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0-SPIRALLIKE FUNCTIONS
WITH RESPECT TO A BOUNDARY POINT

ADAM LECKO

ABSTRACT. The aim of this paper is to present a new
method of the proof of an analytic characterization of J-
spirallike functions with respect to a boundary point.

1. Introduction. In this paper we examine the class S (d) of §-
spirallike functions with respect to a boundary point. This geometric
idea arises from the concepts of §-spirallikeness with respect to an inner
point as well as from starlikeness with respect to a boundary point.
Spirallikeness with respect to a boundary point is a quite fresh idea
introduced and studied by Elin, Reich and Shoikhet [3] and Aharonov,
Elin and Shoikhet [1], who developed the methods based on Robertson’s
formula for starlike functions with respect to a boundary point [11], and
on some dynamical system.

An alternative analytic formula for functions in S (§) was proposed
in [7, Theorems 3.5 and 3.8], where the method based on the Julia
lemma was explored. This technique of study of the class Sg(6) is
a continuation of ideas from [6, 8], where an analytic description of
starlike functions with respect to a boundary point, other than the
characterization found by Robertson [11] and completed by Lyzzaik
[9], was shown.

In this paper we reprove results from [7] in a new way. Let us em-
phasize that the proofs of main results in [7] were based on geometrical
argument, now are mainly analytical.
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2. Preliminaries.

2.1. For zp € C and r > 0, let D(29,7) = {2 € C: |z — 20| < r}. Let
D =D(0,1) and T =0D. For c€ R let H. = {w € C: Re w > c}.

For AC Cand w € C, let wA={wu e C:uec A}

2.2. For each k > 0, let
1— 2
Oy = D: ———<k
‘ { SUUTRE S
denote the disk in D called an oricycle. The boundary circle 0Oy is

tangent to T at 1. Notice that O, = D(1/(1+k),k/(1 + k)) for every
k > 0. Let O = 00 \ {1}.

2.3. The set of all analytic functions in D is denoted by A. Its subset
of univalent functions is denoted by S.

The set of all functions w € A with w(D) C D will be denoted by B.

2.4. By A we denote a Stolz angle of f € A at 1.

An angular limit, respectively angular derivative, of f € Aat ( € T
will be denoted by f,({) € C, respectively f(¢) € C.

2.5. Let f € A. Assume that there exists a finite radial limit
v =lim,_,;- f(r). Denote by

0G|
GO 2P

the Visser-Ostrowski quotient of f at 1, see e.g. [10, page 251].

2.6. Recall Julia’s lemma, see [5], [2, pages 53-56], [12, vol. II, pages
68-72].

Lemma 2.1. Let w € B. Assume that there exists a sequence (zy)
m D such that

(2.1) lim z, =1, lim w(z,) =1

n—0o0 n—o0
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and
1—
(2.2) lim 1= fwizn)] =\ < 0.
n—oo 1 — |zn|
Then
1-w()® _ 1z
(2.3) <A , ze€D,
1—w(z)* ~ 12
i.e., for every k > 0,
w(Ok) C Oyg.

Equality in (2.3) for some z can occur only for an automorphism
of D.

Note that the constant A defined in (2.2) is positive [2, page 54].
For w € B with w,(1) =1 let

_ 1-w@)f 1z
A(w) —sup{l_ WP =" zED}.

The following corollary completes the Julia lemma [2, page 57|, [4,
page 44].

Corollary 2.2, Let w € B. Assume that there ezxists a sequence (zp)
in D such that (2.1) and (2.2) holds. Then

(1) Alw) <A
(2) the following limits exist:

1 - |w(z)| L 1w _ 1 —w(z)

lim ———* = lim = lim ——= =A(w)
Raz—1- 1l—=z Roz—1- l1—=x Raoz—1- l—=
and, for every Stolz angle A,
1_
(2.4) im 1=9C) ) = Aw)

ASz—1 1 —2
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2.7. For further considerations it is convenient to use the class of
functions denoted as B(X) introduced first in [6]. It plays a crucial
role in analytic characterization of starlike functions with respect to a
boundary point [6] and spirallike functions with respect to a boundary
point [7].

Definition 2.3. Let A € (0,00]. By B(\) we denote the class of all
w € B such that w,/(1) =1 and ', (1) = A.

Remark 2.4. 1. From Corollary 2.2 we see that (2.4) holds under the
assumption that there exists a sequence (z,) of points in D satisfying
(2.1) and (2.2) with some positive constant A\. Thus (2.1) and (2.2) are
sufficient conditions for w to be in B(A) with A = A(w) < co. Vice versa,
let w € B(A) with a finite A. Then, by the converse of the Julia lemma
([12, volume II, page 72|, [4, pages 42-44]), from (2.3) it follows that
there exists a sequence (z,) of points in D satisfying (2.1) and (2.2)
with A = A(w). Thus the existence of a sequence (z,) of points in
D satisfying (2.1) and (2.2) with some A € (0,00) is a necessary and
sufficient condition for w to be in B(A) with A = A(w).

