hy(p, 0, a + B),
(iii) Dg : H(p, ¢, ) = H(p,q,00 = B) for B < e,
(iv) Dg : Ho(p, o0, &) = Hy(p, 00,0 — B) for B < a.

Lemma 2.1 and the definition of H(p, ¢, o, 8) imply the following.

Lemma 2.2. Let 0 < p, g < 00,0 < a< 00, —00< B <oo. Then
for —oo < v < a, the following identifications hold with equivalent
quasi-norms.

(1) H(p7Q7aaﬂ) = H(paqaa 77)B7’Y)a
(11) Ho(p,O0,0Z,ﬂ) = Ho(p,O0,0[ - 77ﬂ - 7)

In particular, Lemma 2.2 implies H(p, ¢, a,3) = H(p,q,a — ) and
Hy(p,00,,8) = Ho(p,o0, a0 — B) if —00 < B < a. Lemma 2.3 which
follows represents an extension of Lemma 2.1 to the spaces H(p, ¢, @, 3).

Lemma 2.3. Let 0 < p, ¢ <00, 0 < a< oo, —00o<f, vy < 00.
Then the following mappings are continuous surjective isomorphisms.

(i) D7 : H(p,q,a,8) = H(p, ¢, + 7, B) for v > —a,

(ii) DY : Hy(p, 00, t, B) = Ho(p, 00, + v, B) for v > —a,

(iii) D7 : H(p, q,, B) = H(p,q, 0,8 — ),
) D7

(iV :Ho(p,oo,a,ﬂ)—>H0(p,oo,a,ﬂ—’y).
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The second interpolation result we need is for the Bergman-Sobolev
spaces and is due to Fabrega and Ortega, see [14].

Theorem 2.2. Let 0 < p < 00, 0 < g < 00, 0 < o5, B < 00,
7 =0,1, and suppose that apg # ;. Let 0 < 0 <1, 0 < q < 00, and set
a=(1-60)ag+0aj. Then we have, with equivalent quasi-norms,

(H(p7q07 aOaﬂ)a H(P,QM ala/B))9,q = H(pa q, aaﬁ)'

We also need the following embedding theorems. The first of these is
due to Flett [16] and indicates how Bergman-Sobolev spaces embed
in the standard Hardy spaces. The second result is a well-known
embedding theorem of Hardy and Littlewood, see [10].

Theorem 2.3. Let 0 <p<s<o00,0<q<s,B8>1/p—1/s. Then

H(paq76+1/57 1/p,ﬂ) — H°.

Theorem 2.4. Let 0 <p<s< oo, p<t<oo. Then

HP? — H(s,t,1/p—1/s).

3. Multipliers. Let Ny denote the set of nonnegative integers,
and let W denote the space of complex sequences indexed by Ny. We
always consider W as being equipped with the topology of pointwise
convergence. With this topology, W is a Frechet space. A topological
vector space X satisfying X < W is called a K-space. An FK-
space is a K-space which is also an F-space. In particular, spaces
which are both K-spaces and Frechet spaces are FK-spaces. W is
also a topological algebra under the natural product of coordinate-
wise multiplication. Thus, for w = {w,}, A = {\,}, the product
Aw is defined by Aw = {\w,}. It will sometimes be convenient to
use the symbol B for the product map so that B(\,w) = Aw. Then
B : W xW — W is a continuous bilinear operator. For fixed A € W, we
will write By for the continuous linear operator By : W — W defined
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by Ba(w) = Aw, w € W. Suppose now that E and X are a pair of
vector subspaces of W. An element A € W is said to be a multiplier of
Einto X if Aw € X for every w € E. The set of multipliers from F into
X is denoted by either of the symbols (E, X) or EX. Thus, A € (E, X)
if and only if the linear operator By maps E into X. Consequently,
the bilinearity of B gives (E, X) = Nuep(By,(X)). If E and X are
FK-spaces, an argument based on the closed graph theorem shows that
(E, X), or more precisely {Bj : A € (E, X)}, is a subspace of £ (E, X),
the space of continuous X-valued linear operators on E. The space
(E, X) is sometimes called the X-dual of E. The second X-dual of
E is the space EXX = (EX)X. If EXX = E, then F is said to be
X-reflexive or X-perfect. We record some of the basic properties of
multiplier spaces in the form of a lemma. We omit the obvious proof.

Lemma 3.1. Let A, B,C, E be vector subspaces of W with A C B.
Then

(i) B¢ c A%,
(ii) C4 c OB,
(iii) (4,C) C (CF, AF).

For quasi-Banach spaces (E, || - ||g), (X,] - ||lx) < W, the operator
quasi-norm is defined at an operator L € L (E,X) in the standard
way by ||L|lzzx) = sup{||L(w)||lx : w € E,||w|][z < 1}. Then
(L(E,X),|l - llz(z,x)) is a quasi-Banach space containing (£, X) as
a closed subspace. In particular, (F,X) is a quasi-Banach space
under the quasi-norm || - ||(g x) defined at A € (E,X) by [|A|(g,x) =
IBxllz(E,x)-

We regard H(D) as a subspace of W by identifying functions in H (D)
with their Taylor coefficient sequences. Thus, a function f € H(D)
with Taylor series representation (2.3) is identified with the sequence
a = {an}. H(D) is a Frechet space when equipped with the topology
of uniform convergence on compact subsets of D. In addition, we
note that H(D) is a K-space, and hence any F-space E satisfying
E — H(D) is an FK-space. In [55] it is shown that the product map B
on W x W restricts to a bilinear operator H(D) x H(D) — H(D). The
symbol ¢ will denote the Cauchy function defined by ¢(z) = (1 —z) !,
z € D. Since ¢ € H(D), it follows that (H(D),H(D)) = H(D). If
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f,g € H(D), then B(f,g) is commonly denoted by f * ¢g and is called
the Hadamard product of f and g. Thus, if f,g € H(D), with Taylor
series representations f(z) = Y .o a,2" and g(z) = Yoo, by2",
z € D, then B(f,g) = f * g € H(D) has Taylor series representation
B(f,9)(z) = (f*9)(z) = X, ¢ anby2™, z € D and, as a sequence,
B(fag) =fxg= {anbn}

We introduce some notation. For n € Ny and z € D, we set
un(z) = 2" Let f € H(D) with Taylor series representation given
by (2.3). For N € Ny we write Sy (f) for the partial sum function

N
Sn(f)(z) = Z anz", ze€D.
n=0

In the sequel we will be interested in the multiplier spaces (E, X) where
E is a Hardy-Lorentz space and X is an FK-space, X — H(D). At
this point we would like to consider (E,X) for some specific target
spaces X and for a fairly general class of domain spaces E. One of
our choices for X is the space AS(D) of Abel summable sequences.
Recall that the element w = {w,} € W is said to be Abel summable
if lim, ,q- Y .o w,r™ exists. The space AS(D) is a Frechet space
[45], with respect to the topology induced by the family {p, : n €
Ny or n = 0o} of semi-norms, where {r,} is a fixed sequence in (0,1)
strictly increasing to 1, and for n € Ny and w = {w,} € AS(D),

Poo(w) = sup
o<r<1

o0
Z wkrk
k=0

and

oo
pu(w) = [wklrh.
k=0

Furthermore, we have AS(D) — H(D) and hence AS(D) is an FK-
space. The AS(D)-dual of a vector subspace E of W is known as the
Abel dual of E and will be denoted by E%. The second Abel dual of
E is the space (E%)* and will be denoted by E**. If E** = E, then
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E is said to be Abel reflexive. Note that the functional ¥ on AS(D)
defined by

(3.1) U(a) = lim Z anr”, a={a,} € AS(D)

belongs to AS(D)*.

