ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 38, Number 3, 2008

GERBES, 2-GERBES AND SYMPLECTIC FIBRATIONS
TSEMO ARISTIDE

ABSTRACT. Let p: P — N be a symplectic bundle whose
typical fiber is the symplectic manifold (F,w). McDuff has
defined a subgroup Ham®(F,w) of the group of symplectic
automorphisms of (F,w) and has shown that the cohomology
class [w] extends to P if and only if p has a Ham®(F,w)
reduction. The purpose of this paper is to interpret the result
of McDuff using gerbe theory. We define fundamental gerbes
in symplectic geometry which allows us to define a 2-gerbe
which represents the geometric obstruction to lift w to P.
Using these gerbes, we define a geometric quantization of
symplectic manifolds.

1. Introduction. A symplectic fibration P — N is a differentiable
fibration whose typical fiber is the closed connected symplectic manifold
(F,w), and such that there exists a trivialization (Uj, g;;), such that
gij(u) is a symplectic automorphism of the fiber over u, endowed with
a symplectic structure w,, symplectomorphic to (F,w). We suppose
that the cohomology class [w,] of w,, is fixed. The theory of symplectic
bundles has been studied by different authors, see [8, 9, 12, 16]. One
purpose of the paper [16] is to determine whether the structural group
of the symplectic bundle can be reduced to the Hamiltonian group
of (F,w), that is, whether there exists a symplectic bundle P/ — N
isomorphic to P, whose coordinate changes g;;(u) are Hamiltonian
automorphisms of the fiber above u; such a reduction will be called
a Hamiltonian structure, or a Ham-reduction. In [16], it is shown that
the existence of such Hamiltonian reductions on a finite cover of N is
equivalent to the following two conditions:

(i) There exists a closed 2-form €2 defined on P whose cohomology
class [©] extends [w]. This means that the restriction to the fiber above
u of the cohomology class [€?] is the cohomology class [w]. Following
McDuff, we will call the form Q a closed connection form.

(ii) Let Symp (F,w)p be the connected component of the group of
symplectomorphisms Symp (F,w), of (F,w). The symplectic bundle is
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isomorphic to a symplectic bundle whose coordinate changes take their
values in Symp (F,w)o.

In [16] it was necessary to impose condition (ii) because the Hamilto-
nian subgroup is connected. In [16], McDuff has defined a disconnected
subgroup Ham? of the group Symp (F,w), and has shown that the ex-
istence of a Ham?®-reduction of a symplectic bundle is equivalent to the
existence of a closed connection form.

One purpose of this paper is to study the problem of the existence of
Hamiltonian and Ham?®-reductions of a symplectic bundle using gerbes,
and 2-gerbes. The theory of gerbes has been defined by Giraud [6] with
the purpose of giving geometric interpretations of cohomology classes.
These classes represent the obstruction to globally extending locally
defined bundles, as is the case for Hamiltonian bundles. Breen [2] has
also defined a theory of 2-gerbes. A 2-gerbe represents geometrically
the obstruction for a 2-geometric type structure to be defined globally.
This theory will be also involved here. For n > 2; such a geometric
obstruction theory has been defined by Tsemo [20].

Let w be a 2-closed form defined on the manifold F, and let T be
the circle. It has been shown by Kostant and Weil that the cohomology
class [w] of w is integral, if and only if [w] is the Chern class of a T
bundle. When the class is not integral, we define a flat gerbe C'(w)
bounded by the sheaf of locally constant R-functions defined on F
which represents the obstruction of [w] to zero. We can construct from
this gerbe, another gerbe C(w) bounded by the sheaf of locally constant
T'-functions defined on F, which represents the obstruction of [w] to
integral (see 2.4). These gerbes are used to study the extension of [w].
We have:

Theorem 2.5.4. Let p : P — N be a symplectic bundle whose
typical fiber is (F,w). There exists a gerbe Ci(w) whose classifying
cocycle ci.(w) represents the obstruction of the symplectic bundle p to
a Hamiltonian reduction.

To show an analogous theorem for Ham®-reductions, one has to show
first, as in [12], that the automorphisms group of a Ham®-reduction of
a symplectic bundle is independent of the chosen Ham®-reduction, in
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order to define the band of the classifying gerbe. We prove also the
following result:

Theorem 8.2, 8.2.2. There ezists a 2-gerbe C%(w) whose classifying
cocycle c%(w) represents the obstruction of the class [w] to be extended
to P. The class [c%(w)] can be deduced from [c}(w)] as follows: Let Ly
and Lo be the respective bands of Ckh(w) and C%(w). There exists an
ezact sequence of sheaves 1 — Lo — L} — L1 — 1, such that the class
[c (w)] is the image of the class [ck(w)] by the connecting morphism
H?(N, L) — H*(N, Lg) of the last exact sequence. This shows that
the existence of a Hamiltonian reduction implies that the form w can
be extended to P.

In [16], McDuff defines a discrete subgroup H'(F, P,)) of H'(F,R)
and a class in H?(N, H'(F,P,)) which is the obstruction to have
a Ham®-reduction, that is, to obtain a closed connection form. We
show that this last class and [c%(w)] are the image of the Chern class
of an H'(F,R)/H'(F, P,)-principal bundle by connecting morphisms
related to exact sequences of sheaves, see subsection 8.3.

The holonomy of a connective structure defined on a gerbe is an
analogue of the holonomy of a connection. It is used to represent the
action in string theory. We relate the holonomy of the gerbe C(w) to
the flux, see Section 4.

We generalize the methods applied here to solve other geometric
problems, as for example to find an H-reduction of a G-bundle such that
G/H is a K(m,1) space. For this problem, we define also a gerbe Cy
which represents the geometric obstruction to solve it: More precisely
we have:

Theorem 2.6.3. Let f : P — N be a G-bundle defined on N, and
let H be a subgroup of G such that the right quotient of G by H, G/H
is a K(m,1) space. Suppose that:

(i) either the coordinate changes take their values in Nor (H), the
normalizer of H in G. This condition is satisfied for symplectic bundles
whose coordinate changes take their values in the connected component
Symp (F,w)o of the group of symplectic automorphisms Symp (F,w).
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We consider G to be Symp (F,w)o, and H to be Ham (F,w) the group
of Hamiltonian diffeomorphisms, or

(ii) H intersects every connected component of G, and there ezists a
commutative group L, a continuous and surjective cocycle F : G — L,
for a representation p : G — L, such that p(Gy) the image of the
connected component Gy of G is the identity of L, and the kernel of F
is H. Here L is a quotient of a vector space by a discrete subgroup. This
condition is satisfied if H is the subgroup Ham?®, and G is Symp (F,w).

Then there exists a gerbe C'r, whose classifying cocycle represents the
obstruction to reduce G to H.

When the gerbe Cp is defined by a cocycle F, (ii) the classifying
cocycle of this gerbe is the Chern class of a G/H = L-bundle.

Analogues of the gerbe which appear in the last theorem can be
constructed in more abstract situations: we generalize this construction
to the case of topoi (elementary topoi). This will perhaps suggest
applications to algebraic geometry and arithmetic.

The fact that the pull-back of an Symp (F,w)o-bundle endowed with
a closed connection form to a finite cover of the base space has
Hamiltonian reductions, suggests that the natural category for the
study of Hamiltonian reductions is the etale topos of the base, see
Section 3.

The last part of the paper is devoted to geometric quantization. We
give an extension of the Kostant-Souriau quantization whenever the
class [w] is not supposed to be integral, using the gerbe C(w). In
particular we obtain the following:

Theorem. Let (M,w) be a symplectic manifold, and let (C°°(M),
{,}) be the Poisson algebra of (M,w). There exists a pre-Hilbert
space H, and a representation (C*°(M),{ , }) — (Aut (H),[.]) where
(Aut (H),[ , ]) is the algebra of operators of H endowed with the
commutator bracket.

The contents are as follows: Section 2 is on Gerbes theory, Section 3
is on the group Ham® and the etale topos of a manifold, Section 4 is
on flux and holonomy of gerbes, the classifying cocycle, Section 5 is a
geometric interpretation of a section H; (F, R) — SHy(F,R), Section 6
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is on existence of symplectic bundles and gerbes, Section 7 discusses
2-gerbes and 2-gerbed towers, Section 8 is the general case and Section 9
is on quantization of the symplectic gerbe.

2. Gerbes theory. The notion of gerbe has been defined by Giraud
[6] to give a geometric interpretation of 2-Cech cohomology classes and
to find obstructions to solve gluing problems. The basic example of a
gerbe is defined as follows: consider a G-principal bundle defined on
the manifold N, and 1 - H — G' — G — 1 a central extension.
The geometric obstruction to the existence of a G’-principal bundle
over N, whose quotient by H is the original G-bundle is defined by the
classifying cocycle of a gerbe. Gerbe theory also has a lot of applications
in algebraic geometry. In theoretical physics, a notion of holonomy of
gerbe allows us to represent geometrically the action in string theory.
In this part, we summarize the results of gerbe theory used here. We
prefer the point of view of sheaf of categories rather to the one of
descent.

Definition 2.1. Let N be a category. A sieve T is a subclass of
objects of IV, such that if u is an element of T', and v — u an arrow of
N, then v is an element of T'.

Recall that the category IV, is the category whose objects are objects
v of N such that there exists an arrow h, : v — u, a morphism between
two objects v and v’ of N, is an arrow h : v — v’ such that h, oh = h,.

A topology on the category N is defined as follows: for each object u
of N, there is a family of sieves J(u) of N,, such that:

(i) f h : v — u is an arrow, and 7" an element of J(u), then
T" = {v' € Ob(N) : v' € T, there exists &’ : v/ — v} is an element of
J(v).

(ii) Suppose that T is a sieve of the sub-category N, above u, if for
each map h : v — u, T" is an element of J(v), then T is an element of

J(u).

For example, one can define a topology J on the category Top (N),
whose objects are open sets of a topological manifold IV, and morphisms
are canonical inclusions as follows: For each open set U of N, an
element of J(U) is a sieve of the category above U, which contains
a family of open subsets of (U;);cr of U whose union is U.
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We will suppose in the sequel that our category is a topos; readers
unfamiliar with this notion can make the stronger assumptions that
the category is stable by finite sums, and products, and that final and
initial objects exist, and the limits exist and are universal.

We will also suppose that the topology is generated by a covering
family (u;)icr, where u; is an object of N. This means that: for each
object u, there exists a subset I, contained in I, such that for each
i € I, there exists a map u; — u of N, the subcategory U(u;);eq, Whose
objects are objects v of N such that there exists a map v — u; , i € I,
is an element of J(u). A generating family (U;);er of a topological
space N generates the topology of the category Top (N).

Definition 2.2. Let (N, J) be a category N endowed with a topology
J. A sheaf of categories defined on (N, J) is a correspondence C':

U—CU)

where C(U) is a category, and U an object of N, which verifies the
following properties:

(i) For each map U — V, there exists a restriction map ryy :
C(V) — C(U) such that

TU,,U; O TU,,Us = TU,,Us-

In fact, while the previous equality is verified in many examples, only
an isomorphism between ry, v, o ru, v, and ry, v, is needed. The last
relation defined the notion of presheaf of categories.

The following properties need to be verified to complete the notion
of sheaf of categories.

(ii) Gluing properties for objects. Let (U;);cr be a covering
family of the object U of N, and let e; be an object of C(U;). We denote
abusively by N the final object of N. Suppose there are morphisms

Gij * TU;xuU;,U; (ej) — TU; xyU;,U; (62)

such that on U;, xn U;, xn Uj,, the restrictions of the morphisms
GiyisGinis, and g;,;, between the respective restrictions of e;, and e;, to
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Ui, xn Ui, xn U, are equal. Then there exists an object ey of U such
that rUi’U(eU) = €;.

(iii) Gluing conditions for maps. For each of the objects e, €' of
C(U), the correspondence defined on the category above U by

V — Hom (ry,v(e),rv,v(€))

is a sheaf of sets.

A correspondence C' which satisfies properties (i), (ii) and (iii) is a
sheaf of categories. A gerbe is a sheaf of categories which satisfies the
following conditions:

(iv) There exists a covering family (U;);c; of N such that C(U;) is
not empty for each i,

(v) Local connectivity. For each object U of N, there exists a
covering family (U;);cr of U such that, for each pair of elements e and
e of C(U), ru,,u(e) and ry, v (e’) are isomorphic.