3. An analytic characterization of ¢-spirallike functions with
respect to a boundary point.

3.1. For § € (—n/2,7/2) let L(6) = {exp(e~*t) : t < 0}. For § #£ 0,
L(9) is the logarithmic spiral joining 0 and 1. Clearly, L(0) = (0, 1].

Definition 3.1. Let § € (—n/2,7/2). By 2§ (5) we denote the class
of all simply connected domains Q C C, Q # C, such that 0 € 9Q and
wL(6) C Q for every w € Q. Such domains will be called §-spiralshaped
with respect to a boundary point. Let

S5 (6) ={f €S: f(D) € Z5(6)}

be the class of univalent functions called §-spirallike with respect to a
boundary point.

Domains in Z; = 27 (0) and functions in S = S (0) are called
starlike with respect to a boundary point.
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3.2. Let us start with the following theorem.

Theorem 3.2. Let § € (—m/2,m/2). For every f € S5 (6) there
exists a unique (o € T such that f,(¢o) = 0.

Proof. Let 6 € (—m/2,7/2) and f € S7(9).

1. Fixwy € f(D). Then w1 L(6) C f(D) and wy L(J) is a curve ending
at 0. Thus, 0 is an asymptotic value of f at some point {; € T along
the curve f!(w1L(5)). By the Lehto-Virtanen theorem [10, page 71],
0 is an angular limit of f at (o, i.e., f~({o) =0.

2. Now we prove that (y is unique. Suppose that {; and (; are two
distinct points of T such that

(3.1) fz(C1) = fz(¢2) = 0.
Without loss of generality, we can assume that (; = —1 and (3 = 1.
Let DT = {z € D : Imz > 0}, D~ = {z € D : Imz < 0},

Tt ={2 € T:Imz >0} and T = {2z € T: Imz < 0}. Let
't = f((—1,0]) and T's = f([0,1)). From (3.1) it follows that I'y
and I's are two curves ending at 0. Since the curve ' =T Ul is a
crosscut of f(D), we see by [10, Proposition 2.12] that f(D)\ (I'; UTs)
has exactly two components, say G; and Gz. We can assume that
G1 = f(D) and G2 = f(D7). Since f(D) € Z§(9), from (3.1) we can
write that 0G; =T'U {0} and 0G2 = 0f(D) UT". Let

_ Vil+2)+v1-2
Vill+2)—v1=2

9(z) z€D,

with vi = —e*™/4. The function ¢ maps univalently D onto DT.
Moreover, g(T~) = (—1,1). Thus, h = fip+ o g is a conformal map of
D onto G, having a continuous extension to D. We have

(3.2) MT™) = fip+ 09(T7) = fip+((=1,1)) =T,

By [10, Theorem 1.7] the angular limits h /({) exist for almost all ¢ € T.
Since Oh(D) = 0G; = I' U {0}, we see in view of (3.2) that h_({) =0
for almost all ¢ € T*. By the Privalov uniqueness theorem [10, page
126] the function h vanishes identically in D. Hence, f = 0 in Dt
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and, consequently, f = 0 in D. This yields a contradiction. Thus, (y
is unique. ]

3.3. The theorem below was proved in [7, Theorem 3.5].

Theorem 3.3. Let§ € (—n/2,7/2) and f € S. Then f € S5 (8) and
f-(1) = 0 if and only if f(Or) € Z5(8) for every k > 0.

Now we reprove a necessary condition for functions in SF(J) first
shown in [7, Theorem 3.6]. The main goal of this paper is showing a
new technique of its proof.

Theorem 3.4. Let § € (—m/2,7/2). If f € S§(6) and f,(1) = 0,
then there exist A € (0,1] and w € B(A) such that

(3.3) —ei(1 - z)zj;/((zz)) - 41 - 28 2 €D.

Proof. 1. First, we show that

(3.4) Re {e”(l _ 2l ) } <0, zeD.

Let h(z) = (1+2)/(1 —z2), 2 € D. Fix z € D. Then z € O, for some
k > 0. By Theorem 3.3, f(Oy) € 25 ().