Propositions 3.2 through 3.4 below describe the relationship between
the spaces E*, (E, H>®) and E® for a certain general type of FK-space
E. First we need the following.

Proposition 3.1. Suppose that E is an FK-space satisfying
() B < H(D),
(ii) u, € E for all n € Ny,
(iii) ¢y € E for all w € D,
(iv) For all w € D, {Sn(cy)} converges to ¢, in E as N — oo.

Then for any topological vector space X, operator T € L(E,X), and
w € D, the X -valued series

(3.2) Z zpw™,  zn =T(u,), n € Ny,
n=0

converges in X to T'(cy)-

Proof. The partial sums of the series (3.2) satisfy

N
(3.3) Z zw™ =T (Sn(cy))-

n=0
Since T is continuous, the lemma follows from (iv) and (3.3). u]

Suppose then that E is an FK-space satisfying (i)—(iv) of Proposition
3.1, that X is a topological vector space and T' € L (E,X). Define a
function g7 on D by gr(w) = T(cy), w € D. Then gr is a well-defined
X-valued function on D with power series representation given by (3.2).
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The function g is called the analytic or Cauchy transform of 7. The
linear operator T' — gr, taking £ (E, X) into the space of X-valued
power series on D will also be referred to as the analytic or Cauchy
transform on £ (E, X). Consider now the case when X is an FK-space
satisfying X — H(D) and T = B, for some multiplier A € (E, X).
For this case, if A = {\,} as a sequence of complex numbers, then
T(un) = Bx(un) = Auy,. Since Au, is identified with the sequence
having A, in the nth entry and 0O elsewhere, we will write A,, in place
of T(uy,), n € Ny, and gy in place of g7. The other situation we will be
considering is when X is the complex field and T'= ¢ € E*. For this
case we may form the sequence A = {\,}, where A\, = ¢(u,), n € No,
and we again write g, in place of gyr. Proposition 3.1 ensures that
gr € H(D). But, as was previously noted, H(D) = (H(D), H(D)).
Since (H(D),H(D)) C (E,H(D)) by Lemma 3.1 (i), it follows that
¢ € E* induces the multiplier A € (E, H(D)) with analytic transform
gx. In fact, by convention, we have the identification A <+ gx. Let us
note here that it is possible to have A = 0 for ¢ # 0, so that in general
the analytic transform on £ (E, X) is not one-to-one. However, we do
have the following.

Proposition 3.2. Suppose that in addition to satisfying conditions
(i)—(iv) of Proposition 3.1, the FK-space E satisfies

(i) fw € E for eachw € D and f € E,
(ii) for each f € E, the set {f, : w € D} is bounded in E,
(iii) {SN(fw)} converges to f,, in E for every w € D and f € E.

Let ¢ € E* with induced multiplier A = {\.}, A\ = ¢(uy) and
analytic transform gx. Then, for each w € D and f € F,

(3-4) e(fuw) = (f * gr)(w)-

Consequently, X € (E,H*). Furthermore, the analytic transform on
E* is one-to-one whenever E satisfies the additional property

(iv) for every f € E, the dilations f,, 0 <r < 1, converge to f in E
asr— 17.

Proof. Let ¢ € E*, and put A = {\,}, n € Ny. Then, by the
comments made in the paragraph following the proof of Proposition 3.1,
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we have g, = g € (E,H(D)). If w € D and f € E has Taylor series
representation (2.3), then the continuity of ¢ and conditions (i) and
(iii) of Proposition 3.2 yield

o(fw) = 90(1&_1}100 SN (fw))

N
i e(x(0) = Jim o 3w

n=0

N
= lim Z ApApw™ = 1\}13100 Sn(f * gx)(w) = f x gx(w),
n=0

N —o0

which is (3.4). Then (3.4), the continuity of ¢, and condition (ii) imply
A € (E,H*). Finally, suppose E satisfies (iv). It then follows from
this property and (3.4) that if A is the induced multiplier for ¢; € E*,
J = 1,2, we have p;(f) = @¢;(lim, ;- f;) = lim, ;- ¢;(f;) =
lim, ;- (f * gx)(r), so that p; = pa. mi

In view of the last two propositions, we may regard E* C (E, H™)
for any FK-space satisfying (i)—(iv) of Propositions 3.1 and 3.2. Note
that if F is an FK-space with A(D) — E then FE satisfies conditions
(ii)—(iv) of Proposition 3.1 and conditions (i)—(iii) of Proposition 3.2.
Also in [42] it is shown that for, the A-spaces, which form a large class
of quasi-Banach spaces E — H(D), condition (iv) of Proposition 3.2
is equivalent to the density of the polynomials in F.

Proposition 3.3. Suppose E is an FK-space. Then E* C E*.

Proof. Let \ € E?, and put ¢ = V¥ o By, where V is the functional
(3.1). The mapping A — ¢ is a one-to-one linear operator taking E¢
into E*, and we may identify E® with its image in E*. u]

Proposition 3.4. Suppose E is an FK-space satisfying conditions
(i)—(iv) of Propositions 3.1 and 3.2. Then (E, H®) = (E, A(D)) C E°.

Proof. Let A = {\,} € (E,H*). Let f € E have Taylor series
representation (2.3). By Proposition 3.2 (iv) and the continuity of B},
we have By(f.) — Ba(f) in H*®. Hence, By(f) € A(D). Therefore,
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(E,H*) C (E,A(D)). By Lemma 3.1 (ii) the reverse inclusion holds.
Thus, (E,H>) = (E,A(D)). Finally, the continuity of By(f) at 1
gives lim, ;- > o7 (apA,r™ = lim, ;- BA(f)(r) = BA(f)(1). Hence,
A€ EC. o

Corollary 3.1. Let E be an FK-space satisfying conditions (1)—(iv)
of Propositions 3.1 and 3.2. Then E* = E* = (E, H*).

Corollary 3.2. Let 0 < p, ¢ < 0o. Then
(i) (HP?)* = (HP?)* = (HP1, H),
() (HE )" = ()" = (™, 1)

4. A nested embedding theorem for Hardy-Lorentz spaces.
Our main tool for identifying certain multiplier spaces (H?'?, X) is the
following nested embedding theorem for HP'?. Its proof consists of
using Theorems 2.1 and 2.2 to interpolate Theorems 2.3 and 2.4.

