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SOME NEAR-RINGS IN WHICH ALL IDEALS ARE
INTERSECTIONS OF NOETHERIAN QUOTIENTS

ERHARD AICHINGER, G. ALAN CANNON, JURGEN
ECKER, LUCYNA KABZA, AND KENT NEUERBURG

ABSTRACT. For every near-ring, Noetherian quotients are
one source of ideals, but usually not all ideals can be obtained
from such quotients. In this paper, we show that every ideal
of a zero symmetric ring-free tame near-ring with identity
is dense in the intersection of the Noetherian quotients that
contain it. In many cases, we are able to determine the ideal
lattice of the near-ring of those functions on a group that
are compatible with a given subset of the set of all normal
subgroups. In particular, let G be a finite group, and let
{0} = A1 < A2 < --- < Ap_1 < Ap = G be a chain of normal
subgroups of G with |A;/A;_1| > 3 for all ¢ € {2,...,n}.
Then the lattice of ideals of the near-ring of zero-preserving
functions compatible with A; for all ¢ is shown to consist
entirely of intersections of Noetherian quotients. The unique
minimal ideal of these near-rings is explicitly determined.

1. Motivation. We will compute the ideal lattice of certain finite
near-rings. For most of the well-studied function near-rings, such as
the inner automorphism near-ring on a given finite group, the lattice
of ideals is not known. However, using Noetherian quotients [10,
Definition 1.41], one obtains many ideals of a given function near-ring,
and often all maximal ideals [1, Theorem 1.2]. In [11, Problem 5],
Scott proposed the problem to find all ideals for a certain type of
function near-rings. He conjectured that all ideals of these near-rings
could be found as intersections of Noetherian quotients. In [3, 4] this
problem was solved. In most cases, all ideals were in fact intersections of
Noetherian quotients, and in one case, one additional ideal appeared.
In this paper, we will exhibit a large class of near-rings in which all
ideals are intersections of Noetherian quotients.
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2. Notation. Throughout this section, let (G;+) be a (not neces-
sarily abelian) group, and let N be a subnear-ring of (My(G); +, o). For
f,9 € My(G), f o g denotes the function that maps v € G to f(g(v));
this implies that we use right near-rings, i.e., near-rings that satisfy the
distributive law (f + g)oh = foh+goh.

A subset I of N is called a left ideal of the near-ring N if I is a
normal subgroup of (N;+), and for all ¢ € I, f,g € N, we have
fo(g+1i) —fog € I. A left ideal is an ideal if in addition, we
haveio f € [ foralli € I, f € N. A near-ring N is called ring-free if
there is no ideal I of N with I # N such that the quotient N/I is a
ring.

A subgroup S of G is an N-subgroup of G if for all n € N, n(S) C S.
A normal subgroup H of G is called an N-ideal of G if for all n € N,
p € H, and v € G, we have n(y+ p) — n(y) € H. If M is a subset of
N and v € G, we write M x«y for {m(y) | m € M}. We say that N is
tame on G if idg € N, and for all n € N, v, € G, we have

n(a+7v) —n(a) € N x7.

For two subsets A, B of G, we define the Noetherian quotient (A : B)y
by
(A:B)y ={n€ N |n(B) C A}.
If A is an N-ideal of G, then (A : B)y is a left ideal of the near-ring

N. If Ais an N-ideal and B is an N-subgroup of G, then (A : B)y is
an ideal of N.

Let S and T be two subsets of N. We say that S is dense in T if
S C T, and for every t € T and every finite subset F' of G, there is an
s € S such that s|p = t|p.

3. Near-rings with a distributive lattice of left ideals.

Lemma 3.1. Let G be a group, let N be a subnear-ring of My(G),
and let L be a left ideal of N. We assume that the lattice of left ideals
of N 1s distributive. Then L is dense in

M = m(L*'y:'y)N.
veG
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Proof. 1t is easy to see that L is a subset of M. In order to show that
L is dense in M, we fix m € M, and a finite subset Y = {y1,... , v}
of G.