(vi) There exists a sheaf L on N such that, for each object ey of
C(U), Hom (ey,ey) = L(U), and this identification commutes with
restrictions an arrows. The sheaf L is called the band of the gerbe C,
or we say that the gerbe C' is bounded by L e.

The classifying cocycle of a gerbe. Let (U;);cr be a covering
family of N such that, for each ¢, C'(U;) is not empty, and e; is an object
of C(U;). Choose maps gij : TU;xnU;,U; (e5) = ruixnu;,v;(e:) for all
i,j. Denote by g;,i,*® the restriction of g;,;, between the restrictions
of €is and eq, to Uil XN Ui2 XN Uig- Then the map

S P - P
Ciyigis = Giriz ~Giziz = Yiziy

is an automorphism of 7t x x17;, x ¥ Us,,Us, (€1) which may be thought of
as an element of L(U;, Xy U;, X Uy, ). The assignment U;, Xy U;, Xy
Ui, — ciyiqgig is called the classifying cocycle of the gerbe. If the band
is commutative, it is a Cech-cocycle in the classical sense. It has been
shown by Giraud [6] that the isomorphism classes of gerbes bounded by
the sheaf L is one to one with the Cech cohomology group H?(N, L),
when L is commutative. If the band is not commutative H?(N, L) is
defined to be set the of equivalence classes of gerbes bounded by L. The
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trivial gerbe is a gerbe such that C'(IV) is not empty. The elements of
C(N) are called global sections. They are one-to-one with H!(N, L)
when the gerbe is trivial.

2.2 Notations. Let U;,,...,U;, be objects of a topos NV, and let C
be a presheaf defined on N. We will denote by Uj, ... ;, the fiber product
of Uj,,... ,U;, on the final object. If ¢;, is an object of C(U;, ), €;, "'
will be the restriction of e;, to Ui,...i,- For a map h: e — e’ between
two objects of C(Uj, ...;, ), we denote by h'»+1"n the restriction of h to

a morphism between e'»+1'n — /'PHII,

Now we provide details on the classic example of sheaf of categories
given at the beginning. Consider an extension:

l1—H—G —G—1

such that H is a central group in G’, and the map G’ — G has local
sections. Supposed a G-principal bundle pg is defined over N. The
obstruction of the existence of a G’-principal bundle over N, whose
quotient by H is pg, is the cohomology class of the classifying cocycle
of the following gerbe Cy defined on the categories of open subsets of
N as follows: for each open subset U of N, we define Cy(U) to be the
category whose objects are principal G’-bundles over U whose quotient
by H is the restriction of pg to U. To make explicit the classifying
cocycle cy of this gerbe, consider an open covering (U;);cr of N, which
trivializes the bundle pg. We denote by g;; : U;NU; — G the transition
functions. Since the projection G’ — G has local sections, we can
suppose that we can lift each map g;; to amap §;; : U;NU; — G'. The
classifying cocycle of C'y is defined by:

o _/\’i3 /\il /\1:2
Civizis = 31329ini3igiv-

This situation applies to the case where H is Z/2, G’ the spin group,
and G the orthogonal group O(n). The O(n)-bundle is the orthogonal
reduction of the bundle of linear frames of the n-dimensional manifold
N, defined by a Riemannian metric. The gerbe represents the geometric
obstruction of the existence of a spin structure on IN. The cocycle in
this case is the second Stiefel-Whitney class.
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2.3 Connective structures on gerbes. The notion of a connective
structure on a gerbe has been defined by Deligne, see [3]. It is analogous
to the notion of a connection on a principal bundle.

Definition 2.3.1. Consider a gerbe C defined on a manifold whose
band is L. A connective structure on C is a correspondence which
associates to each object ey of C(U) a torsor Co(ey), called the torsor
of connections, that is, an affine space whose underlying vector space
is a subset of the set of 1-forms defined on U. The following properties
are supposed to be satisfied by this assignment:

(i) The correspondence ey — Co(ey) is functorial with respect to
restrictions to smaller subsets.

(ii) For every isomorphism h : ey — ef; between objects of C(U),
there exists an isomorphism of torsors h* : Co(ey) — Co(e;) compat-
ible with the composition of morphisms of C(U), and the restrictions
to smaller subsets.

Suppose now that the band of the gerbe is a T'-sheaf, where T is
the circle. Then, for each morphism g of the object ey of C, and V,,,
a connection of Co(ey),

g*veu = veU +gildg

A curving of a connective structure C'o is an assignment to each object
euv, and each element V of Co(ey), a 2-form D(ey,V) defined on U
such that for each morphism % : e}, — ey, D(ey, V) = D(ey, h*V).

If o is a 1-form on U such that V + « is an element of Co(ey), then

D(ey,V +a) = D(ey, V) + da.

The assignment ey — D(ey, V) is compatible with restrictions to
smaller subsets.

The curvature of the curving is the form whose restriction to each
open subset such that C(U) is not empty is dD(ey, V), where ey is an
object of C(U), and V an element of Co(ey). O

2.4 The gerbe associated to a closed 2-form. Let (N,w) be
a manifold N, endowed with a closed 2-form w; (N,w) is often called
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a Dirac manifold. There exists a Cech-Weil isomorphism between the
De Rham cohomology groups of N and the Cech-cohomology groups
of the sheaf of locally constant R-functions defined on N. Thus, using
the theorem of Giraud [6], we deduce that the cohomology class [w] of
w classifies a gerbe C’(w) defined on N and bounded by the sheaf of
locally constant R-functions.

In this part, we present the construction of the classifying cocycle
of this gerbe. This is in fact the classic explanation of the Cech-Weil
isomorphism. This gerbe is the fundamental gerbe used to define many
of the geometric obstructions involved in this paper.

Let N be a manifold, w a closed 2-form defined on N, and (U;);cs a
cover of N by contractible open subsets. Without loss of generality, we
can suppose that U; N U; is connected. The Poincare lemma implies
the existence of a family of 1-forms (a;);es such that

d(oy;) = WU,

where w|y, is the restriction of w to U;. Let ozj- and ozg be the respective

restrictions of «; and o; to U; N Uj;. Denote by «;j, the form 04;- —al
on U; NUj;. The form «;; is closed. By applying the Poincare lemma to
a;j, we obtain a family of real-valued functions u;; defined on U; N U;
such that

d(u”) = Oéij.

On Ui, iyiy, the differential of ¢;,4,i, = Wiyis — Wiy iy + Uiy, 1S zero. This
implies that it is a constant map. The family of functions c¢;,;,:, is a
2-Cech cocycle of the sheaf of locally constant R-functions.

If ¢i,i0i; € Z, the functions h;; = exp(2imu;;) defines a line bundle
over N. This bundle is the well known Kostant-Weil construction. In
this case, the cohomology class [w] of w is an element of H%(N, Z).

Suppose that [w] is not necessarily an element of H2(N,Z). Using
Giraud’s theorem concerning the classification of gerbes, we can as-
sociate to w a gerbe C’'(w) bounded by the sheaf of locally constant
R-functions, whose classifying cohomology class is the image of [w] by
the De Rham Cech isomorphism. This gerbe represents the obstruc-
tion of the class [w] to be zero. The objects of C’(w)(U) when it is not
empty, can be represented by flat R-bundles by using the reconstruc-
tion theorem of Giraud presented in Brylinsky [3]. We denote by ¢/,
the classifying cocycle of C'(w).
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The following proposition describes a gerbe bounded by T which
will play a fundamental role in this paper.

Proposition 2.4.1. Let U be an open subset of N, and denote by
C(w)(U) the category whose objects are circle bundles over U, endowed
with a connection whose curvature is wyy the restriction of w to U.
We will denote by (er, Ve, ) an object of C(w)(U); ey represents a T -
bundle and V., the connection on ey whose curvature is the restriction
of w to U. The set of morphisms between two objects (ey, Ve, ),
and (ef;, Ve, ) is the set of morphisms of differential bundles over the
identity f : ey — e}, such that f*(Veb) = Ve, . The correspondence
U — C(w)(U) is a gerbe bounded by the sheaf of locally constant T*-
valued functions. The class of its classifying cocycle is the obstruction
of [w] to be integral.

Proof. First, we show that C'(w) is a sheaf of categories.

Gluing conditions for objects. Let (U;)ier be an open cover of an
open set U of N, (e;, Ve,) an object of C(w)(U;) and gi; : €} — €] a
morphism such that, on Uj, s, gffizgf;ig = gffis. Since the elements
of the family (e;);cs are bundles, we deduce that there exists a bundle
e over U whose restriction to U; is e;. The bundle e is endowed with
a connection whose curvature is the restriction of w to U since the
restriction of this curvature to U; is the restriction of w to Uj;.

Gluing conditions for arrows. Let e,e’ be a pair of elements of
C(w)(U), the correspondence defined on the category of open subsets
of U by V — Hom (ry,v(e),ry,v(€')) is a sheaf of sets, since it is the
sheaf of morphisms between two bundles.

It remains to be verified that the sheaf of categories is a gerbe.

Let (U;)ier be an open covering of N by contractible open subsets.
For each pair of objects (e,V.) and (¢, V) of C(w)(U) we have to
show that these objects are locally isomorphic.

To show this, consider two objects (e;, Ve,) and (e;, Ver) of C(w)(U;).
The bundle e; and e} are isomorphic to the trivial bundle U; x T, Let
d be the differential, V., = d + «;, and Ve; = d+ a}. For each section
u : U; — iR of the Lie algebra bundle associated to this bundle, and

each automorphism g defined by a differentiable map U; — T, we
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have:
(1) g*(d+ai)(u) = g7 (d+ i) (gu) = (97 dg + d + a;) (u).

Since the connections V., and V. have the same curvature, there
exists a function v; such that o = a; + dv;. We can suppose (by
shrinking U; if needed) that the logarithm is defined on U;, thus
g 'dg = dlog(g). If we take g = exp(v;),where o = a; + dv;, then
g*(d+ ;) = d+af. We obtain that the respective restrictions (e;, Ve,)
and (e;, Ver) of (e, V) and (€', Ver) to U; are isomorphic.

The automorphism group of the object (e, V.) of C(w)(U) is the
group of gauge transformations which preserve the connection V..
These gauge transformations are necessarily constant maps, as is shown
by (1).

Now we have to interpret geometrically the vanishing of the coho-
mology class [c,], of the classifying cocycle ¢, of C'(w). The theorem
of Giraud [6] implies that this is equivalent to the existence of a global
object of the gerbe, that is, a T -bundle over N whose curvature is w.
The Kostant-Weil construction implies that this is equivalent to the
fact that the class [w] of w is integral. O

Now we establish the relation between the gerbes C'(w) and C(w).

Proposition 2.4.2. Consider the exact sequence of sheaves of locally
constant functions:

(2) 1—Z—R—T" —1

where the map Z — R is the canonical injection, and R — T' is
the exponential map of the Lie group T*, that is, the composition of
the multiplication by 2wt and the usual exponential. We obtain the
following exact sequence in cohomology:

HY(N,T') — H*(N,Z) — H?*(N,R) — H*(N,T")---.

The class [c,] is the image of the class [c,], by the map H*(N,R) —
H?(N,T") of this sequence.
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Proof. Consider an open covering (U;)icr of N, such that for each
i, U; is contractible and Uj,...;, is connected (using a theorem of
Weil, we can suppose Uj,..;, to be connected). Let ¢;,4,i; be the
classifying cocycle of the gerbe C/,. The image of [¢/,] by the map
H?(N,R) — H?(N,T") is represented by the cocycle exp(2imc;,i,i,)-
Recall that to construct the cocycle c;,i,i; we have considered the
restriction wyy, of w to U;. There exists a form «; such that da; = WU, -
We can define the object e; = (U; x T',d + a;) of C(w)(U;). Let o
be the restriction of a; to Uj;; then there exists a function wu;; such

that d(ui;) = o} — . The functions exp(2imu;;) defines a morphism

between e’ and el (see the proof of 2.4.1). The classifying cocycle of
C'(w) 1S Cigigis = Wigiz — Wiyis + Wiyiy, and the classifying cocycle of

C(w) is exp(2im iy, ) exp(—2imu;, iy ) €xp(2imus, i, ) = exXp(2imciyinis )-

Now, we are going to endow the gerbe C(w) with a connective
structure.