Theorem 4.1. Let 0 < pp < p < s <o00,0<q <t < o0, and
B8 >1/py —1/p. Then

(i) H(po,q,8+1/p—1/po, B) — HP? — H(s,t,1/p —1/s).
(i) Ho(po, 00,8+ 1/p —1/po, 8) = Hy'™ < Ho(s,00,1/p —1/s).

Proof. (i) Choose s;, j = 0,1, such that 0 < py < sp < p < 81 < 00.
Let us further stipulate that for the case 5 < 1/py we require that
0 < s1 < po/(1 —Bpo). This ensures that 3 > 1/py — 1/s;. We can
then apply Theorem 2.4 to obtain embeddings

(4.1) H(po,Sj,B—‘rl/Sj—l/po,B);)HS", 7 =0,1.

Interpolation of (4.1) results in the embeddings

(4.2) (H(Po, s0,8+1/s0 —1/po, 3), H(po, 51,8 + 1/s1 — 1/100))0
— (HSU,Hsl)g,q,

forall0 < § < 1,0 < g < co. Then the first embedding in (i) follows by
choosing 6 to satisfy 1/p = (1 — 0)/so + 8/s1 and applying Theorems
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2.1 and 2.2 to (4.2). The proof of the second embedding in (i) is similar
and is in [33]. We omit the details.

(ii) Again, we prove only the first embedding in (ii) since the proof
of the second embedding in (ii) is similar and is also in [33]. Thus,
let f € Hy(pg,00,8+ 1/p —1/pg,8). Then f € HP* by Theorem
4.1 (i). In order to show f € HJ™, it is enough to show the dilations
fr converge to f in H?*> as r — 1~ . But the functions f, converge
to f in H(po,00,8 + 1/p — 1/po, ), and this fact combined with (i)
implies f, — f in H?*°. Hence, f € H{"™. O

Recall that if E is a quasi-Banach space with separating dual E*,
then there exists a unique Banach space Y in which F embeds as a
dense subspace and for which Y* = E*. The space Y is called the
Banach envelope of E and is denoted by [E];. In [33] we identified
the Banach envelopes and dual spaces of the spaces HP*? and H}"™ for
indices in the range 0 < p < 1, 0 < ¢ < 0co. The specific result was the
following.

Theorem 4.2. Let 0 < p<1,0< g < co. Set g, = max(l,q), and
let ¢' be the Hélder conjugate of g, 1/q« +1/¢' =1. Then

(1) [Hp7q]1 = H(LQ*) 1/]) - 1) and (Hp,q)* = H(Ooaqlv 1, ]-/p);
(ii) [HE ™)1 = Ho(1,00,1,1/p — 1) and (HY™)* = H(o0,1,1,1/p).

Note that for p = ¢, (i) becomes
(43)  [HP) =H(L,1,1/p—1) and (H?)" = H(c0,50,1,1/p).

This is the well-known Duren-Romberg-Shields theorem [11]. The
proof of Theorem 4.2 (i) given in [33] essentially consisted of two
steps. The first step was the establishment of the second embedding
in Theorem 4.1 (i). The second step was a constructive proof of the
embedding

(HP9)* < H(oo,ds1,1/p).

The proof of Theorem 4.2 (ii) in [33] was carried out in an analogous
fashion. A short proof of Theorem 4.2 can be based on Theorems
4.1 and 4.3 below. Theorem 4.3 is a general Banach envelope-duality
theorem for separable Bergman-Sobolev spaces and is due to the efforts
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of several authors. For statements and proofs of Theorem 4.3 for
Bergman spaces in some specific cases, the reader is referred to [1-3,
6, 7,9, 11, 17-19, 23-25, 35, 37, 39, 46, 47, 50, 52, 54, 56|.
Pavlovic’s paper [42] contains a very general and complete version of
Theorem 4.3 for the case f = 0. To obtain the result for Bergman-
Sobolev spaces, one uses the validity of Theorem 4.3 for Bergman spaces
with Lemmas 2.1-2.3.

Theorem 4.3. Let 0 < p < 00,0<q, a <00, —00 < f < oo. Let
po = min(1,p), p1 = max(1l,p) and ¢ = max(1,q). Let 1/p; + 1/p} =
1/¢1 +1/¢} =1. Then

( ) ([H(p7 q, aaﬂ)]l = H(pla qi, o+ 1/p0 - 175)7
(1) (H(p7 q7a7ﬂ))* = H(?&a‘];’[a 17 a — B + 1/p0)7

(111) [Ho(p, 00, a?/B)]l = Ho(pla 00, & + l/pO - ]-a/B)a

(IV) (Ho(p, O0,0(,,B))* = H(plla 17 17 o — /8 + l/pO)

For 0 < p < 00,0 < ¢q, a < 00, —00 < B < o0, the spaces
H(p,q,a,B) and Hy(p, 00, a, B) satisfy conditions (i)—(iv) of Proposi-
tions 3.1 and 3.2. So, by Corollary 3.1, H(p, q,«,8)* = H(p,q,«,3)* =
(H(p,q,a, ), H*) and similarly for Hy(p, 00, a, ). Thus, duality and
Abel duality coincide for the separable Bergman-Sobolev spaces. More
explicitly, say in the case of Theorem 4.3 (ii), if A € H(p, q, o, 8)* and

f € H(p,q,a,B) has Taylor series representation (2.3), then the proof
of Theorem 4.3 (ii) shows that

i
i

(4.4) A(f) = lm Y apdar™, An=A(un), n € N.

Furthermore, the analytic transform gy of the sequence A = {\,} in
(4.4) satisfies gx € H(p},q1, L, @ — B+ 1/po), gl et a7 ,1,0—B41/p0) ~
IAll#(p,q,a,8)«- Conversely, if g € H(p1,1,1,a0 — f + 1/po) has Taylor
coefficient sequence A = {\,,}, then we may define Ay as in (4.4). The
resulting functional A, belongs to H(p, ¢, o, 3)*, has analytic transform
g, and satisfies

||AgHH(prya7ﬁ)* ~ ||g||H(p1,1,1,a7ﬁ+1/po)'

Theorem 4.3 also implies that the spaces H(p,q,a,8), 1 < p < oo,
1 < g < o0, are reflexive with the properties of reflexivity and Abel
reflexivity being the same for these spaces.
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To see how Theorem 4.2 follows from Theorems 4.1 and 4.3, let
0 < p <1, choose 0 < py < p, and take s = 1, t = max(1l,q) = ¢« in
Theorem 4.1 (i) to obtain the nested embedding

(4.5) H(po,q,8+1/p—1/po,8) = H?? — H(1,q,1/p—1).

Applying the functor [-]; to (4.5) we find

[H (po; 4,8+ 1/p —1/po, B)lr = [HP]y — [H(1,qx,1/p — 1)1
Since H(1,g«,1/p — 1) is a Banach space,
(4.6) [H(1,q+,1/p—1)]1 = H(1,q4,1/p — 1).
Using Theorem 4.3, we also find

(47) [H(p,Qa/B + 1/p - 1/p0,,3)]1 = H(l,q*,ﬁ + 1/p - 175)

But the spaces on the righthand sides of (4.6) and (4.7) are identical
by Lemma 2.2 (i). This establishes the first equality in Theorem 4.2 (i)
and hence the second inequality as well via Theorem 4.3 (ii). The proof
of Theorem 4.2 (ii) is similar.

