δ-SPIRALLIKE FUNCTIONS WITH RESPECT TO A BOUNDARY POINT

ADAM LECKO

ABSTRACT. The aim of this paper is to present a new method of the proof of an analytic characterization of δ spirallike functions with respect to a boundary point.

1. Introduction. In this paper we examine the class $S_0^{\supset}(\delta)$ of δ spirallike functions with respect to a boundary point. This geometric idea arises from the concepts of δ -spirallikeness with respect to an inner point as well as from starlikeness with respect to a boundary point. Spirallikeness with respect to a boundary point is a quite fresh idea introduced and studied by Elin, Reich and Shoikhet [3] and Aharonov, Elin and Shoikhet [1], who developed the methods based on Robertson's formula for starlike functions with respect to a boundary point [11], and on some dynamical system.

An alternative analytic formula for functions in $\mathcal{S}_0^{\triangleright}(\delta)$ was proposed in [7, Theorems 3.5 and 3.8], where the method based on the Julia lemma was explored. This technique of study of the class $\mathcal{S}_0^{\ni}(\delta)$ is a continuation of ideas from [6, 8], where an analytic description of starlike functions with respect to a boundary point, other than the characterization found by Robertson [11] and completed by Lyzzaik [9], was shown.

In this paper we reprove results from [7] in a new way. Let us emphasize that the proofs of main results in [7] were based on geometrical argument, now are mainly analytical.

²⁰⁰⁰ AMS Mathematics subject classification. Primary 30C45.

Keywords and phrases. δ -spirallike functions with respect to a boundary point, spirallike functions with respect to a boundary point, starlike functions with respect to a boundary point, Julia lemma. Received by the editors on May 16, 2005.

2. Preliminaries.

2.1. For $z_0 \in \mathbf{C}$ and r > 0, let $\mathbf{D}(z_0, r) = \{z \in \mathbf{C} : |z - z_0| < r\}$. Let $\mathbf{D} = \mathbf{D}(0, 1)$ and $\mathbf{T} = \partial \mathbf{D}$. For $c \in \mathbf{R}$ let $\mathbf{H}_c = \{w \in \mathbf{C} : \operatorname{Re} w > c\}$.

For $A \subset \mathbf{C}$ and $w \in \mathbf{C}$, let $wA = \{wu \in \mathbf{C} : u \in A\}$.

2.2. For each k > 0, let

$$\mathbf{O}_k = \left\{ z \in \mathbf{D} : \frac{|1 - z|^2}{1 - |z|^2} < k \right\}$$

denote the disk in **D** called an *oricycle*. The boundary circle $\partial \mathbf{O}_k$ is tangent to **T** at 1. Notice that $\mathbf{O}_k = \mathbf{D}(1/(1+k), k/(1+k))$ for every k > 0. Let $O_k = \partial \mathbf{O}_k \setminus \{1\}$.

2.3. The set of all analytic functions in **D** is denoted by \mathcal{A} . Its subset of univalent functions is denoted by \mathcal{S} .

The set of all functions $\omega \in \mathcal{A}$ with $\omega(\mathbf{D}) \subset \mathbf{D}$ will be denoted by \mathcal{B} .

2.4. By Δ we denote a Stolz angle of $f \in \mathcal{A}$ at 1.

An angular limit, respectively angular derivative, of $f \in \mathcal{A}$ at $\zeta \in \mathbf{T}$ will be denoted by $f_{\angle}(\zeta) \in \overline{\mathbf{C}}$, respectively $f'_{\angle}(\zeta) \in \overline{\mathbf{C}}$.

2.5. Let $f \in \mathcal{A}$. Assume that there exists a finite radial limit $v = \lim_{r \to 1^-} f(r)$. Denote by

$$Q_f(z) = \frac{(z-1)f'(z)}{f(z) - v}, \quad z \in \mathbf{D},$$

the Visser-Ostrowski quotient of f at 1, see e.g. [10, page 251].