Proposition 2.4.3. For each open set U of N, and the object ey
of C(w)(U), the set Co(w)(ey) of connections defined on ey whose
curvature is the restriction of w to U defines a connective structure on
C(w). The restriction wjy of w to U, is the curving of each object ey
of C(w)(U). The curvature of this curving is zero.

Proof. Let a and o' be two elements of Co(ey), and (U;)icr a
contractible open cover of U. It is a well-known fact that there exists
a l-form v such that o = a + v. The restriction of ey to U; is
diffeomorphic to the trivial T'-bundle. This implies that, under this
identification, the respective restrictions «; and o} of the connections
a and o’ to U;, have the form d + u;, and d + u; + vy, where u; is a 1-
form defined on U;, and vy, is the restriction of v to U;. The respective
curvatures of d+u; and d + u; + vy, are the 2-forms du; and d(u; +v).
Since they coincide with the restriction of w to U;, we deduce that
dv = 0; thus, Co(w)(ey) is an affine space whose underlying vector
space is the vector space of closed 1-forms. We deduce that it is a
torsor.

The fact that, for each automorphism g of ey, g* Ve, = Ve, +9 1dg
results from the fact that V., is a connection.
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For each map h : ey — e, we define the map h* : Co(w)(ey) —
Co(w)(e};), to be the pull-back of connections by h~1. This implies
that h* behave naturally in respect to restrictions to smaller subsets
and compositions.

Let Ve, be an element of Co(ey), the curvature of V., is the
restriction of w to U, wyy. It is also the curvature of h~1"(Vey). This
can be shown using (1). This implies that w defines a curving for this
connective structure. The fact that the curvature of this connective
structure is zero follows from the fact that the form w is closed. O

At the end of this paper, we will present a quantization of symplectic
manifolds using the gerbe C(w). This gerbe thus appears to be
fundamental in symplectic geometry.

2.5 Symplectic fibrations and gerbes. Let p: P — N be a
symplectic fibration, whose fiber F' is the closed symplectic manifold
(F,w). We study the following problem: extend [w] to a class [Q]
defined on P, that is, find a cohomology class [Q2] € H?(P,R) such that
for every u € N, consider the canonical embedding i, : FF — F, — P,
i ([2]) = [w]. A result of Thurston [18] implies that in this situation

u
there exists a form 2 such that 7,,"Q = w,, for all u € N.

To use the theory of gerbes, we must suppose that the class [w] of
the symplectic form w is integral. Thus, it is the Chern class of a circle
bundle hr over F. In the general case, we will use the gerbe C'(w) to
define a 2-gerbe which represents the geometric obstruction of the class
[w] to be lifted to P. We have the following proposition:

Proposition 2.5.1. Suppose that [w] is integral, and consider for
each open set U of N the category Cr(w)(p~1(U)) of circle bundles
over p~Y(U) whose Chern class is [Qu], an element of H*(p~*(U),R)
which extends [w]. The correspondence defined on the category of open
subsets of P by p~1(U) — Cp(p~1(U)), defines a gerbe on P, where
P is endowed with the topology structure generated by p~1(U), where
U is an open subset of N, and its differential structure is modeled on
R"™ x F, where n is the dimension of N. The cohomology class of the
classifying cocycle of this gerbe is the obstruction to extend |w].
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Proof. Gluing conditions for objects. Recall that for each object ey
and ey of Cp(w)(U), Hom (ey, e;;) are morphisms of circle bundles
which project to the identity. Let (U;)icr be an open covering of the
open set U of N by open subsets, e; an object of Cp(w)(p~*(U;)), and
uij : €5 — e} a morphism which verifies w;;,"wiyi,"" = ui,i,". Then
there exists a bundle ey on p_l(U) whose restriction to each U; is e;.
This is deduced from the classical definition of a T'-bundle ey over
p~1(U). Consider a 2-closed form  which represents the Chern class
of ey, since the restriction of ey to p~1(U;) is e;, its Chern class which
is the restriction of the class [©2] of Q to p~1(U;) is the Chern class of
e;. This implies that [Q2] extends to p~1(U) the class [w].

Gluing condition for arrows. The correspondence defined on the
category of open subsets of U by V — Hom (eU‘V,e’U‘V) defines a
sheaf on this category, since it is a sheaf of morphisms between two
bundles.

This shows that Cr(w) is a sheaf of categories. It remains to prove
that it is a gerbe.

Let (U;)icr be a cover of N by contractible open subsets, p~*(U;) =
U; x F. This implies that H*(p 1(U;)) = H*(F); thus, there exists a
class [Q;] on p~!(U;) which extends [w], and which is integral. Thus,
Cr(w)(p~1(U;)) is not empty.

We deduce from (1) that the group of automorphisms of the objects of
Cr(w)(p~1(U)) are sections of the sheaf circle valued functions defined
on p~ (V).

Connectivity. Let ey and ef; be a pair of objects of Cr(w)(U). Denote
respectively by e; and e the respective restrictions of ey and e}, to
p 1(U;), where (U;);cr is an open cover of U by contractible open
subsets. Since U; is contractible, the Chern class of the differentiable
bundle e; and e} are mapped to [w] by the isomorphism H?(U; x F,R) —
H?(F,R). This implies that they are isomorphic since they have the
same Chern class.

If the classifying cocycle of the gerbe C'r(w) has a trivial cohomology
class, then by a theorem of Giraud [6], the gerbe C'r(w) has a global
section e. Let u be an element of the contractible open subset U; of
N. The restriction of e to p~1(U;) is an element e; of Cr(w)(U;), by
definition, its restriction to F, has Chern class [w]. O
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Remark. Denote the classifying cocycle of the gerbe Cr(w) by cp(w).
Its cohomology class is an element of the sheaf cohomology group of
differentiable functions H%(P,T;). We can consider the exact sequence
of sheaves of differentiable functions:

(2) 1 -Z —-R —T' =1

We deduce an isomorphism between H?(P,T') and H?(P,Z), since
H*(P,R) the cohomology of the sheaf of R-differentiable functions is
zero, because there exist partitions of unity. Thu, the gerbe Cr(w) is
classified by an element of H3(P,Z).

In [3] Brylinski has studied the following problem: Suppose there
is defined on P a 2-form {2 whose restriction to each fiber is closed,
integral and symplectic. Find obstructions to build a closed 2-form
whose restriction to a fiber F, above u coincides with the restriction
of Q on the fiber F,. If H(F,R) = 0, the obstruction to find such a
class is a gerbe Cp(w) defined on N.

Recall the construction of Cp(w). For every open set U, C,,(w)(U) is
the category whose objects are T -bundles over p~1(U), endowed with
a connection such that the restriction of its curvature to a fiber Fj,
above u, coincide with the restriction of €2 to F},. A morphism between
two objects (ev, Ve, ) and (ef;, Ve, ) is a morphism f : ey — ef; of
T'-bundles such that f*(Ve ) = Ve,. The group of automorphisms
of (err, Vi) is the set of T'-differentiable functions defined on U. This
gerbe is trivial, since as remarked by McDuff in [16], in this case the
Guillemin-Lerman-Sternberg method allows to construct a closed form
which extends [w] if H'(F,R) = 0.

Remark. Suppose that the symplectic bundle p : P — N has a
Hamiltonian reduction. Then there exists an extension  of w, see
[12], which defines the distribution D on P as follows: let u be an
element of P, T, P and T'F),(,) the respective tangent spaces of P at u
and at the fiber of p(u).

D?, ={veT,P:Quv,y) =0,y € TFy,}.

When the bundle is Hamiltonian, we can suppose that the holonomy
of the closed connection form is Hamiltonian. And, using a standard
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process, we can reduce the structural group of this connection to its
holonomy and thus obtain the Hamiltonian reduction.

Proposition 2.5.2. Suppose that there exists an extension [Q] of the
class w. Let Q be a fived representative. Then the set of cohomology
classes of closed 2-forms €)' whose restriction to any fiber F,, coincides
with the restriction of Q to the fiber F, and such that D = DY is
isomorphic to H?>(N,R).

Proof. We remark that, while this proposition is very similar to the
problem of the Brylinski’s book [3] mentioned above, we cannot apply
the result obtained by Brylinski since we do not suppose that the class
[w] is integral and H!(F,R) may not vanish.

Let Q' be a representative of a cohomology class whose restriction to
the fiber F, of p : P — N coincides with the restriction of Q to F, and
such that D® = D?'. Then the form Q — Q' projects to a closed 2-form
p(2— Q') defined on the base; we have thus defined a map between the
set of extensions of [w] which has a representative whose restriction to
a fiber F, coincides with the restriction of 2 to F,, and also defines the
distribution D% and H?(N,R) by assigning to the class of Q' the class
of 2 — Q. We have to show that this map is an isomorphism.

Suppose that the class of p(2 — Q') is trivial. Then there exists a
1-form « on N such that d(a) = p(Q — ©Q'). We denote by p*(a) the
pulls-back of @ to P. This implies that Q' = Q 4 d(p*(«)); thus, the
classes of Q2 and €’ coincide. This shows that the map [Q'] — [p(Q2—Q)]
is injective.

To show that this map is surjective, consider a closed 2-form v of IV,
p(Q-(Q-p*(v)))=v. O

The initial problem studied by Mc Duff was to find a Hamiltonian
reduction of the bundle p : P — N, that is, a symplectic bundle
isomorphic to p, whose transition functions take their values in the
Hamiltonian group of (F,w). This problem can be studied by a sheaf
of categories. The definition of this sheaf of category uses the following
result of Lalonde-McDuff [13], which allows to define its band:
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Proposition 2.5.3. Let p: P — N be a symplectic bundle. Suppose
that there exists a Hamiltonian reduction of p. Then there exists an
extension  of w, such that the Hamiltonian reduction is defined by the
holonomy of the closed connection form Q. A Hamiltonian automor-
phism of the bundle p : P — N is a diffeomorphism ¢ of P which covers
the identity, such that the restriction of ¢ to the fiber over n € N is a
Hamiltonian automorphism of (F,w,), and such that ¢*(Q2) = Q. We
denote by Aut (P,Q) the group of Hamiltonian automorphisms of the
Hamiltonian reduction (P,Q). The group Aut (P,Q) does not depend
of the Hamiltonian reduction.

Remark. In fact a more general result is shown in Lalonde-McDuff
[12], that is, the group of diffeomorphisms G(P,w) which cover the
identity and such that the restriction of each of its element ¢ to a fiber
F,, belongs to the connected component of the group of symplectic
diffeomorphisms of (F,,w,), and which preserves the symplectic class
which defines the Hamiltonian reduction does not depend of the cho-
sen Hamiltonian reduction. This result implies the one stated in the
proposition above since this group G(P,w) contains Aut (P, 2). The el-
ements of Aut (P, 2) are the elements of G(P,2) which when restricted
to (Fy,w,) are Hamiltonian. We see that this last condition is in-
dependent of the chosen Hamiltonian connection 2 which defines any
Hamiltonian reduction of p : P — N. A morphism f : P — P’ between
the Hamiltonian bundles P and P’ is a morphism of fiber bundles f
such that f*(Q') = Q, where  and Q' are the closed connections forms
whose holonomy define respectively the Hamiltonian reduction of P
and P’

Now we can show the following:

Proposition 2.5.4. Let p: P — N be a symplectic fibration. For
any open set U of N, we define CL(w)(U) to be the category whose
objects are Hamiltonian structures on the symplectic bundle p~1(U) —
U. A morphism between the objects (e, ), and (e', Q) of Ch(w)(U)
is a morphism of bundles f : ey — e such that f*(Q) = Qu.
The correspondence defined on the category of open subsets of N by
U — CL(w)(U) is a gerbe whose band L is the sheaf induced by the
presheaf of Hamiltonian automorphisms such that, for each open set
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U of N, and each ey of Cr(w)(U), L(U) is the group of Hamiltonian
automorphisms of ey, see Proposition 2.5.3. The cohomology class of
the classifying cocycle of Ck(w) is the obstruction for the existence of
a Hamiltonian reduction of p: P — N.