Now we consider the following system of congruences.
=0 (mod L)
z=m (mod (0:71)n)

(3.1)

m (mod (0: v,)nN)-

T

We will now prove that each subsystem of (3.1) that consists of exactly
two congruences has a solution x in N. Let us first assume that such a
subsystem is of the form

z=0 (mod L)

3.2
(3:2) z=m (mod (0:v;)n)
for some j € {1,...,n}. We know that m(v;) lies in Lxv;. Hence, there
is an [ € L such that I(y;) = m(y;). Therefore, I =m (mod (0: v;)n)-
Thus, z := [ is a solution of (3.2). As a second case, let us assume that
we have a subsystem of the form

z=m (mod (0:v;)n)
(3.3) z=m (mod (0:v;)n)

where i,5 € {1,2,... ,n}. Then z := m is a solution of (3.3) that lies
in N. Since the lattice of left ideals of N is distributive, the Chinese
remainder theorem [14, Folgerung 12.2] (see also [7, Theorem 2.2.1])
yields that system (3.1) has a solution f in N. Hence, f € L and
fly=mly. O

For near-rings with the descending chain condition on left ideals,
“density” means “equality.” This is made precise in the following
proposition.

Proposition 3.2. Let G be a group, and let N be a subnear-ring of
My(G) that satisfies the descending chain condition on left ideals. Let
S and T be subsets of N such that S is dense inT. Then S =T.
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Proof. We call D C G a base of equality for N if for all n € N with
n|p = 0 we have n = 0. We will show that N has a finite base of
equality. To this end, we define subsets Dy, Ds,... of G as follows: let
D, :=@. If D; is not a base of equality, then there is a function f € N
with f|p, = 0 and f # 0. Let d € G\ D; be such that f(d) # 0, and
let Di+1 = D; U {d} Clearly, f S (0 : Dz)N \ (0 : Di—l—l)N- Now we
have (0: D1)y D (0: D3)y D ---. Since N has the descending chain
condition on left ideals, there will be a k € N such that Dy is a base
of equality.

Now let D be a finite base of equality for N, and let t € T. Since S

is dense in T, there is an s € S with s|p = t|p. Since D is a base of
equality for N, we obtain s = ¢, and hence t € S. O

Lemma 3.3. Let G be a group, let N be a subnear-ring of My(G)
with idg € N, and let I be an ideal of N. Then we have

(3.4) (YT xv:y)v=()I*5: Nx6)n.

yeEG [yt

Proof. To prove C, let f be on the lefthand side of (3.4). To show
that f lies on the righthand side, let § € G and n € N. We compute
f(n(d)). Since f lies on the lefthand side, we have an ¢ € I such
that f(n(d)) = i(n(d)). Since I is a right ideal, i on € I, and thus
f(n(6)) € Ix4. This completes the proof of C. To prove D, we fix f on
the righthand side of (3.4), and v € G. Then we have f(v) = f(idg(7)).
Since f lies on the righthand side, we obtain f(idg(7y)) € I * 7. O

Theorem 3.4. Let G be a finite group, and let N be a subnear-ring
of My(G) with idg € N. We assume that N is tame on G and that N
s Ting-free. Let IdyG be the set of all N-ideals of G, and let I be an
ideal of N. Then there is a mapping ®; : IdyG — IdnyG such that

(1) I =Nacraye(®r(4): AN,
(2) for all A, B € IdNyG with A < B, we have ®;(A) < ®;(B), and
(3) for all A € IdNG, we have ®1(A) < A.

Proof. For each A € IdyG, we define ®;(A) as the N-ideal of G that
is generated by {i(a) | i € I, € A}. From this definition, one can
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immediately verify C of assertion (1). Next, we prove for all v € G:
(3.5) D (N xvy)=1x%7.

To prove D of (3.5), we let @ € I and v € G. Clearly, we have
v =1idg(y) € N *v, and thus () is among the generators of &1 (N *7).
To prove C of (3.5), we observe that I+ is an N-ideal of G. Hence, it
is sufficient to show that each of the generators of ®; (N %) lies in I 7.
To this end, let n(y) € N %, and let ¢ € I. Then i(n(y)) = (¢on) ().
Since ¢ on € I, we have i(n(y)) € I *+, which completes the proof of
(3.5).

Now we are ready to prove D of assertion (1). Since N is a ring free
near-ring with identity, Wielandt’s lemma yields that its lattice of left
ideals is distributive, see [2, Lemma 2.9], [10, Corollary 2.25]. Hence,
by Lemma 3.1, we have

I= (T *v:)n

veG

From Lemma 3.3, we obtain

I= ﬂ(I*(S:N*&)N.

6eG
By (3.5), we obtain
(3.6) I'=()(2r(N%8): Nx6)n.
6eG

Since for every § € G, Nx¢ is an N-ideal of G, we have Nacraya(Pr(4) :
ANy C Nseg(Pr(N x8) : N*d)y. Hence, we have proved DO of
assertion (1). Items (2) and (3) follow from the definition of ®;. u]

4. Near-rings of compatible functions. Let G be a group, let
N(G) be the set of normal subgroups of G, and let H € N(G). Let X
be a subset of G. A function f : X — G is compatible with H if for
all v1,72 € X with v; —y2 € H, we have f(y1) — f(y2) € H. If L is
a subset of N(G), we say that f : X — G is compatible with L if f is
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compatible with each H € £. For a subset £ of N(G) we define two
near-rings:

C(G,L):={f:G— G| f is compatible with L},
Co(G,L) = {f € C(G, L) | £(0) = O}.