2.6. Recall Julia's lemma, see [5], [2, pages 53-56], [12, vol. II, pages 68-72].

Lemma 2.1. Let $\omega \in \mathcal{B}$. Assume that there exists a sequence (z_n) in **D** such that

(2.1)
$$\lim_{n \to \infty} z_n = 1, \qquad \lim_{n \to \infty} \omega(z_n) = 1$$

and

(2.2)
$$\lim_{n \to \infty} \frac{1 - |\omega(z_n)|}{1 - |z_n|} = \lambda < \infty.$$

Then

(2.3)
$$\frac{|1 - \omega(z)|^2}{1 - |\omega(z)|^2} \le \lambda \frac{|1 - z|^2}{1 - |z|^2}, \quad z \in \mathbf{D},$$

i.e., for every k > 0,

$$\omega(\mathbf{O}_k) \subset \mathbf{O}_{\lambda k}$$
.

Equality in (2.3) for some z can occur only for an automorphism of \mathbf{D} .

Note that the constant λ defined in (2.2) is positive [2, page 54]. For $\omega \in \mathcal{B}$ with $\omega_{\angle}(1) = 1$ let

$$\Lambda(\omega) = \sup \left\{ \frac{|1 - \omega(z)|^2}{1 - |\omega(z)|^2} \cdot \frac{1 - |z|^2}{|1 - z|^2} : \ z \in \mathbf{D} \right\}.$$

The following corollary completes the Julia lemma [2, page 57], [4, page 44].

Corollary 2.2. Let $\omega \in \mathcal{B}$. Assume that there exists a sequence (z_n) in **D** such that (2.1) and (2.2) holds. Then

- (1) $\Lambda(\omega) \leq \lambda$
- (2) the following limits exist:

$$\lim_{\mathbf{R}\ni x\to 1^-}\frac{1-|\omega(x)|}{1-x}=\lim_{\mathbf{R}\ni x\to 1^-}\frac{|1-\omega(x)|}{1-x}=\lim_{\mathbf{R}\ni x\to 1^-}\frac{1-\omega(x)}{1-x}=\Lambda(\omega)$$

and, for every Stolz angle Δ ,

(2.4)
$$\lim_{\Delta\ni z\to 1}\frac{1-\omega(z)}{1-z}=\omega_{\angle}'(1)=\Lambda(\omega).$$

2.7. For further considerations it is convenient to use the class of functions denoted as $\mathcal{B}(\lambda)$ introduced first in [6]. It plays a crucial role in analytic characterization of starlike functions with respect to a boundary point [6] and spirallike functions with respect to a boundary point [7].

Definition 2.3. Let $\lambda \in (0, \infty]$. By $\mathcal{B}(\lambda)$ we denote the class of all $\omega \in \mathcal{B}$ such that $\omega_{\angle}(1) = 1$ and $\omega'_{\angle}(1) = \lambda$.

Remark 2.4. 1. From Corollary 2.2 we see that (2.4) holds under the assumption that there exists a sequence (z_n) of points in \mathbf{D} satisfying (2.1) and (2.2) with some positive constant λ . Thus (2.1) and (2.2) are sufficient conditions for ω to be in $\mathcal{B}(\lambda)$ with $\lambda = \Lambda(\omega) < \infty$. Vice versa, let $\omega \in \mathcal{B}(\lambda)$ with a finite λ . Then, by the converse of the Julia lemma ([12, volume II, page 72], [4, pages 42–44]), from (2.3) it follows that there exists a sequence (z_n) of points in \mathbf{D} satisfying (2.1) and (2.2) with $\lambda = \Lambda(\omega)$. Thus the existence of a sequence (z_n) of points in \mathbf{D} satisfying (2.1) and (2.2) with some $\lambda \in (0, \infty)$ is a necessary and sufficient condition for ω to be in $\mathcal{B}(\lambda)$ with $\lambda = \Lambda(\omega)$.

- 3. An analytic characterization of δ -spirallike functions with respect to a boundary point.
- **3.1.** For $\delta \in (-\pi/2, \pi/2)$ let $L(\delta) = \{\exp(e^{-i\delta}t) : t \leq 0\}$. For $\delta \neq 0$, $L(\delta)$ is the logarithmic spiral joining 0 and 1. Clearly, L(0) = (0, 1].

Definition 3.1. Let $\delta \in (-\pi/2, \pi/2)$. By $\mathcal{Z}_0^{\supset}(\delta)$ we denote the class of all simply connected domains $\Omega \subset \mathbf{C}$, $\Omega \neq \mathbf{C}$, such that $0 \in \partial \Omega$ and $wL(\delta) \subset \Omega$ for every $w \in \Omega$. Such domains will be called δ -spiralshaped with respect to a boundary point. Let

$$\mathcal{S}_0^{\Game}(\delta) = \{ f \in \mathcal{S} : f(\mathbf{D}) \in \mathcal{Z}_0^{\Game}(\delta) \}$$

be the class of univalent functions called δ -spirallike with respect to a boundary point.