Proof. Gluing conditions of objects. Consider (U;);c; an open cover
of the open subset U of N, such that Ck(w)(U;) is not empty, and
(ei, ;) an object of Ch(w)(U;). Suppose that there exists a family of
morphisms u;; : ej- — ez such that wu;,;,"ui,i, " = u4,i,°2. Then there
exists an F-bundle e over U whose restriction to U; is e;. We have to
show that this bundle is Hamiltonian. Since u;;*(€2;) = ;, the forms
Q; glue together to define on e an extension 2 of w. Consider a path
¢ :[0,1] = N; we can suppose that [0, 1] is a union of intervals I; such
that I; is contained in U, an open set of the above cover. The holonomy
of the connection form Q along I; is the holonomy of ; along I;. We
conclude that the holonomy of €2 along I is Hamiltonian, since each
closed form €; define an Hamiltonian reduction on e;.

Gluing conditions of arrows. Let ey and e}, be a pair of objects
of C3(w)(U). The correspondence defined on the category of open
subsets of U which associates to V' the set of Hamiltonian morphisms
Ham (ey, e];) is a sheaf since it is the subsheaf of the sheaf of morphisms
between two bundles.

Connectivity. Let ey and e}, be a pair of objects of Ch(w). We can
suppose that the open cover (U;);ecr of U is a Hamiltonian trivialization
of the both bundles ey and e};,. This implies that the restrictions of
ey and ep; to U; are isomorphic as Hamiltonian bundles to the trivial
Hamiltonian bundle U; x (F,w). We deduce that these Hamiltonian
bundles are locally isomorphic.

Let (U;);er be a symplectic trivialization of p : P — N. The trivial
symplectic bundle U; x (F,w) is an element of C'}(w)(U;), which is not
empty.

The result of Lalonde and McDuff [12] recalled above shows that the
group Aut (ey, Qu) of Hamiltonian automorphisms of the Hamiltonian
reduction of the restriction of p to p~(U) does not depend of the chosen
object in C1(w)(U). This implies that the correspondence defined on
the category of open subsets of N by U — Aut (ey,Qy) defines a
presheaf L' on U. We denote by L the sheaf associated to this presheaf.
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We remark that if CL(w)(U) is not empty, then L(U) = Aut (ey, Q)
for each object ey of CL(w)(U). This implies that the gerbe is bounded
by L. u]

2.6 The McDuff construction of Ham®, and closed connection
forms. The existence of a closed connection form €2 on the symplectic
bundle p : P — N does not insure the existence of a Hamiltonian
reduction of this bundle. This has motivated McDuff to introduce the
group denoted Ham?®, such that the existence of a closed connection
form is equivalent to the existence of a Ham®-reduction. We will
now present the construction of the group Ham?® and show using
gerbe theory that a Ham®-reduction implies the existence of a closed
connection form on a symplectic bundle.

Definition 2.6.1 (McDuff). Let H;(F,w,Z) be the first homology
group of F with integral coefficients, we define SH; (F,w,Z) to be the
quotient of the integral 1-cycles of F' by the image under the boundary
of 2-cycles with zero symplectic area. We denote SH;(F,w,Q) to be
the tensor product SHy(F,w,Z)®Q. Often we will respectively denote
SHy(F,w,Z), and SH;(F,w,Q) by SHy(F,Z) and SH1(F, Q). Let P,
be the values of w on rational cycles. We have the exact sequence:

0— R/P, — SH,(F,Q) — Hy1(F,Q) — 0.

Consider a section s of H;(F, Q) — SH1(F, Q). Then we can define
on Symp (F,w) the group of symplectomorphisms of (F,w), the map
F, : Symp (F,w) — H*(F,R/P,) = H'(F,R)/H'(F, P,) by:

Fs(g9)(u) = g(su) —s(gu). O

Recall that the group Symp (F,w) acts canonically on SHy(F, Q) and
H,(F,Q). McDuff has shown that the application Fj is a 1-cocycle for
the canonical representation defined on Symp (F,w) which takes its
values in the group of linear automorphisms of H'(F,R)/H'(F, P,)
and has defined Ham?® to be the kernel of this cocycle Fj.

Theorem 2.6.2 (McDuff). A symplectic bundle p : P — N has a
Ham?®-reduction if and only if there exists a closed connection form.
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Moreover, the group Ham?® intersects every comnected component of
Symp (F,w).

We will now present a proof of the first part of this theorem using
gerbe theory. In fact this problem can be reformulated in a more general
situation: Let G be a Lie group whose dimension can be infinite and
H a subgroup of G; we suppose that G/H is a K(m, 1) space, that is,
its universal cover is contractible and its fundamental group is 7. We
are looking for conditions which insure the existence of a H-reduction.
This problem can be formulated using gerbe theory. We have:

Theorem 2.6.3. Let p: P — N be a G-principal bundle defined on
N. Suppose either:

(i) the transition functions u;; : U; NU; — G take their values in
the normalizer Nor (H) of H in G, where H is a subgroup of G, and
G/H is a K(m,1) space, or

(i) there exists a continuous representation h : G — L where L
is an abelian group isomorphic to the quotient of a vector space V by
a discrete subgroup w such that the restriction of h to the connected
component of the identity Gy of G 1s trivial, a continuous surjective
1-cocycle for this representation whose kernel H intersects every con-
nected component of G.

Then there exists a gerbe Cy defined on N, bounded by the locally
constant sheaf defined on N by m which represents the obstruction of
the bundle p : P — N to have an H-reduction.

Proof. The proof is a corollary of the following lemmas:

Lemma 2.6.4. Suppose first that there exists a subgroup H of G,
such that the transition functions u;; of p : P — N are contained in
the normalizer Nor (H) of H in G. Then the right quotient fiber by

fiber of the bundle p by H defines a G/H-bundle p: P — N. Let CT/?I
be the universal cover of G/H. For each open subset U of N, define
the category Cg(U) to be the category whose objects are G/H -bundles
whose quotient fiber by fiber by m (recall that 7 is the fundamental group
of G/H) is the restriction of p to U, a morphism f : ey — ef; between
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two objects ey and e}, of Cy(U) is a morphism of CT/?I-bundles which
projects to the identity on their quotient by w. Then the correspondence
defined on the category of open subsets of N, U — Cygx(U) defines
a gerbe, whose classifying cocycle is the obstruction for reducing the
structural group G of the bundle p to H.

Proof. We first have to show the existence of the bundle p. Let
(Us, u;5) be a trivialization of the bundle p. Since w;; take their values
in Nor (H), for each element x of U; N Uj;, the right multiplication by
ui;(x) of G gives rise to a G/H-action of u;;(x) on G/H. We denote
by @;;(z) this induced action. The map u;; : U; NU; — G,  — T;(x)
verified the Chasle relation and thus defines a G/H-bundle p over N.
Now we show that the correspondence U — Cy (U) is a gerbe.

Gluing condition for objects. Let U be an open set of N, (U;)icr an
open cover of U, and e; an object of Cy(U;). We suppose that there
exist maps g;; : e;'. — eg such that gi1i2i3gi2i3i1 = gmaiz. Since e; is
a bundle, there exists a bundle e over U whose restriction to U; is e;.
Since the restriction to U; of the quotient fiber by fiber, of e by « is
the quotient fiber by fiber of e; by 7, we deduce that e is an element of
Cr(U).

Gluing condition for arrows. For each pair of objects e and €, of
Cu (U) the correspondence defined on the category of open subsets of U
by V' — Hom (ey, e'y) where ey and €’y are the respective restrictions
of e and €' to V defines a sheaf, since it is the sheaf of morphisms
between two bundles.

This shows that the correspondence defined on the category of open
subsets of N by U — Cg(U) is a sheaf of categories. Now we show
that it is a gerbe.

Let (U;)icr be a trivialization of the bundle p. Then we can lift the
restriction of § to U; to a bundle U; x G/H. This shows that Cg(U;)
is not empty.

Let U be an open set of N. Consider two objects ey, and ej,; of
Cu(U). The restriction of ey and ey to U; N U are isomorphic to

U;NU x G/H. This implies that the connectivity property holds.
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The definition of Hom (ey, ey ), the group of automorphisms of an
object ey, shows that its elements coincide with the action of 7, which
thus defines a locally constant sheaf on IV, which is the band of Cy.

It remains to show that the triviality of the gerbe Cy is equivalent
to the existence of a H-reduction of G. Let G and H be respectively
the universal cover Qf G and H. The homotopy sequence applied to
the fibration H — G — G/H implies that G/H is simply connected.
The map G/H — G/H is a covering map, thus G/H is the universal
cover of G/H. Suppose that the gerbe Cg is trivial. Then a global
object of this gerbe is a a/fl—bundle. Since a/fl is contractible, we
deduce that this bundle is trivial, and thus have a global section. This
section projects to a section of p. This implies that the bundle p has a
H-reduction. u]

Lemma 2.6.5. Suppose that there exists a continuous representa-
tion h : G — L (where L is a quotient of a vector space V' by a discrete
subgroup ), whose restriction to the connected component Gy of G is
trivial. Suppose also the existence of a continuous cocycle F, surjec-
tive, for this representation whose kernel H intersects every connected
component of G. Then for every principal G-bundle p : P — N, there
exists a gerbe Cg, which represents the geometric obstruction for the
bundle p to have a H -reduction.

Proof. For each of the elements ¢ € G and h € H, we have
F(gh) = F(g9)+gF(h) = F(g). This implies that the cocycle F' defines
amap F : G/H — L. The map F is surjective since F is surjective.
Let [g] and [¢'] be two elements of G/ H, suppose that F([g]) = F([¢']).
Since H intersects every connected component of G, we can choose two
elements g and ¢’ in Gy, and respectively in the class [g] and [¢'] such
that F(g) = F(¢').

F(99 ") = F(g) + h(9)F (¢~ ") = F(9) + F(¢ ") =0

since g € Go, and the restriction of h to Gy is trivial. We deduce that
F(g) = F(g'), thus F is a diffeomorphism.

We remark that H N Gy = Hy is a normal subgroup of Gy. Since F
is a diffeomorphism, we deduce that G/H = Gy/Hy is diffeomorphic
to L.
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Consider now a G-bundle p : P — N, defined by the trivialization
ui; : Uy NU; = G. Then F(u;;) defines a L = G/H-bundle p over
N. The action of F(u;j(z)) on an element [g] of G/H is defined by
F(guij(x)) where g is an element of [g] in Gy. For each open subset
U of N, we define Cy(U) to be the category whose objects are V-
bundles over U, whose quotient fiber by fiber by 7 is the restriction
of p to U. Recall that L is the quotient of V by m. The set of
morphisms Hom (e, e’) between two objects e and e’ of Cy(U) is the
set of morphisms of L-bundles which project to the identity on the
restriction of p to U. We are going to show that the correspondence
defined on the category of open subsets of N, by U — Cy (U) is a gerbe
which represents the geometric obstruction to reduce G to H.

Gluing property for objects. Consider an open subset U of N and an
open covering (U;)ier of U. Let e; be an element of Cy (U;). Consider
a morphism g;; : ej- — e} such that Givin ® inis = Giyis'2. Since e; are
bundles, there exists a bundle e over U whose restriction to U; is e;.
Since the restriction to U; of the quotient fiber by fiber of e by 7 is the
quotient fiber by fiber of e; by 7, we deduce that e is an element of
Cy(U).

Gluing condition for arrows. For each pair of objects e and €,
the correspondence defined on the category of open subsets of U by
V — Hom (ey, e'y), where ey and €'y are the respective restrictions of
e and €’ to V defines a sheaf, since it is the sheaf of morphisms between
two bundles.

Let (U;)icr be a trivialization of the bundle p. Then we can lift the
restriction of p to U;, to a bundle U; x CT/?—I This shows that C'y(U;)
is not empty.

Consider two objects ey and e}, of Cy(U). The restrictions of ey
and e}, to U; N U are isomorphic to U; NU x CT/?{ This implies that
the connectivity property holds.

The definition of Hom (ey, ery), the group of automorphisms of the
bundle ey, shows that it can be identified with 7, which thus defines a
locally constant sheaf on N which is the band of Cy.