Combining Theorems 4.2 and 4.3 one sees that the Banach envelopes
of the spaces HP'? are reflexive and Abel reflexive for 0 < p <1< g <
0o. Similarly, from Corollary 3.2 and Theorem 4.2, we deduce that, for
0<p<l1,

(49) (HE™)" = (HE™)" = H(o0,1,1,1/p).
It then follows from (4.8), Theorem 4.3 (ii), and Lemma 2.2 (i), that
(4.9) (H§™)* = H(1,00,1/p — 1).

That we also have (HP*°)® = H(o0,1,1,1/p) is a consequence of the
following result of Shi [51].

Lemma 4.1. Let 0 < o < 00. Then
(i) H(1,00,a)* = Hy(1, 00, ),
(if) H(1, 00, ) = H(1, 00, ).
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Corollary 4.1. Let 0 <p < 1. Then
(i) (H?*)* = H(o0,1,1,1/p),
(if) (HP*>°*)** = H(1,00,1/p — 1).

Proof. (i) Using Lemma 3.1 (i) twice, (4.8), Theorems 4.2, 4.3 and
Lemma 4.1 (i), we obtain

(4.10) H(1l,00,1/p—1)* C (H»*>)* C (HY™)* = (HY™)*
= Hy(1,00,1/p—1)* = Hp(1,00,1/p — 1)* = H(1,00,1/p — 1)°.

Since the endpoint spaces in (4.10) are the same, (i) follows from (4.8)
and (4.10).

(i) This follows from (4.9) and (4.10). ]

5. Multipliers of H?? and HY* into I5, 0 <p < 1, 0 < g < oo,
0 < s < co. In this section we determine the multiplier spaces (E, X)
where E is either H?? or H", 0 <p < 1,0 < ¢ < 00, and X is [*,
0 < s < 0. Here [® is the usual Lebesgue sequence space consisting
of s-summable sequences in W when s # oo and bounded sequences in
W when s = co. Actually we do a little more. If E is either HP'¢ or
HI"™ 0<p<1,0<q< oo, wefind (E,X) whenever X is [*-reflexive
for some 0 < s < co. We also find the multiplier spaces (H?*°, X) for
solid target spaces X. Recall that a vector subspace X of W is said to
be solid if for every = {z,,}, y = {y.} € W, we have y € X whenever
z € X and |yn| < |zn|, n € Ny. Equivalently, X is solid if either of the
conditions

(5.1) I c(X,X) or (I®,X)=X

are satisfied. The notation s(X) = (I*°, X) is commonly used. In
general, s(X) is the largest solid subspace of X. We note here that for
arbitrary spaces F and X, the multiplier space (E, X) is solid whenever
the target space X is solid. Consequently, [*-reflexive spaces are solid.
Thus the result for HP>*° is more general than the corresponding result
for HY™.

The determination of (F,X) in these cases and others frequently
requires using the analytic transform to identify (E, X) with a weighted



1232 MARC LENGFIELD

sequence space. If X is a vector subspace of W and the element w € W,
we define the weighted space X,, = B,1(X)={y € W :wy € X}. If
X is a quasi-Banach space with quasi-norm || - ||x, then (X, | - || x.,)is
a quasi-Banach space where ||y||x, = |lyw|x, ¥ € Xy. For —c0 <
a < 00, let wy = {wy(n) : n € No} be the power sequence defined by
we(0) = 1 and wy = n® for n # 0. In this case we will write (X,, |||l x,)
in place of (Xu,| - |lx,)- The following lemma gives the relationship
between (E, X) and (E4, Xg). The proof is purely algebraic, [48].

Lemma 5.1. Let E and X be vector subspaces of W, and let
—oo < a, < oo. Then

(EDHXB) = (Ea—ﬁvX) = (EaXﬂ—a) = (EvX)ﬂ—Ot'

Of special interest to us are the dyadically blocked sequence spaces
I(p,q) and their weighted analogs. These spaces are defined as follows.
Let 0 < p, ¢ < o0, set Iy = {0}, and for n € Ny, n > 0, set I, =
NoN[27~1,2™). Then I(p, q) is the subspace of W consisting of elements
& = {x,} such that ||z||;p,q) < 00, where [|z||;p.q) = ll[{zr }rer, lir]1a-
For —co < a < oo, we write (I(p,q, ), || - [li(p,q,)) for the weighted
space (I(p, @)as || - ||i(p,q). )- The spaces (I(p,q, ), || - li(p,q,)) are quasi-
Banach spaces and (I(p,p,0), || - [lip,p,0)) = (%, || - |li»), where || - [|1» is
the standard quasi-norm on [?. Furthermore, I(p,q,a) — I5° — H(D),
and hence I(p, g, @) is also an FK-space. The multipliers between these
spaces are well known. The following result is due mainly to Kellogg
[31], see also [26—28, 51]. Before stating the theorem we introduce
notation. Let 0 < ¢, s < co. Then g * s is the extended real number
defined by gx s =sif g=o00, ¢ s=¢qs/(¢g—5) if 0 < s < g < 00, and
gxs=00if0<g<s< 0.

Theorem 5.1. Let 0 < p,q,7,5 < 00, —00 < a, 3 < 00. Then

(l(pa q,a),l(r,s,ﬁ)) = l(p* T, q* 876 - a)‘

We remark that a consequence of Theorem 5.1 is that I(p,q,«) is
[*-reflexive for —co < a@ < oo and 0 < s < p, ¢ < oo. The space
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cg, of null sequences, is an example of a space which fails to be [°-
reflexive for every 0 < s < co. In addition to Theorem 5.1 we need a
lemma. Lemma 5.2 is due to Aleksandrov [2] but may also be seen to
follow from Theorem 4.1. In the lemma the spaces H?>*>° and H}** are
considered as sequence spaces of Taylor coefficients.

Lemma 5.2. Let 0 <p < 1. Then

(i) HP> = 152

(i) Hy'™ < (co)1-1/p-

Theorem 5.2. Let 0 < p < 1, and let X be a solid FK-space
satisfying X — H(D). Then

(HP™, X) = Xy /p-1.

Proof. Since X is solid, it follows that X;,, ; is solid. Therefore,
using Lemma 5.2, we find

(52) Xl/p—l - (loo,Xl/p_l) - (lfil/p7X)
Then the inclusion
(53) lel/p C (HP’OO,X)

results from (5.2) and Lemma 5.1.

We obtain the reverse inclusion of (5.3) as follows. Let
(5.4) g(z)=(1—2)""  2eD.
Then, for 0 <t < 1,
(5.5) g (t) ~t7P and ge HP™.

The Taylor coefficient sequence of g is

L(n+1/p)
o Uttt |
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A well-known consequence of Stirling’s formula is that

1/p—=1 |
(5.7) {7} 1.