Domains in $\mathcal{Z}_0^* = \mathcal{Z}_0^{\supset}(0)$ and functions in $\mathcal{S}_0^* = \mathcal{S}_0^{\supset}(0)$ are called starlike with respect to a boundary point.

3.2. Let us start with the following theorem.

Theorem 3.2. Let $\delta \in (-\pi/2, \pi/2)$. For every $f \in \mathcal{S}_0^{\triangleright}(\delta)$ there exists a unique $\zeta_0 \in \mathbf{T}$ such that $f_{\angle}(\zeta_0) = 0$.

Proof. Let $\delta \in (-\pi/2, \pi/2)$ and $f \in \mathcal{S}_0^{\supset}(\delta)$.

- 1. Fix $w_1 \in f(\mathbf{D})$. Then $w_1L(\delta) \subset f(\mathbf{D})$ and $w_1L(\delta)$ is a curve ending at 0. Thus, 0 is an asymptotic value of f at some point $\zeta_0 \in \mathbf{T}$ along the curve $f^{-1}(w_1L(\delta))$. By the Lehto-Virtanen theorem [10, page 71], 0 is an angular limit of f at ζ_0 , i.e., $f_{\angle}(\zeta_0) = 0$.
- 2. Now we prove that ζ_0 is unique. Suppose that ζ_1 and ζ_2 are two distinct points of **T** such that

(3.1)
$$f_{\angle}(\zeta_1) = f_{\angle}(\zeta_2) = 0.$$

Without loss of generality, we can assume that $\zeta_1 = -1$ and $\zeta_2 = 1$. Let $\mathbf{D}^+ = \{z \in \mathbf{D} : \operatorname{Im} z > 0\}$, $\mathbf{D}^- = \{z \in \mathbf{D} : \operatorname{Im} z < 0\}$, $\mathbf{T}^+ = \{z \in \mathbf{T} : \operatorname{Im} z > 0\}$ and $\mathbf{T}^- = \{z \in \mathbf{T} : \operatorname{Im} z < 0\}$. Let $\Gamma_1 = f((-1,0])$ and $\Gamma_2 = f([0,1))$. From (3.1) it follows that Γ_1 and Γ_2 are two curves ending at 0. Since the curve $\Gamma = \Gamma_1 \cup \Gamma_2$ is a crosscut of $f(\mathbf{D})$, we see by $[\mathbf{10}$, Proposition 2.12] that $f(\mathbf{D}) \setminus (\Gamma_1 \cup \Gamma_2)$ has exactly two components, say G_1 and G_2 . We can assume that $G_1 = f(\mathbf{D}^+)$ and $G_2 = f(\mathbf{D}^-)$. Since $f(\mathbf{D}) \in \mathcal{Z}_0^{\odot}(\delta)$, from (3.1) we can write that $\partial G_1 = \Gamma \cup \{0\}$ and $\partial G_2 = \partial f(\mathbf{D}) \cup \Gamma$. Let

$$g(z)=rac{\sqrt{i(1+z)}+\sqrt{1-z}}{\sqrt{i(1+z)}-\sqrt{1-z}},\quad z\in\mathbf{D},$$

with $\sqrt{i} = -e^{i\pi/4}$. The function g maps univalently $\overline{\mathbf{D}}$ onto $\overline{\mathbf{D}^+}$. Moreover, $g(\mathbf{T}^-) = (-1,1)$. Thus, $h = f_{|\mathbf{D}^+} \circ g$ is a conformal map of \mathbf{D} onto G_1 having a continuous extension to $\overline{\mathbf{D}}$. We have

(3.2)
$$h(\mathbf{T}^{-}) = f_{|\mathbf{D}^{+}} \circ g(\mathbf{T}^{-}) = f_{|\mathbf{D}^{+}}((-1,1)) = \Gamma.$$