It remains to show that the triviality of the classifying cocycle of the
gerbe cy implies the existence of an H-reduction. Let G and H be
respectively the universal cover of G and H. The homotopy sequence
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applied to the fibration H- G- @/ﬁ implies that @/f] is simply
connected. The map @/ff — CT/?I is a covering map, thus @/ﬁ is the
universal cover of G/H. Suppose that the gerbe Cp is trivial. Then a
global object of this gerbe is a G / H-bundle. Since G / His contractible,
we deduce that this bundle is trivial and thus have a global section.
This section projects to a section of p. This implies that the bundle p
has a H-reduction. ]

Remark. In the case of Lemma 2.6.5, above, the cohomology class of
the classifying cocycle cy is the obstruction for the bundle p to be flat.
This implies that it is the Chern class of this bundle.

We are going to apply the above result to study the problem of the
existence of Ham?®-reductions.

Theorem 2.6.6. Let p : P — N be a symplectic bundle whose
typical fiber is (F,w). Then there exists a gerbe Chams such that the
cohomology class [caam¢] € H*(N,H'(F,R)/H*(F, P,)) of its classi-
fying cocycle cgams is the obstruction to reduce the structural group of
the bundle to Ham?®. If the coordinate changes of the bundle take their
values in the connected component Symp (F,w)o of Symp (F,w), then
there exists a gerbe Cuam whose classifying cocycle is the obstruction
for reduce the structural group to Ham (F,w).

Proof. The group Ham? is the kernel of the continuous surjective 1-
cocycle Fy, and it intersects every connected component of Symp (F,w).
The quotient of Symp (F,w) by Ham® is H!(F,R)/H'(F, P,). We can
apply Theorem 2.6.4.

Suppose that the coordinate changes take their values in Symp (F, w)o,
since Ham (F,w) is a normal subgroup of Symp (F,w)p, and the flux
homomorphism allow us to identify Symp (F,w)o/Ham (F,w) with
HY(F,T)/H'(F,T), where I is the flux group, we can apply Theo-
rem 2.6.4. u]

Remark. In differential geometry, as in the theory of G-structures,
the question of finding reductions of a G-bundle is intensively studied.
Let H be a subgroup of Gj if the left quotient H/G is a K(m,1) space,
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it is possible to write a similar theorem to the one above and obtain an
obstruction cocycle whose cohomology class decides upon the existence
of a H-reduction. This can be, for example, applied to the existence
of a Riemannian structure on a manifold and also to solve differential
equations defined on jet-bundles, since in many cases the existence of
solutions is equivalent to the existence of reductions of jet-bundles.

We will give now another proof of the theorem of McDuff mentioned
above which says that the existence of a closed connection form on
a symplectic bundle p : P — N implies the existence of a Ham?®-
reduction.

Theorem 2.6.7 (see McDuff [16]). Let p: P — N be a symplectic
bundle endowed with a closed connection form. Then there exists on P
a Ham?®-reduction.

Other proof. Suppose the existence of a closed connection form de-
fined on the bundle p : P — N. We have to show that the cohomology
class [cHams] is trivial. It has been shown by McDuff-Lalonde [12], that
the holonomy around a contractible loop is Hamiltonian. Consider the
reduction of the symplectic bundle to the holonomy of the closed con-
nection form. Since the Hamiltonian group is the connected component
of Ham?®, we deduce that the composition of the transitions functions
u;; and of Fy, Fy(u;;) is constant, if needed, we shrink the open set U;
such that u;;(U; N Uj) is contained in the same connected component
of Symp (F,w). This implies that the bundle p (defined in the proof
of Lemma 2.6.5) is flat. Thus, its Chern class is a torsion class. Since
the lattice 7 in this case is a Q-vector space, we deduce that the Chern
class of this bundle is zero. O

Sketch of the proof of McDuff [16]. McDuff defines for each sym-
plectic bundle p : P — N of fiber (F,w), a cohomology 2-class in
H?(N,H(F,P,)) (in fact it is the class of 2.6.5) as follows: The bun-
dle p is defined by a classifying map p’ : N — BSymp (F,w). The map
Fy induces a map F! : BSymp (F,w) — BH'(F,R)/H'(F, P,). There
exists a Ham®-reduction if and only if the composition F! o p’ is null
homotopic, since we have an exact sequence

1 — Ham® — Symp (F,w) — H'(F,R)/H*(F,P,) — 1.
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The space BH(F,R)/H(F,P,)isa K(H'(F, P,),2)-space, and the
set of homotopy classes of maps N — K(H'(F,P,),2) is one-to-one
with H?(N, P,)). The obstruction class of McDuff is defined to be the
homotopy class of F op'.

The proof of McDulff of the previous result is done by showing that
the previous class vanishes on the 2 sub-complex of the C'W-complex
N. In this regard, she shows that it is the image by a null connecting
homomorphism related to an exact sequence of a one class. ]

2.7. The universal obstruction of McDuff. In this part, we will
show how the universal class defined by McDuff can be defined using
gerbe theory.

Let ESymp (F,w) — BSymp (F,w) be the universal bundle of the
group Symp (F,w). The l-cocycle F, : Symp (F,w) — H'(F,R)/
HY(F, P,) defined by McDuff induces an H!(F,R)/H(F, P,)-bundle
on BSymp (F,w). See Lemma 2.6.5. The Chern class Ur of this bundle
is the universal class Ujs defined by McDulff; it can be viewed as the
cohomology class of the classifying cocycle of the gerbe which represents
geometrically the obstruction for the previous H!(F,R)/H'(F,P,)-
bundle to be trivial. Since each (F,w)-symplectic bundle p : P — N, is
classified by a classifying map f : N — BSymp (F,w), the obstruction
class to obtain a Ham®-reduction is f*(Up). This is the class defined
in the sketch of the proof of McDuff in 2.6.

2.8. Generalizations to topoi. The previous construction applied
to symplectic bundles can be generalized to other situations; algebraic
geometry, arithmetic, etc. In this regard we will adapt this result to
topoi.

Definition 2.8.1. Let G be a group endowed with a topology.
The topology can be the Zariski, etale, the Lie topology, etc. A
continuous right G-action of G' on the topos (P, Jp) is a continuous
functor dg : P x G — P such that if u is the multiplication of G by g,
dG ¢} (Idp X u) = dg(dG X Idg)

A G-torsor defined on a topos N is a continuous functor p : (P, Jp) —
(N, Jn) such that:
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(i) (P,Jp) is endowed with an action of G, p commutes with the
action of G that is, the composition P x G — P — N, (where
P x G — P is the canonical projection, and P — N is p) and
P xG — P — N (where P x G — P is the multiplication d¢ and
P — N is p) coincide.

(ii) The canonical map P x G — P x P x G — P x P which is the
composition of the canonical embedding P x G — P X P x G, and the
product of the identity on the first factor, and the multiplication dg
on the second and third factor is an isomorphism. We suppose that
the quotient of P by G is N. Recall that the quotient of P by G is
the initial element in the category of maps p’ : P — N’ such that p’
commutes with the action of G. o

We will assume that the torsor is locally trivial. This means that
there exists a covering family of N, (U;);esr such that: There exists
an isomorphism u; : Py, — U; X G between the restriction Py, of
P to U; and U; x G. We can thus define ugj = u ouj71|Ui><NUj><G :
UixnUj xG—U; xyU; xG. Let € : G — G, g — e, where e is the
neutral of G and e;; : U; Xy U; X G — G the canonical projection. We
can define u;; : U; xny U; — G by e;; 0 u;j o (Idy, x yu; x €'). We have
*?; P is obtained by gluing the family of (U; X G);cr

uglizlgugzigll = Uj,
using u;;.

Let H be a subgroup of G. We say that the torsor P — N has an
H-reduction if and only if it is isomorphic to a torsor whose transition
functions w;; take their values in H.

Theorem 2.8.2. Let p: P — N be a G-torsor. Suppose that either

1. there exists a subgroup H of G such that G/H is a K(m,1) space,
and the torsor has a Nor (H)-reduction, or

2. there exists a 1-cocycle surjective and continuous F : G — L for
a representation h of G, where L is the quotient of a vector space by
a discrete subgroup mw, such that the restriction of h to the connected
component Gy of G s trivial, and the kernel H of F intersects every
connected component of G, or

3. the left quotient H/G is a K(m,1)-space.
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Then there exists a gerbe C'y defined on N such that the cohomology
class of its classifying cocycle is the obstruction for reduce G to H.

Proof. We will only give the proof in the first case. The fact that the
torsor has a Nor (H)-reduction implies the existence of a G/H-torsor
P, which is the right quotient of P by H.

For each object U of N, we define Cy(U) to be the category whose

objects are G'/H-torsors whose quotient by 7 is the restriction of P
to U. A morphism between two objects of Cy(U) is a morphism of
torsors which projects to the identity on the restriction of P to U.

Now we show that the correspondence U — Ci(U) is a gerbe.

Gluing condition for objects. Let U be an object of N, (U;)icsr a
covering family of U, e; an object of Cy(U;). We suppose that there
exist maps g;; : ej- — eg such that gi1i2i3gi2i3i1 = gmvaiz. Since e; are
torsors, there exists a torsor e over U whose restriction to U; is e;.
Since the restriction to U; of the quotient of e by 7 is the quotient of
e; by m, we deduce that e is an element of Cy (U).

Gluing condition for arrows. For each of the objects e and €', the set
of morphims defined on the sub-topos over U, by V' — Hom (ey, €'y),
where ey and €’y are the respective restrictions of € and e’ to V' defines
a sheaf of sets, since it is the sheaf of morphisms between two torsors.

Let (U;)ier be a trivialization of the torsor P. We can lift the
restriction of P to U; to the torsor U; x G//H. This shows that Cg (U;)
is not empty.

Consider two objects ey and e}, of Cy(U). The restrictions of ey
and e; to U; x y U are isomorphic to U; x y U x G/H, this implies that
the connectivity property holds.

The group Hom (ey, ery) is the group of automorphisms of the torsor
ey which project to the identity isomorphism of the restriction of p to

U. This group is identified to m, which thus defines a locally constant
sheaf on N which is the band of Cy. o
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Remark. The triviality of the gerbe Cy does not necessarily imply
the existence of an H-reduction, if N is not a manifold. Since, for
other categories, homotopy is not well-understood, there are no precise
definitions of null-homotopic maps.

3. The group Ham® and the etale topos of a manifold. The
group Ham?® introduced by McDuff allows to characterize symplectic
bundles whose closed connection forms are the symplectic bundles en-
dowed with a Ham®-reduction. In [16] it is shown that a Symp (F,w)o-
bundle p : P — N is endowed with a closed connection form if and only
if there exists a finite cover N of N, such that the pull-back of p to
N has a Hamiltonian reduction. This motivates to define Symp (F, w)-
bundles on the etale topos of N. The motivation is due to this historical
remark: In algebraic geometry, algebraic principal bundles are locally
trivial up to a finite etale cover. This has motivated the definition of
the etale topology.

Definition 3.1. The etale topos of a manifold N is the category
whose objects are differentiable maps ¢ : U — N which are finite
covering maps onto their images. A morphism between two objects is
a covering map.

A covering family of the etale topos, Et (N) of N, is a family (U;)icr
such that the arrow u; : U; — N is a finite etale cover, and the union
Of (Ui(Ui))iej is N.

A symplectic bundle p : P — Et(IN) whose typical fiber is the
symplectic manifold (F,w) defined by a covering family (U;);er of
Et (IV) for the etale topology. The transition functions are symplectic
bundles isomorphisms of the trivial symplectic bundle U; xn U; X
Symp (F,w), defined by w;; : U; xny U; — Symp (F,w) such that
Uigiy " Uiy, " = Uiy iy

A closed connection form on the symplectic bundle is defined by a
family of closed connections forms 2; of the bundle e; : U; X (F,w)
(recall that ©; is a 2-form which extends w), such that on U; x y U;, we

have: wi;* (Qy, x yu;) = where Q;jy, x v, and £

Qj|UixNUj’ JU; x NU;

are the respective restrictions of Q; and Q; to U; xn Uj.
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A symplectic bundle defined on N induces canonically a symplectic
bundle on Et (IV), since an open covering of N defines an etale covering
of N. O

Proposition 3.2. Let P be a symplectic bundle defined on the etale
topos of a manifold N. Then there exists a symplectic bundle P defined
on a covering space N of N, such that the symplectic bundle induced
by P on Et (N), 1s the pull-back of P by the covering map N — N. If

N is compact we can suppose that Nisa finite cover.