For every £ C N(G), the near-ring Cy(G, L) is tame on G. This
implies that every Cy(G, £)-subgroup of G is a Cy(G, £)-ideal of G.
Furthermore, if A € £, A is a Cy(G, L)-subgroup of G: if a € A and
f € Co(G, L), then f(a) = f(a)— f(0) lies in A because f is compatible
with A. However, given £ C N(G), there may be Cy(G, L)-subgroups
of G that do not lie in £; for example, {0} and G will always be
Co(G, L)-subgroups of G even if they do not lie in £. Furthermore,
the Cy(G, £)-subgroups of G form a sublattice of N(G). In the sequel,
we will give conditions that imply that every Cy(G, L)-subgroup of
G lies in L, Proposition 4.2. In the proof, we will use the following
consequence of Kaarli’s extension principle for compatible functions,
which we quote here as Lemma 4.1. We notice that the lattice of
normal subgroups (N(G); N, +) is a complete lattice. If A C N(G), the
least upper bound of A will be denoted with Vxec4X.

Lemma 4.1 [6], [7, page 69]. Let G be a group such that the
cardinality of G is at most countably infinite, and let L be a complete
sublattice of N(G). We assume that the lattice L is distributive. Let
X be a finite subset of G, and let f : X — G be a function that is
compatible with L. Then there ezists a function F € C(G, L) such that
Flx =f.

Proposition 4.2. Let G be a group such that the cardinality of
G is at most countably infinite, and let L be a complete sublattice of
N(G) such that {0} € £ and G € L. We assume that the lattice L is
distributive. Let A be a Co(G, L)-subgroup of G. Then we have A € L.

Proof. We will show

(4.1) A=/ N X.

a€A XeL with aeX
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For C, we fix a € A and observe that we have a € Nxcr with acxX-
For D, it is sufficient to prove that for every a € A, we have

(4.2) N x<A
XeL with aeX

To prove this, we fix a € A. In the case a = 0, we observe that since
{0} € L, the lefthand side of (4.2) is {0}, and thus the required inclusion
holds. Now we consider the case a # 0. We fix * € Nxer with acx X,
and we define a function f : {0,a} — G by f(0) =0, f(a) = z. We will
show that f is compatible with £. To this end, we let H € £ be such
that a« — 0 € H. Since € Nxer with acx X, we have x € H. Hence
f(a) — f(0) € H. Therefore, f is compatible with £. By Lemma 4.1,
there is an F' € Cy(G, L) such that F(a) = z. Hence z € Cy(G, L) * a.
Since A is a Cy(G, L)-subgroup of G, we obtain x € A. This completes
the proof of (4.2), and hence also of O of (4.1). Now L is a complete
sublattice of N(G), and {0} and G are elements of £. Hence, the
righthand side of (4.1) lies in £. Thus, (4.1) yields A € L. u]

If £ is a sublattice of N(G), and A, B € L, we write A < Bif A< B
and there isno [ € £ with A < I < B.

Proposition 4.3. Let G be a group such that the cardinality of
G is at most countably infinite, and let L be a complete sublattice of
N(G) such that {0} € £ and G € L. We assume that the lattice L is
distributive and satisfies the descending chain condition. Furthermore,
we assume that for all A,B € L with A <z B, we have |B/A| > 3.
Then, if the near-ring Co(G, L) satisfies the descending chain condition
on left ideals, it is Ting-free.

Proof. Since Cy(G, L) is a near-ring with 1, every ideal is contained
in a maximal ideal. It is therefore sufficient to show that for each
maximal ideal I of Cy(G, L), the quotient Cy(G,L)/I is not a ring.
To this end, we fix a maximal ideal I of Co(G, £). By Proposition 4.2
and the remarks after the definition of Co(G, L), the lattice of Cy(G, L£)-
subgroups of G is equal to £. By Theorem 1.2 of [1] and Proposition 3.2,
there are E, I € £ with E <. F such that I = (E : F)¢y(q,z)- Now
we choose A minimal in £ with A < F and A £ E. Then A is a strictly
join irreducible element of £. We denote its unique subcover by A~.
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We have AN E = A~ and A+ E = F. Thus, by the isomorphism
theorem, the Cy(G, £)-group F/E is isomorphic to the Cy(G, £)-group
A/A™. Hence, (E : F)gye,c) = (A7 : A)gy(e,c)- We will now show
that Co(G, L)/(A™ : A)gy(a,c) is not a ring. Since |A/A™| > 3, we can
choose a; € A\ A~ and a3 € A\ A~ such that a1 +az ¢ A~. We define
a function f : {0,a1,a2,a1 + a2} — G by f(0) = f(a1) = f(a2) =0
and f(ay + a2) = a;. We prove

(4.3) f is compatible with L.
We first show
(44) ay € Co(G, [:) * (a1 + ag) n Co(G,[,) * ag M Co(G, [:) * aq.