By [10, Theorem 1.7] the angular limits $h_{\angle}(\zeta)$ exist for almost all $\zeta \in \mathbf{T}$. Since $\partial h(\mathbf{D}) = \partial G_1 = \Gamma \cup \{0\}$, we see in view of (3.2) that $h_{\angle}(\zeta) = 0$ for almost all $\zeta \in \mathbf{T}^+$. By the Privalov uniqueness theorem [10, page 126] the function h vanishes identically in \mathbf{D} . Hence, $f \equiv 0$ in \mathbf{D}^+ and, consequently, $f \equiv 0$ in ${\bf D}.$ This yields a contradiction. Thus, ζ_0 is unique. \Box

3.3. The theorem below was proved in [7, Theorem 3.5].

Theorem 3.3. Let $\delta \in (-\pi/2, \pi/2)$ and $f \in \mathcal{S}$. Then $f \in \mathcal{S}_0^{\triangleright}(\delta)$ and $f_{\angle}(1) = 0$ if and only if $f(\mathbf{O}_k) \in \mathcal{Z}_0^{\triangleright}(\delta)$ for every k > 0.

Now we reprove a necessary condition for functions in $\mathcal{S}_0^{\triangleright}(\delta)$ first shown in [7, Theorem 3.6]. The main goal of this paper is showing a new technique of its proof.

Theorem 3.4. Let $\delta \in (-\pi/2, \pi/2)$. If $f \in \mathcal{S}_0^{\supset}(\delta)$ and $f_{\angle}(1) = 0$, then there exist $\lambda \in (0, 1]$ and $\omega \in \mathcal{B}(\lambda)$ such that

(3.3)
$$-e^{i\delta}(1-z)^2 \frac{f'(z)}{f(z)} = 4\frac{1-\omega(z)}{1+\omega(z)}, \quad z \in \mathbf{D}.$$

Proof. 1. First, we show that

(3.4)
$$\operatorname{Re}\left\{e^{i\delta}(1-z)^2\frac{f'(z)}{f(z)}\right\} < 0, \quad z \in \mathbf{D}.$$

Let h(z) = (1+z)/(1-z), $z \in \mathbf{D}$. Fix $z \in \mathbf{D}$. Then $z \in O_k$ for some k > 0. By Theorem 3.3, $f(\mathbf{O}_k) \in \mathcal{Z}_0^{\supset}(\delta)$.

(a) We show first that

$$(3.5) f(z)L(\delta) \subset f(\overline{\mathbf{O}_k} \setminus \{1\}).$$

Indeed, let $w_0 \in f(z)L(\delta)$, i.e., $w_0 = f(z)u_0$ for some $u_0 \in L(\delta)$. The case $u_0 = 1$ is evident since $f(z) \in f(O_k)$. Assume that $u_0 \neq 1$. Since $f(\mathbf{D}) \in \mathcal{Z}_0^{\triangleright}(\delta)$, we have $f(z)u_0 \in f(\mathbf{D})$ and, consequently, $f^{-1}(f(z)u_0) \in \mathbf{D}$. Thus,

$$f(z)u_0 = f(f^{-1}(f(z)u_0)).$$

We will prove that $f^{-1}(f(z)u_0) \in \overline{\mathbf{O}_k} \setminus \{1\}$. Let (z_n) be any sequence in \mathbf{O}_k convergent to z. Clearly, $f(z_n) \in f(\mathbf{O}_k)$ for every $n \in \mathbf{N}$. The inclusion $f(z_n)L(\delta) \subset f(\mathbf{O}_k)$ shows that $f(z_n)u_0 \in f(\mathbf{O}_k)$ for every $n \in \mathbf{N}$. Therefore, for every $n \in \mathbf{N}$ there exists $\xi_n \in \mathbf{O}_k$ such that $f(z_n)u_0 = f(\xi_n)$. Namely, by the univalence of f, we have $\xi_n = f^{-1}(f(z_n)u_0), n \in \mathbf{N}$. Since $(f(z_n))$ is a sequence in $f(\mathbf{O}_k)$ convergent to f(z), we obtain

$$\lim_{n \to \infty} f(\xi_n) = \lim_{n \to \infty} (f(z_n)u_0) = f(z)u_0.$$

Hence and from the fact that $f(z)u_0 \in f(\mathbf{D})$ it follows that the sequence (ξ_n) is convergent to $f^{-1}(f(z)u_0)$. Thus $f^{-1}(f(z)u_0) \in \overline{\mathbf{O}_k}$. In consequence,

$$f^{-1}(f(z)u_0) \in \mathbf{D} \cap \overline{\mathbf{O}_k} = \overline{\mathbf{O}_k} \setminus \{1\}.$$

This proves our claim.