Proof. Let (d; : U; — N);cr be the etale covering family of N
which defines the symplectic bundle. Then we can define a manifold
N as follows: N is the quotient of the union of U; by identifying the
elements u; € U;, and u; € Uj such that d; (u;) = d;(uj). We denote by
l; :U; — N the canonical map. The manifold N is a cover of N since
the restriction of the canonical projection N — N to 1;(U;) is dil; 7t

There exists a diffeomorphism ;; : [;(U;) N 1;(U;) — U; xn Uj, such
that on

1

lil (Uil) n li2 (Uiz) n lia (Ui3)7 liziail - lilizis = Idli1 (Ui )Ny (Uiz)mlis(Uia);
thus, we can define the symplectic bundle Pon N by gluing 1;(U;) X
(F,w) using u';; = wu;; ol;j, where u;; are the transition functions of P.

The construction of P shows that the induced bundle on Et (N),
by P is the pull-back of P by the canonical map N - N. If N is

compact, then we can suppose that there exists a finite number of U;.
This implies that IV is compact and therefore is a finite cover of V. O

We can rewrite the theorem of McDuff [16] as follows:

Theorem 3.3. Letp: P — Et (N) be an Sym (F,w)o-bundle defined
on the etale topos of a compact manifold N. Then P has a closed
connection form if and only if it has a Hamiltonian reduction.

__Proof. The previous proposition shows that there exists a finite cover
N of N and an induced symplectic bundle P over N. Suppose that
the closed connection form is defined on P by the family of 2-forms
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Q; defined on the etale cover (I; : U; — N);cs. As in the previous
proposition, we can show that there exists a finite cover N " of N such
that the pull-back P’ of P to N’ is endowed with a closed connection
form, such that the closed connection form induced on its etale cover
is defined on U} = P’ x  U; by the pull-back of Q; by P’ xy U; — Us.
We can apply the result of McDuff and obtain a Hamiltonian reduction
P” — N" on the pull-back of P” of P’ to a finite cover N” of N'.
We denote by I} the canonical map I : U/ = U] xy» P" — N'".
There exists a family of maps u : I/(U}') — Symp (F,w) such that
u;’u;’ju;-’_l € Ham (F,w), where u;; are the coordinate changes of P";
thus, uf u;-'jug-'_ll'-’ ~! defined a Hamiltonian reduction of P. Since the
family (U’ — N");cr is an etale cover of N”, (U = N" — N)¢y is
also an etale cover of IV. o

4. Flux and holonomy of gerbes. In this part, we will relate the
flux of a symplectic manifold (F,w) to the holonomy of the gerbe C(w)
defined in subsection 2.4.

Let E be a T'-gerbe defined on P, that is, a gerbe such that for
each open set U of P, E(U) is a category of T -bundles defined on U.
Consider an open covering (U;)ier of P such that U; is contractible.
Let e! be the restriction of an object e; of E(U;) to U; N U;. There
exists a morphism u;; : eé— — eg . We denote by c;j;, the automorphism
uriuijuj; of the restriction of ¢; to U; NU; NU;. It is defined by a
T'-differentiable function. Since c;;; is the classifying 2-cocycle of E,
there exists a 1-chain h;; of 1-forms such that:

)
hjt — hy + hyj = —%d(LOg (ciji));

since d(h;;) is a 1-cocycle, there exists a 0-chain of 2-forms L; such that

Definition 4.1. The family of forms h;; is a called a connection of
the gerbe, and the family of forms (L;);cs is the curving of the gerbe.
This means that there exists a related connective structure Co defined
on the gerbe, and elements «; of Co(e;), such that h;; = o — u;;* ;.
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The 3-formm whose restriction to U; is dL; is the curvature of the
connective structure. Suppose that the curvature is zero. Then
L; = d(L}), hij = L — L; + d(h;), and we denote by ¢ ; ;.
—i/(2m)Log (0;”1-22-3) + Rhigis — hiyis + h'iyi, to be the holonomy of the
connection, c; ;... is constant and is a 2-cocycle. |

Definition 4.2. For each map [ : N — P, where N is a surface
without a boundary, the pull-back of the gerbe, and its connective
structure to Nz, by [ has a vanishing curving. Using the Cech-de Rham
isomorphism, we can identify the holonomy cocycle of this gerbe with
a 2-form Hol (h;;, N2). The holonomy of the connection on N is

/ Hol (hij,Ng). O
N2

Let (F,w) be a symplectic manifold, and let Cr(w), the T -gerbe
representing the obstruction of [w], be integral. If the band of this
gerbe is extended to the sheaf of differentiable T -functions, it becomes
trivial and flat.

For each open set U of F, the set of connections defined on an
object ey of Cp(w)(U) whose curvature is the restriction of w to U
defines a connective structure, the curving of the connective structure
is the restriction of w to U;. The cocycle representing the holonomy
of this connective structure is the image of w by the Cech-de Rham
isomorphism. This can be deduced from subsection 2.4.3.

Let [ : Ny — F be a differentiable map defined on the surface No;
the holonomy of this connective structure around No is:

" (w).

N3

This definition is related to the definition of the flux, since for each
path v = ¢; of N, and each path ¢; of the connected component of
Symp (F,w), ¢:(7) is a map from h : I, — F, the flux of ¢;(y) is
nothing but the half of the holonomy around the sphere S? obtained
by gluing two copies of I, along their boundaries. The map f : 2 = N
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is obtained by restricting h to each copy of I5. The holonomy of f is
defined to be the limit of the holonomy of a sequence of differentiable
maps which converges towards f.

5. A geometric interpretation of a section of H;(M,R) —
SHi(M,R). In [16], McDuff gives a geometric interpretation of a
section p : Hy(M,R) — SH;(M,R), when the cohomology class [w] is
integral. In this section we generalize this interpretation when [w] is not
necessarily integral. We denote by 7 : SHy(M,R) — H;(M,R) the
projection map. Suppose that the class [w] of the symplectic manifold
(F,w) is not necessarily integral. Consider a cycle [y] represented by
the chain h : T' — F, where T is the circle, and the pull-back by h,
of the gerbe Cp(w), to T is trivial.

Proposition 5.1. Consider an object e of h*(Cr(w)) which is the
pull-back of an object €' of a tubular neighborhood of h(T*'). Let L be
a connection in h*Co(e'). Denote by h', () the holonomy around v of
L. It does not depend on the element chosen in h*(Co(e’)).

Proof. To show this, consider another connection L’ in h*(Co(e')).
We can suppose that h(T) is covered by (U;)icr, the union of Uj; is
a tubular neighborhood of h(T*), and Cr(w)(U;) is not empty. The
fact that the union of U; is a tubular neighborhood of h(T}) implies
that the restrictions of L and L' to I; = h 1(h(IT1) N U;) can be
supposed to be the pull-back of elements d + o; and d + o of Co(e;),
where d is the differential e; is an object of Cp(w)(U;) and «; and
o} are 1-forms defined on U;. We have o) = a; + df] where f] is a
function defined on U; since the curving of the gerbe is the closed form
w. Denote by L; and L] the restrictions of L and L’ to I;. On I;,
L; = d + du;, the coordinate changes v;; of the bundle e are defined
by duj — du; = —i(1/2m)dLog (v;;), the holonomy cocycle of L is given
by —(i/2m)Log (vi_jl) —uj +u;). Since L] = d + d(u; + f;), where f; is
the pull-back of f! by h. We deduce that the holonomy cocycles of L
and L’ coincide up to a boundary. Thus, their cocycles have the same
cohomology class. o

We can define Ay () to be the image of the holonomy of this connec-
tion in R/P,,. Let [y] € Hy1(F,R) define the section p([y]) to be the
class of elements 4" in m=*([y]) such that the holonomy around «' is in
P,.
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6. Existence of symplectic bundles and gerbes. Let F' be the
flux, and let ', be the flux group. The flux conjecture has been shown
recently by Ono, thus T, is a discrete subgroup of H'(F,R). There
exists an exact sequence

1 — Ham (F,w) — Sympg(F,w) — H*(F,R)/T, — 1.

Let p : P — N be a symplectic bundle defined by the coordinate
changes g;; : U; N U; — Sympg(F,w) on the trivialization (U;);e;.
We can project the cocycle g;; to maps F(gi;) = ¢';; : UinU; —
H!(F,R)/T, and obtain an H!(F,R)/I',-bundle as in subsection 2.6.5.
A natural question is the following: given an H'(F,R)/T,-bundle p,
is there a symplectic bundle which gives rise to p?

This problem is an example of the basic examples which have mo-
tivated the definition of gerbes theory. Consider an open set U of IV,
and C(U) a category of symplectic bundles whose transition functions
take their values in Symp (F,w)o and which induces the restriction of
P to U. Suppose that p is defined by the transition functions gz'-j, and
there exist elements g;; over ggj such that the conjugation by g;; in
Ham (F,w) defined a bundle over N whose typical fiber is Ham (F,w).
We suppose also that the automorphism group of an object ey of C'(U)
are the sections of the previous Ham (F,w)-bundle. We denote by L
the sheaf of those sections. The correspondence U — C'(U) is a gerbe
bounded by L;.

Denote by [ the rank of the group I, the torus 7" is the maximal
compact subgroup of H'(M,R)/T',. The bundles defined over N,
whose fiber is T!, are classified by their first Chern class. This
can enable to construct symplectic bundles which does not admit
Hamiltonian reductions if the Chern class is not zero.

7. 2-gerbes, 2-gerbed towers. The notion of 2-gerbe has been
defined by Lawrence Breen [2, 3]. It allows one to represent geomet-
rically 3-cohomology classes. In the preprint [20], Tsemo has defined
the notion of gerbed towers; this is a recursive definition of geometric
representations of cohomology classes. We will now present the no-
tion of 2-gerbes and 2-gerbed towers, which enable us to cope with the
extension problem when [w] is not necessarily an integral class. An
alternative discussion has been presented above using the group Ham?;
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the construction given in this section allows to show the existence of
a connection on a bundle which has a Hamiltonian reduction without
using the Guillemin-Lerman-Sternberg construction. The definition of
the sheaf of 2-categories uses the definition of 2-categories or bicate-
gories which has been defined by Benabou.

Definition. A bicategory C is defined by a class of objects C, for
each pair of objects u and v of C, a category Hom (u,v). The objects
of Hom (u, v) are called the 1-arrows, and the arrows of Hom (u,v) are
the 2-arrows. There exists a composition map:

Hom (us,u3) x Hom (u1,us) — Hom (ug, us).

For each quadruple (uy, us, ug, us), there exists an isomorphism be-
tween the functors

(Hom (ug,uq) X Hom (ug, u3)) X Hom (ug, us) — Hom (uq, uy)
and
Hom (u3,u4) x (Hom (uz,usz) x Hom (u1, uz)) — Hom (u1, us)

which satisfies more compatibility axioms which can be found in Breen
[2]. o

Definition. Let NV be a manifold; a sheaf of 2-categories is a
correspondence C defined on the category of open subsets of N by:

U— C(U)
where C(U) is a 2-category, which verifies the following properties:
for each embedding map U — V/, there exists a restriction functor
ry,v : C(V) — C(U), such that

TU,,U; O TU,,Us = TU,,Us-

Gluing properties for objects. Let (U;);cr be a covering family
of an open set U of N, e; an object of C(U;), and a l-arrow g;; :
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rvnv;U;(€5) — Tuinu;vi(ei). Suppose that there exists a 2-arrow
hi1i2i3 : gilizlsgiﬂg,“ — gi1i312 which satisfies:

hi1i2i4 s (Id o hi2i3i4i1) = hi1i3i4i2 (hi1i2i3i4 o Id)

Then there exists an object e of C(U) whose restriction to U; is e;.

Gluing conditions for arrows. For each pair of objects ¢ and €’ of
U, the correspondence defined on the category of open sets contained
in U by V — Hom (ry,v (€),7u,v (¢)) defines a sheaf of categories.

A 2-gerbe is a sheaf of bicategories which satisfies the following:

1. The bicategory C'(U) is a 2-groupoid; this means that 1-arrows
are invertible up to 2-arrows, and 2-arrows are invertible.

2. For every point x of N, there exists a neighborhood U, of z, such
that C(U,) is not empty.

3. Any pair of objects e and €’ of C(U) is locally isomorphic. This
means that there exists an open covering (U;);c; of U such that the
restrictions e; and e} of respectively e and e’ to U; are isomorphic.