L(n+1/p)

Therefore, we deduce the reverse inclusion of (5.3) from (5.1) and (5.5)
through (5.7). u]

Corollary 5.1. Let 0 < p < 1,0 < s < oo. Then (HP>,0®) =
lS

1/p—1-

Theorem 5.3. Let0 <p < 1,0 < s <oco. Then (HJ™,l%) = 15 p1-

Proof. We prove only the case s # 0o, the other case being similar.
Using Corollary 5.1 and Lemma 3.1 (i) we obtain

(5-8) Tp—1 = (HP®,1%) C (HY™, 1%).

Next we show the reverse inclusion of (5.8) holds. Fix A = {\,} €
(HE™,1%). Since [* is solid there is no loss of generality in assuming
A > 0, n € Ng. Furthermore, the solidity of lf/p_l and (5.7),
show that A € 17, if and only if {I'(n + 1/p)A,/(I'(1/p)n!)} € I°
Consider the operator By € L (HE™,1°) corresponding to A. That is,
for f € HY"™, with Taylor series representation (2.3) we have

(5.9) BA(f) = aX = {an\n},
and
(5.10) 1 Ball ez 15y = [|All gz 15y < 00.

Let g be the Cauchy-type function in (5.4). Then for 0 < r, t < 1,
(5.11)  (g:)"(t) ~ Cr(1 = 1) TP g0,y (8) + Cat T PX 1y (1)

where the constants C;, j = 1,2, are independent of r and ¢, and X4
denotes the characteristic function of a set A. Thus, (5.5) and (5.11)

imply

(5.12) sup ||gr||ar. < Cl|gllap~ < 00.
0<r<1
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For 0 < r < 1, put ®(r) = ||Bx(g,1/s)||js- It follows from (5.10)
and (5.12) that ® is bounded on [0,1). From (5.6) and (5.9)
we see that g, = {(T(n+1/p)A.r™*)/(D(1/p)n!)} and ®(r) =
I{(T(n + 1/p)Anr™*)/(n!T(1/p))}||5.- It therefore follows that & is
an increasing function of r. From these observations we deduce that
lim,_,;- ®(r) exists; hence, the positive sequence {((I'(n+ 1/p)\,)/
(n!'(1/p)))*} is Abel summable and consequently belongs to I'. But
then {(T'(n 4+ 1/p)An)/(n'T'(1/p))} € I° which is what we needed to
show. |

The space [° is a rearrangement invariant quasi-Banach function space
with Ny equipped with counting measure as the underlying measure
space. Quasi-Banach function spaces are always solid. A rearrangement
invariant quasi-Banach function space X is called maximal if every
quasi-norm bounded increasing sequence in X is bounded above in X,
see [30]. It is not hard to see that if X is a maximal rearrangement
invariant quasi-Banach function space, then (H{"™,X) = Xj/,_1.
Another situation where we have (H{"™,X) = X;/,_; is when X is
l*-reflexive. For 0 < s < oo and an arbitrary space X, we use the
notation XX() for (X,1°) and XK)K() for (XK())K(s) Thus, the
space X is [°-reflexive if and only if XX(®)K() = X, We have the
following generalization of Theorem 5.3.

Theorem 5.4. Let 0 < p < 1, and let X be an FK-space which is
I*-reflexive for some 0 < s < 0o. Then

(Hg,oo’X) == Xl/p—l'

Proof. Since X is °-reflexive, X;/,_; is solid. Hence, Theorem 5.2
and Lemma 3.1 (i) produce the inclusion

(513) Xl/p—l = (Hp’w,X) C (Hg,oo’X)

To get the reverse inclusion of (5.13), we use Lemma 3.1 (ii), the
I®-reflexivity of X, and the identity

(5]‘4) ( ng/p—l)K(S) :l?il/p‘
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Then, using (5.2), (5.13), Theorem 5.3, Lemma 3.1 (ii), Lemma 5.1 and
(5.14), we get

(HE™, X) € (XKO), (Hp=)KE) = (XK1, )
C (1521 XEOEE) = (152, X)

= Xl/p—l C (Hg’oo,X),

and the proof is complete. ]

In Theorem 5.4, the hypothesis that X be [°-reflexive for some
0 < s < 0o cannot be omitted.

Corollary 5.2. Let 0 <p < 1. Then (Hg™, co) =177, ;-

Proof. Use Lemma 3.1 (i) and (ii), Lemma 5.2 (ii), Theorem 5.4 and
the identity Z?/Jp—1 = ((co)1=1/p c0)- O

We turn now to the study of the multiplier space (H??, X) where
X is an [®-reflexive FK-space. We need two results from the theory of
mixed norm spaces. The first of these is part of the folklore. The case
g = t may be found in [8].

Lemma 5.3. Let 0 < p <2, 0<q¢g<t<o0, 0<a< oo,
—00 < < 00. Set pg = min(1,p) and p1 = max(1l,p). Let p}j be the
Holder conjugate of p1, 1/p1 + 1/p| = 1. Then there is the embedding

H(paqvaaﬁ) (_>l(p/17t71 - 1/p0+67a)‘

The second result we need is a theorem of Pavlovic characterizing
the multiplier spaces (H(p,q,a),l®) for 0 < p < 1,0 < g, s < o0,
0 < a < 00, [43]. See also [28]. For some special cases of the theorem,
see [1, 39].

Theorem 5.5. Let0<p<1,0<¢q, s <00, 0<a<oo. Then

(H(p,q,),l°) =1(s,g*s,a+1/p—1).
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Lemma 2.3 may be used to obtain the following extension of Theo-
rem 5.5.

Corollary 5.3. Let 0 < p <1, 0<¢q, s <00, 0 < a < o0,
—00 < B < oc0. Then

(H(p,q,,8),1°) = l(s,q*s,a = +1/p—1).

Duren and Shields showed that (H?,1®) = l(s,00,1/p — 1) for 0 <
p<1 p<s<oo, [10, 12, 13]. In [27], Jevtic and Pavlovic showed
that

(Hpvls) = l(S,p * 8, ]-/p - 1)

for the case 0 < s < p < 1. Theorem 5.6 below extends these results to
the Hardy-Lorentz space setting.

Theorem 5.6. Let0<p<1l,0<g<o0,0<s<oo0. Then
(5.15) (H?9)1°) =1(s,q x s,1/p — 1).

Proof. From Theorem 4.1 we have the embeddings

(5.16)  H(po,q,8+1/p—1/po,B) — HP? — H(1,q,1/p — 1)

where 8 > 1/po—1/p > 0. Applying Lemma 3.1 (i) to (5.16) and using
Corollary 5.3, we have

l(s,gxs,1/p—1)=(H(1,q,1/p —1),1°) C (H?9,1°)
C (H(poaqaﬁ + ]-/p - 1/p075)’l3)
=1(s,qg*s,1/p—1),
which establishes (5.15). u]

Theorem 5.6 generalizes to

Theorem 5.7. Let0 <p < 1,0 < q < oo. Let X be an FK-space
which is 1°-reflexive for some 0 < s < 0o, and set t = max(q, s). Then

(HP9, X) = (i(00,t,1 — 1/p), X).
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Proof. Observe that, for 0 < ¢, s < oo,
(5.17) (gxs)xs=t.
Now apply Lemma 3.1 (iii) followed by Theorem 5.6 to obtain
HPY X)) C (XKG) (HPa)K()
518) (F9,X) € (X0, (177) )
= (XKG) i(s,q*s,1/p—1)).