(b) We see from (3.5) that $\exp(e^{-i\delta}t)f(z)\in f(\overline{\mathbf{O}_k}\setminus\{1\})$ for $t\leq 0$. Hence,

$$\omega_t(\delta; z) = f^{-1}(\exp(e^{-i\delta}t)f(z)) \in \overline{\mathbf{O}_k} \setminus \{1\}$$

and, consequently,

$$h \circ \omega_t(\delta; z) \in h(\overline{\mathbf{O}_k} \setminus \{1\}) = \overline{\mathbf{H}_{1/k}} \setminus \{\infty\}, \quad t \leq 0.$$

Thus,

(3.6) Re
$$\{h \circ \omega_t(\delta; z)\} \ge \operatorname{Re} h(z), \quad t \le 0.$$

For $t \leq 0$, let

$$\psi_z(\delta;t) = h \circ \omega_t(\delta;z).$$

Since $\psi_z(\delta;0) = h(z)$, from (3.6) we have

$$\begin{split} 0 &\geq \lim_{t \to 0^{-}} \frac{\operatorname{Re} \, \psi_{z}(\delta;t) - \operatorname{Re} \, \psi_{z}(\delta;0)}{t} = \operatorname{Re} \left\{ \frac{\partial}{\partial t} \psi_{z}(\delta;t) \right\}_{|t=0} \\ &= \operatorname{Re} \left\{ \frac{h'(f^{-1}(\exp(e^{-i\delta}t)f(z)))}{f'(f^{-1}(\exp(e^{-i\delta}t)f(z)))} f(z) \exp(e^{-i\delta}t)e^{-i\delta} \right\}_{|t=0} \\ &= \operatorname{Re} \left\{ e^{-i\delta} \frac{h'(z)}{f'(z)} f(z) \right\} = 2\operatorname{Re} \left\{ e^{-i\delta} \frac{f(z)}{(1-z)^{2}f'(z)} \right\} \\ &= \frac{2}{|1-z|^{4}|f'(z)|^{2}} \operatorname{Re} \left\{ e^{i\delta}(1-z)^{2} \frac{f'(z)}{f(z)} \right\}, \quad z \in \mathbf{D}. \end{split}$$

Thus, we proved that

(3.7)
$$\operatorname{Re}\left\{e^{i\delta}(1-z)^2 \frac{f'(z)}{f(z)}\right\} \le 0.$$

(c) Suppose now that the equality holds in (3.7) for some $z_0 \in \mathbf{D}$. By the maximum principle for harmonic functions it holds in the whole disk \mathbf{D} , which yields

$$e^{i\delta}(1-z)^2 rac{f'(z)}{f(z)} \equiv ai, \quad z \in \mathbf{D}.$$

for some $a \in \mathbf{R} \setminus \{0\}$. But the solution

$$f(z) = f_0(z) = f(0) \exp\left(\frac{e^{-i\delta}aiz}{1-z}\right), \quad z \in \mathbf{D},$$

of the last equation is not univalent in **D**. So $f_0 \notin \mathcal{S}_0^{\triangleright}(\delta)$ and hence strict inequality in (3.7), i.e., (3.4) holds.

2. Let
$$p(z) = -e^{i\delta}(1-z)^2 f'(z)/f(z)$$
, and

(3.8)
$$\omega(z) = \frac{4 - p(z)}{4 + p(z)}, \quad z \in \mathbf{D}.$$

Then $\omega \in \mathcal{B}$. We now prove that $\omega \in \mathcal{B}(\lambda)$ for some $\lambda \in (0,1]$. Since $f_{\angle}(1) = 0$, we can write

$$p(z) = e^{i\delta}(1-z)Q_f(z), \quad z \in \mathbf{D}.$$

As $0 \in \partial f(\mathbf{D})$, we see from [10, page 92] that

$$\left| \frac{f'(z)}{f(z)} \right| \le \frac{4}{1 - r^2}, \quad |z| = r < 1.$$

Hence,

(3.9)
$$|Q_f(r)| = (1-r) \left| \frac{f'(r)}{f(r)} \right| \le \frac{4}{1+r}, \quad r \in (0,1).$$

Consequently,

$$\lim_{r \to 1^{-}} \left\{ e^{-i\delta} p(r) \right\} = \lim_{r \to 1^{-}} \left\{ (1 - r) Q_f(r) \right\} = 0.$$

Thus, $\lim_{r\to 1^-}p(r)=0$ and, in view of (3.8), $\lim_{r\to 1^-}\omega(r)=1$ so (2.1) holds.