We say that a 2-gerbe is bounded by the sheaf of abelian groups L,
if the following two conditions are satisfied:

4. Any pair of 1-arrows can be joined by a 2-arrow.

5. Let ey and e}, be a pair of objects of C(U). For any l-arrow
h : ey — ey, there is a specified isomorphism L(U) — Aut (h),
compatible with compositions and with restrictions e. We say that
the sheaf L is the band of the 2-gerbe, or that the gerbe is bounded
by L.

7.2. Classifying cocycle of a 2-gerbe. Let (U;);cs be an open
covering of N such that C(U;) is not empty. Consider an object e;
of C(U;), and gij : v,,;,v;(e;) — Tu,; U, (ei). There exists a 2-arrow
hi1i2i3 D Girin 2 Gigist — Giyis 2, and on Ui1i2i3i4 a 2-arrow Ui, iyigi, which
verifies:

hi1i2i4i3 (Id o hi2i3i4i1) = Wiyizigiy (hi1i3i4i2 (hi1i2i3i4 o Id))

The family wu;,i,i5i, is the classifying 2-cocycle of Cj if the sheaf L is
commutative, it is a Cech cocycle in the classical sense, and the set of
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isomorphic classes of 2-gerbes bounded by L is isomorphic to H3(N, L).
If L is not commutative, we define H3(N, L) to be the set of isomorphic
classes of 2-gerbes bounded by L.

In [20] we have given a simplified version of 2-gerbes, which we have
named 2-gerbed towers.

Definition 7.2.1. A 2-gerbed tower defined on N, is defined by a
gerbe C on N and, for each object ey of C(U), a gerbe C}(ey) defined
on U such that the following conditions are satisfied:

(i) For each embedding map U — V, there exists a restriction
functor rf; 1 : Ci(er) = Ci(rvv(er)) such that 74,y o 1l v = 14y,
where 7 is the restriction functor of the gerbe C.

(ii) There exists a commutative sheaf Ly defined on N, such that,
for each object ey of C'(U), the band of C1(ey) is the restriction of Ly
to U.

(iii) For each morphism A : ey — ef; of objects of C(U), there exists
a functor h* : Ci(ey) — Ci(eyy) which is compatible with restrictions,
such that for a morphism A’ : e, — ef;, there exists a natural
transformation between the functors (h'h)* and h/*h*. We suppose
also the functors (h'h)* and h'*h* coincide on objects. This implies the
existence of an element I,/ j, of Ly (U) such that (h'h)* = lp/ p o h'“h*.

7.3. The classifying cocycle of a 2-gerbed tower. We can asso-
ciate to a 2-gerbed tower, a 3-Cech cocycle defined as follows: Consider
an object e; of C(U;) and a morphism g;; : rv,;,u;(ej) = ru,; v, (es).
The arrow ¢ iyiz = Gisiy 2 Jiris 2 Jinis 't is the Cech classifying cocycle of
the gerbe C. It can be identified to an element of the band of C'.

The classifying cocycle of the 2-gerbed tower is defined by considering
the family of automorphisms

o (e BN B2NK (L BB\X(_ .. T4)*
Civinigia = (Cinigis )" (—Ciyisis Ciyigiq Ciyigis .

Property (iii) implies that ¢;iyizi, is an element of Ly (Uj, - -i4).
Contrary to the case of 2-gerbes, it is after having defined the classifying
cocycle that we set the axiom concerning the gluing property for
objects:
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Gluing property for objects. Suppose that the cohomology class
of the classifying cocycle of a 2-gerbed tower is zero. Let (U;);cs be the
open covering of IV used to construct the cocycle. Then there exists a
gerbe Cj, such that for each open subset U of N, the restriction of Cy
to UNU; is Cy(e;py), where e;yy is the restriction of e; to U; N U, and
e; is the object of C'(U;) used to construct the 2-cocycle.

Proposition 7.3.1. Let (C,C) be a 2-gerbed tower defined on N,
the correspondence defined on the category of open subsets of N as
follows:

To each open set U of N, C'(U) is the bicategory whose objects are
gerbes Ey such that, for every open covering (U;)icr of U such that
C(U;) is not empty, the restriction of Ey to U; is isomorphic to a
gerbe Ci(e;) where e; is an object of C(U;). A l-arrow h : Ey =
Ci(ey) — Ej; = Ci(ey;) between two objects of C'(U) is a functor h*,
where h : ey — ef; is an arrow. A 2-arrow is a natural transformation
ly between two 1-arrows which coincide on objects.

Proof. Gluing property for objects. Consider an open covering family
(Ui)ier of N. Let E; = Ci(e;) be an object of C'(U;), a morphism
between g;; : Ef — E] is a functor h;;* : Ci(e%) — Ci(e]), where

hij = € — €} is an arrow. A 2-arrow between hiji,"® hiyis't and

hi1i3i2* is a natural transformation
Cirinis * Mini™ hiniy ™ — hiyiy™
defined by an element of L;(Uj,4,:,). The fact that:

Ciyiziq 2(ci1izi3 ‘o Id) = Ciyigig 3(Id O Ciyizig 1)

is equivalent to the gluing property of objects of a 2-gerbed tower. This
implies by definition the existence of an object Eyy whose restriction to
Ui is Ei.

Gluing conditions of arrows. Let Ey and Ej; be two respective
objects of C'(U). The correspondence defined on the category of open
subsets of U by V — Hom (EU|V,E{J‘V), where Ey |y and E'{le are

the respective restrictions of Eyy and Ej; to V is a sheaf of categories
since it is the sheaf of morphisms between two gerbes.
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Let U be an open subset of N; the objects Ey and Ej, of C'(U)
are locally isomorphic, since the restrictions of Ey and Ej; to an open
cover of (U;);er of U such that the objects of C(U;) are isomorphic. If
we replace U by N, and choose a covering family such that C(U;) is
not empty, we obtain that C’'(U;) is not empty.

The set of automorphisms of a l-arrow is isomorphic to Li(U) by
definition. o

The notion of 2-gerbed tower is easier to understand than the one of
2-gerbe, principally because we do not need the notion of bicategory
to define it. In practice, many of the examples of 2-gerbed are defined
using the notion of 2-gerbed tower; another advantage of this notion is
the fact that the classifying cocycle of a 2-gerbed tower (C,C}) is the
image of a 2-cocycle, that is, the classifying cocycle of C' by a connecting
morphism in cohomology.

8. The general case. We will now describe the 2-gerbe and 2-
gerbed towers bounded by the sheaf of locally constant R-functions
which represent the geometric obstruction to extend w to P when the
cohomology class [w] of w is not necessarily integral.

Let U be an open subset of N, and let [2y] be an extension of [w] to
p~1(U). We cannot define a T"-bundle over p~1(U) (as in the integral
case) whose Chern class is [Qy].

Definition 8.1. We denote by Cr(Q2,p 1(U)) the gerbe defined on
p 1(U) which is the obstruction of the class [Qy] to be trivial. See
subsection 2.4.

Let U be an open subset of N. We define the bicategory CZ%(w)
(p~1(U)) to be the class whose elements are categories C(Q,p (U)).
Let e; and ey be two objects of C&(p~'(U)), a l-arrow f : e! =
Cl(Q,p71(U)) = € = Ci(Q2,p~1(U)) is an isomorphism of gerbes
between e! and e?, and a 2-arrow is a natural transformation between
those functors.

More precisely, on a contractible cover (U);c; of p~1(U), the re-
strictions of the objects of e! are torsors whose objects are isomorphic
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to trivial R-bundles U] x R, a l-arrow f is defined by the respective
objects el and e? of the respective restrictions of e! to U/, and of e?
to U/, and an isomorphism f; between e} and e7. Due to the natural
properties of f, we can use these morphisms to completely rebuild f.
This implies that these data satisfy the following properties:

The identification of e} and e? to U/ X R allows us to represent that
fi has a morphism of the trivial torsor U] x R; the fact that f behaves
naturally in respect to restrictions implies the existence of a morphism
Usj of U/ij X R such that fi = ui]-fj. We have uilizisui2i3i1 = uma”
The map w;; is a translation by an element of R. The family (w;;); jer
defines a 1-cocycle, thus a closed 1-form on p~*(U). Conversely, a 1-
cocycle of the sheaf of locally constant R-maps defines a torsor, and
a l-arrow between e' and e? by using the previous identification of e}
and €? to U/ x R.

Using the identification above, a 2-arrow is defined locally by a chain
of constant sections u; defined on U] x R such that u; = u;ju;. Thus,
a morphism between two objects is defined by a 1-cocycle of the sheaf
of locally constant R-functions, that is, a torsor, and a 2-arrow is an
element of R.

Theorem 8.2. The correspondence p *(U) — C%(w)(p 1(U))
defines a 2-gerbe such that the cohomology class of its classifying cocycle
is the obstruction for extending [w] to P.

Proof. Gluing conditions for objects. Consider an open cover-
ing (U;);er of an open subset U of N, and (e;,[€%;]) an object of
C%(w)(p~*(U;)) where [Q;] is a cohomology class defined on p~!(U;)
which extends [w]. Suppose that there exist 1-arrows h;; : eé— — eg and
a 2-arrow di,li2i3 : hiliQishiQisil — hilisiz such that di1i3i4i2 (di1i2i3i4 ¢}
Id) = d;}ipi, * (Id © dipigi,**). The maps d;,;,i, can be identified with a
2-Cech cocycle of the sheaf of locally constant R-functions defined on
p~1(U). We can identify it using the de Rham-Weil isomorphism with
an element [Qy] of H?(p~1(U),R). The class [Qy] is the classifying
cocycle of a gerbe ey defined on U bounded by the sheaf of locally con-
stant R-functions. We have to show now that this gerbe is an element
of C2(y~(U)).
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The fact that the family d;,;,;, is a 2-Cech cocycle implies that there
exists a gerbe bounded by the sheaf of locally constant functions whose
restriction to U; is e;, (see the proof of the classifying theorem for gerbes
presented in the book of Breen [2]). This gerbe is isomorphic to eg.
This implies that the restriction of [Qy] to p~1(U;) is the classifying
cocycle of e;, and that [Qp] extends [w], since the restriction of [Qy] to
U; is [Q;]. We deduce that it is the cohomology class of the classifying
cocycle of an element of C%(w)(p~!(U)) whose restriction to p~!(U;)
is e;.

Gluing conditions for arrows. Let e and €’ be a pair of objects of
C%(w)(p~(U)), the correspondence defined on the category of open
subsets of U by U’ — Hom (e|Ur,eTU,) is a sheaf of categories, since it
is the sheaf of categories of morphisms between two gerbes.

This shows that C%(w) is a sheaf of 2-categories.

Consider an open covering (U;)ier of N by contractible open sets.
Since H*(U; x F) = H*(F'), we can extend [w] to p~*(U;) = U; x F, and
two such extension classes are equal to the class [w] as the identification
H*(U; x F) = H*(F) shows. This implies that C%(w)(p~1(U;)) is not
empty, and its objects are isomorphic.

The sheaf of 2-categories C%(w) is bounded by the sheaf of R-locally
constant functions defined on P. This is shown in the paragraph above
this theorem.

Suppose that the class of the classifying cocycle of C%(w) vanishes;
then the 2-gerbe has a global section e, its restriction to p~1(U;) is an
element of C%(w)(p~*(U;)) whose classifying cocycle extends [w]. This
implies that the classifying cocycle of e extends [w]. o

The cocycle defined by McDuff, and the classifying cocycle ¢% of the
2-gerbe C'%(w) solve the same geometric problem: decide if the class [w]
can be extended to the total space of the symplectic bundle p: P — N
whose typical fiber is (F,w). We will show now that they are related
by an isomorphism of cohomology groups.

Suppose that the family (U;)icr,gi; defines the coordinate changes
of P. Let Symp (F,w) be the universal cover of Symp (F,w). Counsider
an element h;; of Ham® such that g;;(x)h;; = g;;(z) is contained in
Symp (F,w)o, and a lift: g/:; :U;NU; — S?m\p(F,w) of the functions
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gi;- We remark that an element ;Z(x) is an equivalence class of a path
in c¢:[0,1] — Symp (F,w). We choose a path u;; which represents it

and set:
Lord
/0 w(d—u}j(x),.> :gzlj(x)

Proposition 8.3. The chain c;,iyi, = gi;, " — g5, +gll.," is a 2-
Cech cocycle whose cohomology class is identified using the Cech-Weil

isomorphism to the McDuff obstruction class.