(a) We show first that
(3-5) F(2)L(3) € f(Or \ {1})-

Indeed, let wg € f(2)L(6), i-e., wo = f(z)uo for some ug € L(§). The
case ug = 1 is evident since f(z) € f(Og). Assume that uy # 1.
Since f(D) € Z§(5), we have f(z)up € f(D) and, consequently,
f1(f(2)up) € D. Thus,

f(2)uo = F(f (£ (2)uo))-
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We will prove that f~'(f(z)uo) € Ok \ {1}. Let (z,) be any sequence
in Oy convergent to z. Clearly, f(z,) € f(Og) for every n € N.
The inclusion f(z,)L(6) C f(Ok) shows that f(z,)up € f(Og) for
every n € N. Therefore, for every n € N there exists £, € O
such that f(z,)ug = f(&,). Namely, by the univalence of f, we have
& = fFH(f(zn)ug), n € N. Since (f(z,)) is a sequence in f(Oy)
convergent to f(z), we obtain

lim f(6) = lim (£(zn)u0) = f(z)uo.

Hence and from the fact that f(z)up € f(D) it follows that the
sequence (£,) is convergent to f~!(f(2)ug). Thus f=*(f(2)ug) € Ok.
In consequence,

F7H(f(2)uo) € DNOg = Ok \ {1}.
This proves our claim.

(b) We see from (3.5) that exp(e™*t)f(z) € f(O \ {1}) for t < 0.
Hence,

wi(852) = [~ (exp(e™?t) f(2)) € Ok \ {1}
and, consequently,
how(8;2) € (O \ {1}) = Hyyp, \ {0}, t<0.
Thus,
(3.6) Re {how(d;2)} > Re h(z), t<O0.
For t <0, let
Y. (0;t) = how(6; 2).

Since 9,(d;0) = h(z), from (3.6) we have

0> lim Re¥(dit) “Rev:(50) _p {Q@bz(é;t)}

|t=0

t—0— t

e R )

‘Re{w;g;f }‘QRG{ - z>}
2 "(z

ETRGE Re{e( 2)2];@))}’ 2eb.
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Thus, we proved that

(3.7) Re {e”(l - z)2%} <0

(c) Suppose now that the equality holds in (3.7) for some zy € D.
By the maximum principle for harmonic functions it holds in the whole
disk D, which yields

e (1 — z)2fl(z) =ai, z€D.

for some a € R\ {0}. But the solution

1—=z2

1) = o) = 10)exp (T-%5), e,

of the last equation is not univalent in D. So fy ¢ S (J) and hence
strict inequality in (3.7), i.e., (3.4) holds.

2. Let p(2) = —e®(1 — 2)2f'(2)/f(z), and

_4-p(2)

= , z€D.
4+ p(z)

(3.8) w(z)

Then w € B. We now prove that w € B(\) for some A € (0,1]. Since
fz(1) =0, we can write

p(2) =€ (1 - 2)Qs(z), ze€D.

As 0 € 0f(D), we see from [10, page 92] that

f'(2) 4 .
‘f(z) <t H=r<i
Hence,
= f'(r) 4
(3.9) Qs (r)|=@1-r) o <i, re 0.1)
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Consequently,

lim_{e~*p(r)} = Tim {(1-7)Qs(r)} =0.

r—1-

Thus, lim,_,; - p(r) = 0 and, in view of (3.8), lim,_,;- w(r) = 1 so (2.1)
holds.

From (3.9) it follows that there exists a sequence (r,) in (0,1)
convergent to 1 such that

lim ‘Qf (rn)| =2Xo

n—oo

for some Ay € [0,1]. Hence, and from (3.8)—(3.9), we have

tim L9l 2__|plra)
nsoo  1—1m, n—oo | |44 p(r,)| |1 —rn
2
— Tim {—=OQ;(r)] = Ao € [0,1].
Jn {2 Q) = e o

But
1—|w(ra)| 1= w(ra)|

1-r, — 1-—7m,

so we can find a subsequence (7, ) of () such that

=1 < Ao
k—o0 1—r, =70

k

Thus (2.2) holds with the sequence (r,,). Hence w satisfies the
assumptions of the Julia lemma. Moreover, A; € (0,1]. In view of
Remark 2.4, w € B(A) with X € (0, Aq].

This ends the proof of the theorem. ]

3.4. Now we reprove in a new way a sufficient condition for functions

in S5 (6) shown in [7, Theorem 3.8].

Theorem 3.5. Let § € (—m/2,7/2) and f € A with f.(1) = 0.
If there exist A € (0,cos6] and w € B(A) such that (3.3) holds, then
f€85(0).
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Proof. 1. First we show that f is univalent in D. It is immediate
from (3.3) that f’ never vanishes in D. Let g be the solution of the
differential equation

29() _ L-w()

(3.10) SRRt ¥

z€eD,

with g,(1) = 0. Then, by [8, Theorem 3], g € S, i.e,, g € S and
g(D) is a starlike domain with respect to a boundary point (at zero).
Moreover, g(D) lies in a wedge of angle 2A7. Hence, a single-valued
analytic branch of logg in D exists and log g(D) lies in a horizontal
strip of width not exceeding 2Aw. Thus, the function

e—ié

h=g°" =exp{e “logg}

is well defined in D and, since A € (0, cosé], h is univalent in D. But,
in view of (3.3) and (3.10), we have

! !
Uy
f
so f = h. This yields the univalence of f.