From (3.9) it follows that there exists a sequence (r_n) in (0,1) convergent to 1 such that

$$\lim_{n \to \infty} |Q_f(r_n)| = 2\lambda_0$$

for some $\lambda_0 \in [0,1]$. Hence, and from (3.8)–(3.9), we have

$$\begin{split} \lim_{n \to \infty} \frac{|1 - \omega(r_n)|}{1 - r_n} &= \lim_{n \to \infty} \left\{ \frac{2}{|4 + p(r_n)|} \left| \frac{p(r_n)}{1 - r_n} \right| \right\} \\ &= \lim_{n \to \infty} \left\{ \frac{2}{|4 + p(r_n)|} |Q_f(r_n)| \right\} = \lambda_0 \in [0, 1]. \end{split}$$

But

$$\frac{1 - |\omega(r_n)|}{1 - r_n} \le \frac{|1 - \omega(r_n)|}{1 - r_n}$$

so we can find a subsequence (r_{n_k}) of (r_n) such that

$$\lim_{k \to \infty} \frac{1 - |\omega(r_{n_k})|}{1 - r_{n_k}} = \lambda_1 \le \lambda_0.$$

Thus (2.2) holds with the sequence (r_{n_k}) . Hence ω satisfies the assumptions of the Julia lemma. Moreover, $\lambda_1 \in (0,1]$. In view of Remark 2.4, $\omega \in \mathcal{B}(\lambda)$ with $\lambda \in (0,\lambda_1]$.

This ends the proof of the theorem.

3.4. Now we reprove in a new way a sufficient condition for functions in $\mathcal{S}_0^{\ni}(\delta)$ shown in [7, Theorem 3.8].

Theorem 3.5. Let $\delta \in (-\pi/2, \pi/2)$ and $f \in \mathcal{A}$ with $f_{\angle}(1) = 0$. If there exist $\lambda \in (0, \cos \delta]$ and $\omega \in \mathcal{B}(\lambda)$ such that (3.3) holds, then $f \in \mathcal{S}_0^{\bigcirc}(\delta)$.

Proof. 1. First we show that f is univalent in \mathbf{D} . It is immediate from (3.3) that f' never vanishes in \mathbf{D} . Let g be the solution of the differential equation

(3.10)
$$-(1-z)^2 \frac{g'(z)}{g(z)} = 4 \frac{1-\omega(z)}{1+\omega(z)}, \quad z \in \mathbf{D},$$

with $g_{\angle}(1) = 0$. Then, by [8, Theorem 3], $g \in \mathcal{S}_0^*$, i.e., $g \in \mathcal{S}$ and $g(\mathbf{D})$ is a starlike domain with respect to a boundary point (at zero). Moreover, $g(\mathbf{D})$ lies in a wedge of angle $2\lambda\pi$. Hence, a single-valued analytic branch of $\log g$ in \mathbf{D} exists and $\log g(\mathbf{D})$ lies in a horizontal strip of width not exceeding $2\lambda\pi$. Thus, the function

$$h = g^{e^{-i\delta}} = \exp\{e^{-i\delta}\log g\}$$

is well defined in **D** and, since $\lambda \in (0, \cos \delta]$, h is univalent in **D**. But, in view of (3.3) and (3.10), we have

$$\frac{g'}{g} = e^{i\delta} \frac{f'}{f},$$

so f = h. This yields the univalence of f.