Since X is l*-reflexive, a second application of Lemma 3.1 (iii) to the
last space in (5.18) together with Theorem 5.1 and (5.17) yields
(5.19)

(XK(S)a l(S, q xS, 1/p - 1) C (Z(S, q xS, ]-/p - 1)K(S)7 XK(S)K(S))
(I(o0, (g% s) *xs,1—1/p), X)
= (l(oovta 1- 1/p)7X)

Then, starting with the last space in (5.19), use Lemma 3.1 (iii) three
times, first with Lemma 5.3, then with Theorem 4.1, and finally with
the Hardy-Lorentz analog of inclusion (2.1). As a result, we get
I(co,t,1—1/p),X) C (H(1,t,1/p—1),X) C (HP', X)

C (HP, X).
Combining (5.18)—(5.20) completes the proof. O

(5.20)

Theorems 5.4 and 5.7 may be used to compute the multiplier spaces
(E,ces(s)), where E is one of the Hardy-Lorentz spaces H™ or
HP? 0 <p <1,0< g < oo0and for 1 < s < oo, ces(s) is the
Cesaro sequence space consisting of sequences {zy} € W satisfying
Yoo (/)Y op_y |lzkl)* < oo. Since it is known that ces(s) =
I(1,s,1/s — 1), [20], then we have the following result.

Corollary 5.4. Let 0 <p<1,0<g<00,1<s<o0. Then
(1) (Hp,q, C@S(S)) = l(]-aq * S, 1/]) + 1/3 - 2)7
(i) H ™ ces(s)) =1(1,s,1/p+1/s—2).

Corollary 5.5. Let 0 < p < 1, and suppose X s an FK-space which
is I*-reflexive for some 0 < s < 0co. Then for every 0 < q < s,

(HP9, X) = (HP*, X) = (I(00,,1 — 1/p), X).
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Corollary 5.5 asserts that given a FK-space X which is [®-reflexive
for some 0 < s < oo and a number 0 < p < 1, the X-valued
multiplier spaces for the Hardy-Lorentz space scale {H?9}g<q<, will
coincide. This is really due to the fact that the Bergman-Sobolev spaces
appearing in the proof of Theorem 5.5 enjoy this property. We conclude
this section with a Hardy-Lorentz analog of a well-known result of
Hardy and Littlewood for HP spaces.

Corollary 5.6. Let 0 < p <
Taylor series representation f(z

1,0 < g < ©. Suppose f € HP? has
) m:

= _oan2", z€D. Then

oo 1/q
(5:21) (Xt anfe) <l lane
n=1

The diagonal case p = ¢ is a result of Hardy and Littlewood and
is actually valid for 0 < p < 2. We also mention that, for f € HP,
0<p<1 p<qg< oo, the series (5.21) is known to converge, [12].
Since {n'~1/P=1/4} belongs to I(q,0,1/p — 1), Corollary 5.5 follows
from the identification (H?'9,19) = I(g,00,1/p — 1). Finally, we note
that (5.21) remains valid if H?? is replaced by H(1,q,1/p — 1).

6. Multipliers of H”? and Hy™, 0 < p < 1, 0 < ¢ < oo,
into Bergman-Sobolev spaces. Our main tools in this section are
Theorem 4.1 and the following result of Pavlovic [43], see also [28].

Theorem 6.1. Let 0 < ¢,s,t < 00, 0 < p < min(l,s), 0 < «,
B < 0o. Then

(61) (H(pa Q7a)7H(svt7/3)) = H(s,q * t,,B,oz + 1/p - 1)

Note that by Lemma 2.2 the space on the righthand side of (6.1)
coincides with H(s,q xt,1,1/p + a — B).

Corollary 6.1. Let 0 < ¢,s,t < 00, 0 < p < min(l,s), 0 < a,8 <
00, —00 < 0§, v < 0o. Then
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(i) (H(p, ¢, ,0), H(s,t,8,7)) = H(s,gxt,1,1/p+a—B+v—4),

(ii) (Ho(p,00,,0), H(s,t,8,7)) = H(s,t,1,1/p+a— B+~ —9),

(i) (Ho(p, 00, @, 6), Ho(s,00,8,7)) = H(s,00,1,1/p+a—B+v—4),

(iv) H(p,00,a,6), Ho(s, 00, 8,7)) = Ho(s,00,1,1/p+a— B +v—9),
(v) (H(p,q,0,8), Ho(s,00,8,7)) = H(s,00,1,1/p+a—B+v—10) if

q# 0.

111

Proof. (i) Let g € (H(p,q,,0),H(s,t,8,7)). By Lemma 2.3 the
maps Dgs and D7 are continuous surjective isomorphisms

DzsiH(P,Qaa) —>H(p7Qaa76)
D’Y:H(Sataﬁa’Y) HH(S’taﬁ)

and hence DY ogo Ds € (H(p,q,a), H(s,t,3)). But DY o go Ds is the
same multiplier as (g[ﬂ)[g]. Therefore, from (6.1), Lemmas 2.2 and 2.3,
we deduce

~—

(6.2) (H(p,q,,0),H(s,t,3,7)
C Dy(D°((H(p,q, ), H(s,t,8))))
=D, (D°(H(s,q *t,B,a+1/p—1)))
=D, (H(s,q*t,8,a =6+ 1/p—1))
=H(s,g*t,f,a+~v—30+1/p—1).

Similarly,
(6'3) (H(p’ q, a)’ H(S’ t, ﬂ)) C D(s (D7 (H(p, q’ a’ 6)’ H(S’ t, ﬁ? ,‘/))'
Therefore, (6.3) implies

(6.4) H(s,gxt,a+vy—06+1/p—1)
= D,(D°(H(s,q #t,8,a+ 1/p—1)))
= D,(D°((H(p,q, ), H(s,t,3))))
C (H(p,q,,6),H(s,t,5,7))-

Then (6.2) and (6.4) together give us (i).
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(ii) This follows from (i) and the monotonicity of the means My(-, f)
for f e HD), 0 <k < 0.

(iii) This follows from (ii) and the fact that for every 0 < k < oo,
0<n<oo, —00< v < oo, the function F € H(k,o00,n,v) belongs to
Hy(k, 00, n,v) if and only if F, — F in H(k,00,n,v) asr — 1.

(iv) First note that the inclusion
(65) (H0(57 00,1, 1/p+a_5+’y_6) - (HO(p7 00, &, 7)7 H(87 0, ﬁafy))

follows from (i) and the fact that for every 0 < k£ < 00, 0 < 7 < 00,
—00 < v < 00, the function F' € H(k,o0,n,v) belongs to Hy(k, 00, n,v)
if and only if F,. — F in H(k,oc0,n,v) asr — 1.