2. Now we prove that f(D) € Z5(9).

(a) Let h(z) = (1 +2)/(1 — 2), z € D. Fix z € D. Then z € Oy, for
some k > 0. Set

t.(6) = inf {t € (—00,0] : {f(2) exp(e “s):s € (t,0]} C f(D)}.

Since f is an open mapping, t.(6) < 0. For ¢t € (¢.(4),0] define the
functions

w(8;2) = fH(f(2) exp(e 1))

and

¥2(8;8) = h o w(6; 2).



§-SPIRALLIKE FUNCTIONS 989

From (3.3) for ¢t € (¢,(d),0] we have

0 0

&Re ¥, (6;t) = gRe h o wy(6; 2)
o P e )
=R {f’(f‘l(f(Z)exp(e‘”t)))f (=) exple™™1) }
=R { (e ))f’(wt(6;2))}

ope oo f(we(d;2))
=2R { (1 — w(0; 2))2f (wi (05 2) }

_ 2 e d it _u2f'(u)
_Il—u|4|f’(U)|2R{ ( )f(u)}>0’

where u = w;(d; 2). Thus, the function

(t2(6),0] > t — Re 12(6;1)

is strictly increasing. Therefore,
(3.11) Re 4, (5;t) > Re 1,(6;0) = Re h(2)
and, consequently,

h=H (= (651)) = fH(f(2) exp(e *t)) € O
for t € (£.(5),0). Hence
(3.12)  f(h(¥:(6;1))) = f(2) exp(e”°t) € f(Ok), t € (t(6),0),
i.e., for every z € Oy,

{f(2) exp(e™™t) : t € (£-(6),0)} C f(Or).
Moreover, f(z) € f(Oy) and w,(6) € Of(Oy), where

2) exp(e” ¥ -
I ¢

Since f(z) and w,(0) are distinct endpoints of the curve

{f(z)exp(e™t) : t € (t2(6),0)}
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on 0f(Oy), from (3.12) and [10, Proposition 2.14] it follows that

(3.14) hH((8;1) = fH(F(2) exp(e *t)) — 2(6)

as t — t.(0) for some z(d) € O U {1} and 2(9) # =.

Suppose that z(6) € O. Then z(§) € D and from (3.14) it follows
that w,(6) = f(2(0)) € f(Ok). Hence D(w,(d),e) C f(D) for some
€ > 0. Thus,

{7(z) exp(e™t) : t € (t(e),t:(6)]} C f(D)}

for some t(e) < t,(d), so

{{F(z)exp(e ) : t € (t(), 0]} C f(D)}.

This contradicts the definition of ¢,(d) and shows that z(6) = 1. Hence,
and from (3.14), we conclude that for every z € O, the following holds

(3.15) h (4. (6;t) — 1

as t — t,(9).
Moreover, from (3.12) and (3.13), for every z € Oy we have

(3.16)  F(h (W (5;1)) = F(2) exple ) —> w.(6)

as t — t,(d). Since f, as a normal function, by the Lehto-Virtanen
theorem [10, page 71] has at most one asymptotic value at 1 which is
unique, from (3.15) and (3.16) we deduce that

(3.17) Wy, (0) = wy, ()

for every z1, zo € Oy. Suppose that w,, (§) # 0 for some z; € Oy. Let
22 € Oy, 29 # 21, be arbitrary. By (3.17) we have

Wz, (0) = wz, () # 0.
Thus, in view of (3.13) we see that ¢, (§) # —o0, t,,(8) # —oo and

f(z1) exp(e™"t:,(8)) = f(z2) exp(e™ 1, (9)),
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i.e.,

(3.18) f(z2) = f(zl)exp(e_i‘sc),

where ¢ = t,,(0) — t.,(8). Since f(z1) # f(z2) by the univalence of
f, we can assume that ¢ < 0. Observe that from (3.18) and (3.13) it
follows that ¢ € (¢,,(d),0). Therefore, using once again (3.18), we have

h(z2) = h(fH(f(21) exp(e™¢)) = ¢z, (65 0)-
Taking into account that z;, z2 € Oy, the above yields
Re h(z1) = Re h(z2) = Re ¢,,(d;¢)

which contradicts (3.11). Therefore, w,(§) = 0, so by (3.12) we have
t.(6) = —oo for every z € D. Thus

{f(z) exp(e™®t): t <0} C f(D)}

for every z € D. This means that f(D) € Z§(9).
This and Part 1 of this proof show that f € 8§ (0). o
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