- 2. Now we prove that $f(\mathbf{D}) \in \mathcal{Z}_0^{\supset}(\delta)$.
- (a) Let $h(z)=(1+z)/(1-z), z\in \mathbf{D}$. Fix $z\in \mathbf{D}$. Then $z\in O_k$ for some k>0. Set

$$t_z(\delta) = \inf \left\{ t \in (-\infty, 0] : \left\{ f(z) \exp(e^{-i\delta}s) : s \in (t, 0] \right\} \subset f(\mathbf{D}) \right\}.$$

Since f is an open mapping, $t_z(\delta) < 0$. For $t \in (t_z(\delta), 0]$ define the functions

$$\omega_t(\delta; z) = f^{-1}(f(z) \exp(e^{-i\delta}t))$$

and

$$\psi_z(\delta;t) = h \circ \omega_t(\delta;z).$$

From (3.3) for $t \in (t_z(\delta), 0]$ we have

$$\frac{\partial}{\partial t} \operatorname{Re} \, \psi_z(\delta; t) = \frac{\partial}{\partial t} \operatorname{Re} \, h \circ \omega_t(\delta; z)
= \operatorname{Re} \left\{ \frac{h'(f^{-1}(f(z) \exp(e^{-i\delta}t)))}{f'(f^{-1}(f(z) \exp(e^{-i\delta}t)))} f(z) \exp(e^{-i\delta}t) e^{-i\delta} \right\}
= \operatorname{Re} \left\{ e^{-i\delta}h'(\omega_t(\delta; z)) \frac{f(\omega_t(\delta; z))}{f'(\omega_t(\delta; z))} \right\}
= 2\operatorname{Re} \left\{ e^{-i\delta} \frac{f(\omega_t(\delta; z))}{(1 - \omega_t(\delta; z))^2 f'(\omega_t(\delta; z))} \right\}
= \frac{2}{|1 - u|^4 |f'(u)|^2} \operatorname{Re} \left\{ e^{i\delta} (1 - u)^2 \frac{f'(u)}{f(u)} \right\} > 0,$$

where $u = \omega_t(\delta; z)$. Thus, the function

$$(t_z(\delta),0]\ni t\longmapsto \operatorname{Re}\,\psi_z(\delta;t)$$

is strictly increasing. Therefore,

(3.11) Re
$$\psi_z(\delta;t) > \text{Re } \psi_z(\delta;0) = \text{Re } h(z)$$

and, consequently,

$$h^{-1}(\psi_z(\delta;t)) = f^{-1}(f(z)\exp(e^{-i\delta}t)) \in \mathbf{O}_k$$

for $t \in (t_z(\delta), 0)$. Hence

$$(3.12) f(h^{-1}(\psi_z(\delta;t))) = f(z) \exp(e^{-i\delta}t) \in f(\mathbf{O}_k), t \in (t_z(\delta), 0),$$

i.e., for every $z \in O_k$,

$$\{f(z)\exp(e^{-i\delta}t):t\in(t_z(\delta),0)\}\subset f(\mathbf{O}_k).$$

Moreover, $f(z) \in f(O_k)$ and $w_z(\delta) \in \partial f(\mathbf{O}_k)$, where

(3.13)
$$w_z(\delta) = \begin{cases} f(z) \exp(e^{-i\delta} t_z(\delta)) & t_z(\delta) \neq -\infty, \\ 0 & t_z(\delta) = -\infty. \end{cases}$$

Since f(z) and $w_z(\delta)$ are distinct endpoints of the curve

$$\{f(z)\exp(e^{-i\delta}t):t\in(t_z(\delta),0)\}$$

on $\partial f(\mathbf{O}_k)$, from (3.12) and [10, Proposition 2.14] it follows that

$$(3.14) h^{-1}(\psi_z(\delta;t)) = f^{-1}(f(z)\exp(e^{-i\delta}t)) \longrightarrow z(\delta)$$

as $t \to t_z(\delta)$ for some $z(\delta) \in O_k \cup \{1\}$ and $z(\delta) \neq z$.

Suppose that $z(\delta) \in O_k$. Then $z(\delta) \in \mathbf{D}$ and from (3.14) it follows that $w_z(\delta) = f(z(\delta)) \in f(O_k)$. Hence $\mathbf{D}(w_z(\delta), \varepsilon) \subset f(\mathbf{D})$ for some $\varepsilon > 0$. Thus,

$$\{\{f(z)\exp(e^{-i\delta}t): t\in (t(\varepsilon), t_z(\delta)]\}\subset f(\mathbf{D})\}$$

for some $t(\varepsilon) < t_z(\delta)$, so

$$\{\{f(z)\exp(e^{-i\delta}t):t\in(t(\varepsilon),0]\}\subset f(\mathbf{D})\}.$$

This contradicts the definition of $t_z(\delta)$ and shows that $z(\delta) = 1$. Hence, and from (3.14), we conclude that for every $z \in O_k$ the following holds

$$(3.15) h^{-1}(\psi_z(\delta;t)) \longrightarrow 1$$

as $t \to t_z(\delta)$.