Proof. The element g};(z) is a lift of Fy(gj;) in H'(F,R), since
the restriction of Fy to Symp (F,w)o factors by the flux. This implies
that g}/, represents the classifying cocycle of the H'(F,R)/H'(F, P,,)-
bundle (see subsection 2.6.5) whose coordinate changes are the func-
tions Fs(g;;)- O

We can use the Cech-Weil isomorphism to identify c¢;,;,:, to a closed
2-form Q' defined on N which takes values in the vector bundle p,,
of closed P, 1-forms defined on F induced by g;;. Let Q(F,P,) be
the vector space of closed P, 1-forms defined on F. The bundle p,, is
the quotient of the union of U; x Q(F, P,) by the following transition
functions:

(, @) — (2, 9ij(2) ()

where g;;(z)" (a)(y) is defined by:
9:3 ()" (@) (y) = ald(gi5(2) ") ().

The identification of ¢;,,:, to ' defines a 3-form Q on P by
Qz,y,z) = V(x,y)(z) where z and y are elements of T,, N, the tangent
space of N at n, and z is an element of the tangent space to the fiber
at n.

Consider the Leray-Serre spectral sequence related to the fibration
p: P — N. The McDuff obstruction class is an element of Eg’l which
converges to [c%(w)].
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Theorem 8.3. Under the notation introduced just above, the coho-
mology class of Q is the obstruction to lift [w] to P. Its cohomology
class can be identified to the class of the classifying cocycle of C&(w).

Proof. Let e; be the gerbe defined on U; x F whose classifying
cohomology class is the image of the class of the 2-form 2; which is
the product of 0 and w by the Cech-Weil isomorphism. The gerbe e; is
an object of C%(w)(U;). The morphism g defined at the proposition
j
represents also the classifying cocycle of C%(w). O

above is a morphism between e’ and e]. This implies that c;,iyi,

8.2 Hamiltonian reduction and closed connection forms. We
have given a gerbe formulation to the problem of the existence of a
Hamiltonian reduction by defining the gerbe CL(w). Now we are going
to show how the classifying cocycles of Ck(w) and C%(w) are related.

The link between the classifying cocycles of C'}(w) and C%(w) appears
clearly by considering the 2-gerbed towers defined as follows:

Definition 8.2.1. Consider U, an open set of N and ey an object
of C1(w)(U); it is a Hamiltonian structure defined on the restriction
of the symplectic fibration p : P — N to U. We deduce that there
exists an extension [Qy] of [w] to p~!(U) whose holonomy defines
the Hamiltonian reduction of eyy. Denote by Ca(er) the gerbe which
represents the obstruction of [Qy] to be trivial. We have just defined
a 2-gerbed tower (Cr(w), Cs). O

Let L be the band of the gerbe CL(w), and let Ly be the sheaf of
locally constant R-functions defined on P. We define the following
sheaf L’ on P: suppose that ey is an object of Ck(w)(U), V an open
subset of p~1(U) and ey an object of C2(err)(V). An automorphism g of
ey maps ey to the object g~ (ey) of Ca(ey)(g(V)), given ¢ € R. For
each morphism A : ey — e}, between objects of Ca(ey)(V') we consider
the morphism between g~'"(ey:) — g~ "(e},) defined by composing
g~ '"(h) by the translation by c fiber by fiber. The sheaf generated by
the set of actions on the gerbe Cs(ey) that we have just defined is L’.
(It does not depend on eyy.) We can suppose that L is defined on P by
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setting L(U) = L(p(U)), U C P. We have the exact sequence:
l1—Ly—L —L—1.

This gives rise to the following exact sequence in cohomology:
H*(P,L¢) — H?*(P,L') — H*(P,L) — H3(P, Ly).

Here, if F is a sheaf defined on P, the space H?(P, E) is the space of
isomorphism classes of gerbes bounded by E defined on P. The space
H3(P,E) is the space of isomorphism classes of 2-gerbes bounded by
E. See Breen [2].

The next result shows that the class of the classifying cocycle of the
2-gerbe tower (CL(w),C2) is the image of the class of the classifying
cocycle of CL(w) by the map H?(P, L) — H3(P, Ly).

Proposition 8.2.2. The class of the classifying cocycle c%(w) of
C%(w) is the image of the class of the classifying cocycle ck(w) of
Ck(w), by the map H?(P,L) — H3*(P, Lo). Suppose that there exists a
Hamiltonian reduction of the bundle P — N. Then we can extend |w)
to P.

Proof. The classifying cocycle of this 2-gerbed tower is defined as
follows. Consider an object e; of Cp(w)(U;), and a map u;; : € — €].
The map c¢;,4yi5, = ui3i1i2ui1i2i3ui2i3i1 is an automorphism of ei1i2i3_
We can lift it to a map c*; i,:, of Ca(et?2,,). The Cech boundary
Ciyigigi, Of the chain c*; ;,i, is the classifying cocycle of the 2-gerbed
tower. It appears that c;,i,igi, iS the image of ¢;,4,:, by the connecting
map H?(P,L) — H3(P,L). Considered as a 2-gerbe, the 2-gerbed
tower involved here is a subgerbe of C%(w), since for each object ey
of Ct(w)(U), the gerbe Ca(ey) is an object of C%4(w)(U). This shows
that if [ck(w)] vanishes, then [c%(w)] also vanishes. o

This result is shown by McDuff in [16] by using the Guillemin-
Lerman-Sternberg construction.

9. Quantization of the symplectic gerbe. Let (F,w) be a
symplectic manifold. When the class [w] is integral, there exists a
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line bundle L over F' whose Chern class is [w]. This line bundle is
endowed with an Hermitian metric. The Hermitian space of sections
L*(F) = {u: F - L : [,|u]®> < 400} is the quantization of the
manifold. The elements of this Banach space are used in theoretical
physics to describe evolution of particles.

The goal of this part is to associate to any symplectic form, an
Hermitian space endowed with a Hermitian form, which is a candidate
to represent the phase space in quantum mechanic.

Let C(w) be the symplectic gerbe defined on F', which represents
the obstruction of [w] to be integral, see subsection 2.4. Consider an
open covering (U;)ier of U, and e; an object of C(w)(U;). We can
define the gerbe L(w) on F such that L(w)(U) is the category, whose
objects are (ey,€'y) where ey is an object of C(w)(U), and e, the C-
line vector bundle over U, whose transition functions are the transition
functions of eyy. The objects of L(w)(U) are endowed with a canonical
connective structure Co, see subsection 2.4. An element of C'o((ey, e];))
is a connection on ey whose curvature is the restriction of w to U. A
morphism between two objects (ey,e'v) and ely),e't;) of L(w)(U) is
a morphism ey — el'yy. The correspondence defined on the category of
open subsets of F' by U — L(w)(U) is a gerbe.

To perform the quantization we need to define the notion of sections.
We will propose this definition of sections of vectorial gerbes.

Definition 9.1. Let (U;);cr be an open covering family of F, such
that L(w)(U;) is not empty, and let (e;,e}) be an object L(w)(U;). A
section u of (e});cr is a family of sections u; : U; — e} such that the
union of supports of u; is compact.

We denote by V' ((e;)icr) the vector space generated by those sections
of (e})icr- This vector space is endowed with an Hermitian metric
defined by

(u,v) = Z/ (Uis Vi)er

7

icl V¢
where (, )¢, is the Hermitian metric of €.
For each function f, and each section (u;);cr, we can define
Lyg(u;) = Ve;Xfui + 2im fu;,
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where Xy is the Hamiltonian of f, and V: is a connection defined on
e; whose curvature is the restriction of w to U;. The vector field Xy is
the vector field such that w(Xy,.) = —df.

Proposition 9.2. The family of L (u;) defined a section Ly(w). The
map

f—>Lf

verifies
[Ly,Lg] = Lig,gy-

Proof. We have to show that Ly(u;) has compact support and that
the union of support of the family (Ls(u;)):cr is compact. The support
of fu; and V. X (u;) are contained in the support of u;. The fact that

iXy¢

[Ly, Lyl = Lgy 4y is classical. u]

We have obtained a Souriau-Kostant quantization. This quantization
can be written without using the notion of gerbe.

We can define, using the classifying theorem of Giraud [6], the gerbe
L'(w) on F, such that L'(w)(U) is a set of flat C-bundles defined on
U, and the cohomology class of the classifying cocycle of L'(w) is the
obstruction of the class [w] to be integral. This construction of this
gerbe using [3] shows that this gerbe is flat, the objects of L'(w)(U)
are locally flat C-bundles, and morphisms are morphisms of locally flat
C-bundles.

For L'(w), we can also define the following space of sections. Consider
an open covering (U;);c; of F by contractible subsets, e, an object
of L'(w)(Ui), gij : € — €} a family of isomorphisms. A section
u = (u;)ier is a family of sections w; : U; — e} such that u; = g;;(u; ).
We denote by V(e;,gi;) the set of those sections. The set V(e;, gs5)
can be supposed to be different than zero. To see this, we consider an
open cover (U;)icr, such that there exists an element iy € I such that
V = U;, —Uizi,U; is not empty: take a section u;, of e; whose support
is contained in V', and set u; = 0 if ¢ # ig. This vector space can be
endowed with the following scalar product.



774 TSEMO ARISTIDE

Consider a partition of the unity p; subordinate to (U;)ic;. Let
u = (u;)icr, and let v’ = (u});cr be sections of V(e;, u;5)). We set

(u,0) Y /(piUi,piu'i>-

iel

For each differentiable function f defined on F' we can define the
operator Ly which acts on the section u = (u;)icr by:

Lf(ui) = VXfui + 2im fu;.

The operator Ly is well defined. Since on U; NUj, we have Lf(u;) =
u;jLy(uj) since the gerbe C(w) is flat, and the map wu;; is identified
using a trivialization with the multiplication by an element of T in
the trivial bundle U; N U; x C.

Quantization of other structures. The methods of quantization of
Kostant-Souriau have been extended in many directions. Here we
present a quantization described in [13].

Consider a manifold M, such that the ring C°°(M) of differentiable
functions of M is endowed with a bracket:

{, }:C®(M)x C®(M) — C>*(M)
such that (C>*°(M),{, }) is a Lie algebra and there is an R-linear map:

H:C®(M) — Xx(M)
f— Xy

where X(M) is the space of vector fields of M, such that

Xipy = [ X5, Xl

The ma
P C*®(M) — End (C*(M))

f— (9= X;(9))

is a representation of the Lie algebra C°°(M). We denote H (M) the
cohomology of this representation. The correspondence:
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C®(M)x C*(M) — C™(M)
A (f,9) — X5(9) — Xo(f) — {f, 9}
is a 2-cocycle of this representation.

There is a canonical map C' : H}, gpam (M) — HE(M) defined on
a chain by C'(h)(f1, dpts, fp) = M(Xy,,...,Xy,). In [13], it is shown
that if there exists a line bundle L — M such that C'(Q2) = Ay, then
the structure is quantizable, that is, there exists a representation:

P:C®(M) — End (L*(L))
which verifies

P({f,g}) = [Ps, Py]
P(f)=Vx, + 2irf

where V is the Hermitian connection of the bundle.

Let (U;)icr be a contractible open covering of M by charts. We can
restrict the bracket { , } to U;. Suppose that on 2-chains, the map
C restricted to U; is surjective on closed forms, that is, there exists a
2-closed form Qp, on U; such that C(Qu,) = Ay,. The form Qp, is the
Chern class of a connection defined on U; x C.

We can define on M the gerbe D, such that for each open set U of M,
D(U) is the category of line bundles over U endowed with a connection
whose curvature g verifies:

C(Q) = Ay

Let e; be an object of D(U;). We consider the family (u;);cr, where
u; : U; — e; is a section of e;, whose support is compact, and the union
of support of u; is compact. The family of (u;);er is an Hermitian
space. On e; we consider the connection V., whose curvature is the
restriction of Qy;,

The representation
f— Vein + 2in f

defines a quantization of M.
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