To prove the reverse inclusion of (6.5), we consider the case d =y =0
first. Let g € (H(p, o0, ), Hy(s,00,8)). The Cauchy-type function
F(z) = (1 —2)"2 Y7 2 € D, belongs to H(p,00,a). Therefore
g+ F € Hy(s,00,8). But for any w € D, g * F(w) = I'(a +
1/p)~tglet1/p=U(y). Hence, g € Hy(s,00,8,a + 1/p — 1) which is
equivalent to g € Hp(s,00,1,1/p + o — 3) by Lemma 2.2. For the
general case we argue as in the proof of (i), using Lemma 2.3 to write

(H(pa 0, &, 6)7 HO(Sa oo, /8’ ’Y)) = DJ(D’Y((H(pa 0, a)’ HO(Sa 0, /8))))
Then use the validity of (iv) for the case § =y = 0.

(v) The proof is similar to the proof of (iv). o

Theorem 6.2. Let 0 < ¢,s,t < 00, 0 < 8 < 00, 0 < p < min(l,s),
—o00 < vy < oo. Then

(i) (H™,H(s,t,8,7)) = H(s,q*t,1,1/p+v = B),
(i) (HP?, Ho(s,00,8,7)) = H(s,00,1,1/p+~ — ), ¢ # o0,
(iii) (H?>°, Ho(s,00,08,7)) = Ho(s,00,1,1/p+v - f),
(iv) (He™, H(s,t,8,7)) = H(s,t,1,1/p+~ = B),
(v) (Hy™, Ho(s, 00, 8,7)) = H(s,00,1,1/p + 7 — B).

Proof. We prove (i) only, the proofs of (ii) through (v) being similar.
Let 0 < py < pand § > 1/pyp — 1/p. By Theorem 4.1 we have
embeddings

(6.6) H(po,q,6 +1/p—1/py,8) — HP? — H(s,q,1/p—1/s).
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By Corollary 6.1, the multiplier spaces

(H(po,q,6 +1/p —1/po,6), H(s,t,5,7))
and
(H(S,q, ]-/p_ 1/8)7H(57t7/8a7))

are both equal to H(s,q*t,1,1/p+ v — ). Then (i) follows from this
fact and (6.6). O

7. Multipliers of H?? and Hy™, 0 < p < 1, 0 < ¢ < oo,
into Hardy spaces. In this section we consider the multiplier spaces
(HP9,H®) and (HY,H*) for 0 <p<1,0< g <o00,0< s < oo. We
are able to determine these spaces for the cases 0 < ¢ < min(2, s) and
0 < q< oo, s=2 Since H> = I2, the second case was addressed in
Section 5. We restate that result in terms of Bergman-Sobolev spaces
below. To do this, we need the following lemma from [8], see also [40,
43, 53).

Lemma 7.1. Let0< ¢ < 00,0 < a <00, —00 < <oo. Then

H(2,q,0,8) =1(2,q,8 — ).

Using Lemma 7.1, the identification H? = {2, and either Corollary 5.1
or Theorem 5.6, we have the following result.

Theorem 7.1. Let 0<p<1,0< g < oco. Then

(HP? H?) = H(2,q%2,1,1/p).

We turn now to the case 0 < ¢ < min(2,s). First we record the
following.

Theorem 7.2. Let 0 < s < 00, 0 < p < min(l,s). Then

(HP,H®) = H(s,00,1,1/p).
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Theorem 7.2 dates back to Hardy and Littlewood who observed that
H(s,00,1,p) C (HP,H®) for 0 < p <1 < s < 00, [20, 21]. The case
s = oo corresponding to the Duren-Romberg-Shields theorem of [11]
reduces to (4.3). Duren and Shields proved Theorem 7.2 for the case
0 <p<1<s<oo,[13]. The proof for the case 0 < p < s < 1is
due to Mateljevic and Pavlovic [38]. Theorem 7.3 below represents an
extension of Theorem 7.2 to H”? for 0 < ¢ < min(2,s). We will need
the following lemma.

Before stating this result we introduce some notation. For 0 < s < oo,
the Dirichlet-type space D* is defined to be the space H(s,s,1,1).

Lemma 7.2. Let 0 < s <2<t < o0. Then
(i) D®* — H® — H(s,2,1,1),
(ii) H(t,2,1,1) — H* — Dt.

For statements and proofs of Lemma 7.2, the reader may consult [8,
17, 28, 34, 36, 41]. Recently, Baernstein, Girela, and Pelaez have
shown that for all 0 < s < 0o, H* NU = D* NU, where U is the class
of univalent functions on D, [4].

Theorem 7.3. Let 0 < s < 00, 0 < p < min(l,s) and 0 < q <
min(2, s). Then
(HP? H®) = H(s,00,1,1/p).

Proof. Assume first that 0 < s < 2. Then using Lemma 7.2 and
Lemma 3.1 (ii), we have

(7.1) (HP4, D) C (HP4, H®) C (HP, H{(s,2,1,1)).

By Theorem 6.2 (i), both of the endpoint spaces in (7.1) are equal to
H(s,00,1,1/p). For the case 2 < s < o0, the reverse inclusion of (7.1)
holds and the rest of the proof is exactly the same as in the first case. O

Theorem 7.3 has the following corollary.
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Corollary 7.1. Let 0 < ¢ < s<2,0 < p < min(l,s). Then

(7.2) (HP9, H>) = () (HP', H*").

q<t<s

Proof. We prove the inclusion (H?'?, H5?) C Ng<i<s(HPt, H*"') with
the reverse conclusion being obvious. Let g € (HP?, H*?). Since
g < s < 2, we have (HP9, H*?) C (HPY,H®) = (HP*, H®) by the
Hardy-Lorentz analog of (2.1), Lemma 3.1 (i) and Theorem 7.3. Thus
g is a bounded multiplier for

g:HP® - H® and g¢:HP? — H>9.
Therefore, by interpolation, we find g is also bounded as a multiplier
g: (HP, H"®)ge — (H>, H®)gy,

for 0 < 0 <1and 1/t = (1-6)/q+ 0/s. Then an application of
Theorem 2.1 (ii) implies g is bounded as a multiplier

g:HP' — H' forall ¢ <t < s. i

8. Multipliers of H?? and H{"”, 0 <p <1, 0 < ¢ < oo, into
analytic Lipschitz spaces, analytic Zygmund spaces, Bloch
spaces and BMOA. In this section we apply the results of the
previous two sections to some specific target spaces belonging to the
class of Bergman-Sobolev spaces. The target spaces we have in mind
are the analytic Lipschitz and Zygmund spaces and the Bloch spaces.
We also have some results for the case when the target space is
BMOA. For the discussion that follows we assume f € H(D) and
that f has nontangential limits m almost everywhere on T. We
denote the resulting boundary value function by the same symbol
f. For 1 < s < oo, the moduli of continuity ws(f)(t) and Q(f)(t)
of f are defined for t > 0 by ws(f)(t) = supgc p<: 1Th(f) — flls
and Q,(f)(t) = supgcini<t Th(f) — 2f + T-n(f)|ls, where T}, is the
translation operator given by Ty, (f)(e%) = f(e¥TM). Let 0 < o < 1.
Then f is said to belong to the analytic Lipschitz space AZ (D),
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respectively A3 (D), if ws(f)(t) = O(t*), respectively o(t*), as t — 0T.
If the boundary value function f € C(T) and Q(f)(t) = O(¢),
respectively o(t), as t — 07, then f is said to belong to the analytic
Zygmund space A° (D), respectively AS°(D). For 1 < s < oo, f is said
to belong to the analytic Zygmund space A$(D), respectively A$(D),
if Qs(f)(t) = O(t¥), respectively o(t*), as t — 0*. Theorem 8.1
below is a collection of well-known results of Hardy and Littlewood
identifying various analytic Lipschitz and Zygmund spaces as Bergman-
Sobolev spaces. See [10, 57]. In order to cover the case a = 1, we
recall that for 0 < s < o0, 0 < B < oo, the Hardy-Sobolev space
Hy={f e HD): f¥l e H*}.