Moreover, from (3.12) and (3.13), for every $z \in O_k$ we have

$$(3.16) f(h^{-1}(\psi_z(\delta;t))) = f(z) \exp(e^{-i\delta}t) \longrightarrow w_z(\delta)$$

as $t \to t_z(\delta)$. Since f, as a normal function, by the Lehto-Virtanen theorem [10, page 71] has at most one asymptotic value at 1 which is unique, from (3.15) and (3.16) we deduce that

$$(3.17) w_{z_1}(\delta) = w_{z_2}(\delta)$$

for every $z_1, z_2 \in O_k$. Suppose that $w_{z_1}(\delta) \neq 0$ for some $z_1 \in O_k$. Let $z_2 \in O_k, z_2 \neq z_1$, be arbitrary. By (3.17) we have

$$w_{z_1}(\delta) = w_{z_2}(\delta) \neq 0.$$

Thus, in view of (3.13) we see that $t_{z_1}(\delta) \neq -\infty$, $t_{z_2}(\delta) \neq -\infty$ and

$$f(z_1) \exp(e^{-i\delta}t_{z_1}(\delta)) = f(z_2) \exp(e^{-i\delta}t_{z_2}(\delta)),$$

i.e.,

(3.18)
$$f(z_2) = f(z_1) \exp(e^{-i\delta}c),$$

where $c = t_{z_1}(\delta) - t_{z_2}(\delta)$. Since $f(z_1) \neq f(z_2)$ by the univalence of f, we can assume that c < 0. Observe that from (3.18) and (3.13) it follows that $c \in (t_{z_1}(\delta), 0)$. Therefore, using once again (3.18), we have

$$h(z_2) = h(f^{-1}(f(z_1) \exp(e^{-i\delta}c))) = \psi_{z_1}(\delta; c).$$

Taking into account that $z_1, z_2 \in O_k$, the above yields

Re
$$h(z_1)$$
 = Re $h(z_2)$ = Re $\psi_{z_1}(\delta; c)$

which contradicts (3.11). Therefore, $w_z(\delta) = 0$, so by (3.12) we have $t_z(\delta) = -\infty$ for every $z \in \mathbf{D}$. Thus

$$\{f(z)\exp(e^{-i\delta}t):t\leq 0\}\subset f(\mathbf{D})\}$$

for every $z \in \mathbf{D}$. This means that $f(\mathbf{D}) \in \mathcal{Z}_0^{\supset}(\delta)$.

This and Part 1 of this proof show that $f \in \mathcal{S}_0^{\triangleright}(\delta)$.

REFERENCES

- 1. D. Aharonov, M. Elin and D. Shoikhet, Spirallike functions with respect to a boundary point, J. Math. Anal. Appl. 280 (2003), 17–29.
- 2. C. Carathéodory, Conformal representation, Cambridge University Press, Cambridge, 1963.
- 3. M. Elin, S. Reich and D. Shoikhet, Holomorphically accretives mappings and spiral-shaped functions of proper contractions, Nonlinear Anal. Forum 5 (2000), 149–161.
 - 4. J.M. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 5. G. Julia, Extension nouvelle d'un lemme de Schwarz, Acta Math. 42 (1920), 349-355.
- 6. A. Lecko, On the class of functions starlike with respect to a boundary point, J. Math. Anal. Appl. 261 (2001), 649-664.
- 7. ——, The class of functions spirallike with respect to a boundary point, Inter. J. Math. Math. Sci. **2004** (2004), 2133–2143.
- 8. A. Lecko and A. Lyzzaik, A note on univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 282 (2003), 846–851.
- 9. A. Lyzzaik, On a conjecture of M.S. Robertson, Proc. Amer. Math. Soc. 91 (1984), 108-110.

- ${\bf 10.}$ Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992.
- 11. M. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981), 327-345.
- 12. G. Sansone and J. Gerretsen, Lectures on the theory of functions of a complex variable, Wolters-Noordhoff, Groningen, 1969.

Department of Mathematics, Technical University of Rzeszów, ul. W. Pola 2, 35-959 Rzeszów, Poland

Email address: alecko@ewa.prz.rzeszow.pl