Theorem 8.1. Let0 < a<1<s<o0. Then

(i) A2(D) = H(s,00,1 — a,1) and A\3,(D) = Hy(s,00,1 — a, 1),
(ii) A3(D) = H(s,00,1 — «,2) and A\(D) = Hy(s, 00,1 — a, 2),
(i) A3(D) = H;.

We combine Theorem 8.1 with the Duren-Romberg-Shields theorem
to find the multipliers from HP'? into the analytic Lipschitz spaces
A2 (D), Ae°(D) and analytic Zygmund spaces A (D), A°(D), 0 < a,
p<l,0<qg<o0.

Corollary 8.1. Let 0 < a, p <1, 0< g < o0. Then

() (H9,A(D)) = (Hy™,AZ(D)) = H(o0,00,1,1/p + ) =
(HP/(+ap))y*

(i) For q # oo,

(H, 2% (D)) = (Hy™, 3% (D)
= H(007 o0, 1, ]-/p + 04) = (HP/(l-l-ap))*’

(iii) (H”*,A3°(D)) = Ho(o0,00,1,1/p + ),

(iv) (HP9,A¥(D)) = (H§™,A¥(D)) = H(c0,00,1,1/p + 1) =
(Hp/(1+p))*,
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(v) For g # oo,

(HP9,X2(D)) = (HE ™, X2(D)) = H(00,00,1,1/p + 1)

*

(HP/(HP)y*

(vi) (HP>°,\>(D)) = Hy(00,00,1,1/p + 1).

Corollary 8.1 shows that for 0 < a < 1, the secondary index ¢ is
irrelevant with respect to the multiplier spaces (H?'9, E) for the target
spaces E = A2(D) or E = A2°(D). The same is true for the target
spaces E = A°(D) or E = AP(D) provided ¢ # oco. A similar
phenomenon occurs when the target spaces are the Bloch spaces. Let us
recall that the Bloch space B and the little Bloch space By are realized
as Bergman-Sobolev spaces using the identifications B = H (00, 00,1,1)
and By = Hy(c0,00,1,1). The Bloch space analog of Corollary 8.1 is
the following.

Corollary 8.2. Let 0 <p<1,0< g< 0. Then

(i) (H™9,B) = (Hy'™, B) = H(o0,00,1,1/p) = (H?)",

(i) (H?,Bo) = (Hy™, Bo) = H(o0, 00,1,1/p) = (HP)*, q # oo,
(iii) (HP*°,By) = Hp(oo,00,1,1/p).

We observe here that the fractional derivative operator D = D!
is a continuous isomorphism of the analytic Zygmund space A2 (D),
respectively AS°(D), onto B, respectively By. Thus, Corollary 8.2 may
be viewed as an isomorphic version of the Zygmund space portion of
Corollary 8.1.

In contrast, the Lipschitz spaces A{°(D) will, in general, determine
different multiplier spaces (H?'?, A$°(D)) for different values of . This
is demonstrated in the next result which follows from Theorem 8.1 and
Theorem 4.2.

Corollary 8.3. Let0<p<1,0<g< 0. Then
() (HP9,AF(D)) = (HP/0+P)0)",
(i) (H7, A% (D)) = (Hy/ 7).
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For 1 < s < oo, we have the following analogs of Corollaries 8.1 and
8.3.

Corollary 8.4. Let0<a,p<1<s<00,0<qg< 0. Then

() (HP9,A5(D)) = (Hy™,AL(D)) = H(s,00,1,1/p + a) =
(HP/(+ep) s),

(i) For g # oo,
(H?9,25,(D)) = (Hy™, A%(D)) = H(s,00,1,1/p+ a)
— (Hp/(1+ocp),HS)’

(iii) (HP>°,A5(D)) = Ho(s,00,1,1/p + a),

(iv) (H?9,A3(D)) = (H{™,Ai(D)) = H(s,00,1,1/p + 1) =
(HP/HP,HS),

(v) For q # oo,
(HP,X.(D)) = (Hy™, A{(D)) = H(s,00,1,1/p+ 1)
= (HP/(HP) g9),

(vi) (HP>°, \2(D)) = Hy(s,00,1,1/p +1).

Corollary 8.5. Let 0 < p<1<s<00,0<qg<o0. Then

i) (HP9,A3(D)) = (HP/(+p)a [s),

(i) ( i

i) (HP™, A;(D)) = (HY U7 g9).

(i) (Hy™, Af 0

The space BMOA is the space of functions f € H(D) having
nontangential limits m almost everywhere on T for which the resulting
boundary value function f is of bounded mean oscillation on T. That
is, for which

(8.1) sup [m(I) ~'|(f = fr)Xrll1] < oo

ICT
where the supremum in (8.1) is taken over all subintervals I C T and
fr = m(I)7* [, f(z)dm(z). The space BMOA is not a Bergman-
Sobolev space. However, we do have the following embedding, see
38].
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Lemma 8.1. H(c0,2,1,1) — BMOA.

Theorem 8.2. Let 0 <p<1,0<q< 2. Then

(HP9, BMOA) = (HP)* = (HP>,B).

Proof. Using the Duren-Romberg-Shields theorem, Theorem 6.2,
Lemma 8.1, Lemma 3.1 (ii) and Corollary 8.2 (i), we find (H?)* =
H(oo,00,1,1/p) = (HP?, H(00,2,1,1)) C (H?1,BMOA) C (HP?,B)
= (HP)* and (H?)* = (HP*°,B) by Corollary 8.2 (i). O

We have not been able to find (H??, BMOA) for 2 < ¢ < oo.
However, we can show

(HY2> BMOA) # (HY?*>,B).

To show (8.2), let G be a function in B which is not in BMOA. The
fractional integral operator D = D; is a continuous isomorphism of B
onto A°(D) and hence G};) € A2°(D), [10]. But A%®(D) = (HY/*>,B)
by Theorem 8.1 and Corollary 8.2 (i) and so G|y) € (H'/*>, B). Since
the function f(z) = (1 —2)"2 € HY%> and since f * G = G,
then G|y fails to multiply H/2% into BMOA. Thus, G|y belongs
to (H'/?°° B) but not to (H'/> BMOA) which establishes (8.2).
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