We note that for b € {a; + a2, as,a1}, the choice of a; and ay yields
be A\ A~. Since Cy(G, L) is tame on G, Cy(G, L)xbis a Cy(G, L)-ideal
of G. Thus we have Cy(G, L) xb < A and Co(G, L) xb £ A~. Hence,
for b € {a1 + a2, a2, a1}, we have Cy(G, L) xb = A. This completes the
proof of (4.4).

Now we are ready to prove (4.3). We first show that for v; := a; +as
and 73 := ay, and for every Cy(G, L)-subgroup H with vy —y, € H, we
also have f(v1)—f(y2) € H. To this end, let H be a Cy(G, L)-subgroup
such that (a3 4+ a2) — a; € H. Since H is normal, we obtain as € H.
Hence Cy(G, L) xaz C H. Now (4.4) yields a; € H. Similarly, each of
the conditions (a3 +az)—0 € H, (a1 +az)—az € H,0—(a; +az2) € H,
a; — (a1 +a2) € H, az — (a1 + a2) € H implies a; € H. This completes
the proof of (4.3).

By Lemma 4.1, there is an F' € Cy(G, £) such that F(0) = F(a1) =
F(a2) = 0 and F(a; + a2) = a1. Then F(a; + az2) is not congruent
to F(a1) + F(az) modulo A~. Thus, Co(G,L)/(A™ : A)cye,c) =
Co(G, L)/I is not a ring. u]

5. The near-ring that is compatible with a chain of normal
subgroups. Let G be a group, let H be a normal subgroup of G, and
let £ = {{0}, H,G}. In this case, the ideal lattice of Cy(G, £) has been
determined in [3, 4]. The techniques developed in the present note
allow us to describe the ideal lattice of Cy(G, £) in the following case:

(1) G is finite,

(2) £ is a chain, and

(3) for all A, B € £ with A <. B, we have |B/A| > 3.
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For a natural number n, we let n be the set {1,2,...,n}, and we let
S(n) be the set of all functions f : n — n that satisfy f(i) < i for all
i€mn,and f(¢) < f(j) for all 4,5 € n with ¢ < j. The set S(n) can be
ordered by f < g if f(i) < g(7) for all i € n. Then (S(n); <) is a lattice
ordered set. Let S(n) be the corresponding lattice.

Theorem 5.1. Let G be a finite group, let n € N, and let
Ay, Aa, ..., Ay, be normal subgroups of G with {0} = A; < Ay < --- <
An1 < A, = G. We assume that for all i € {2,... ,n}, we have
|Ai/Ai—1| > 3. Let L := {A1,As,... ,A,}, and let T be the set of
ideals of the near-ring Cy(G, L). Then the mapping ¥ defined by

U:S8n) —7
F— (A : Ai)eo(e,o)

ien

s a lattice isomorphism.

Proof. We note that by Proposition 4.2, every Cy(G, L)-ideal of G
must be equal to some Aj with k € n. We first show

(5.1) ¥ is surjective.

Let I € Z. By Proposition 4.2, Co(G, L) is ring-free. Hence by
Theorem 3.4, there is a mapping f : n — n such that I = ﬂiE@(Af(i) :
Ai)cy(.cys F(i) < f(4) for 4,5 € n with 4 < j, f(:) <iforalli € n.
Thus I = ¥(f). This completes the proof of (5.1).

Now, we define a mapping ® : Z — S(n) as follows. For I € T and
Jj € n, we define

®(I) (j) := the k € n such that the Cy(G, L£)-ideal
of G generated by {p(y) | p € I,y € A} is equal to Ag.

Now we prove
(5.2) Do W =idg().
We let f € S(n) and j € n and prove

(5-3) (T(f)) (5) = f()-
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We compute the lefthand side of (5.3). By the definition of @,
®(T(f))(j) is the » € n such that the Cy(G, £)-ideal of G generated
by {p(y) | p € ¥(f),vy € A;} is equal to A,. We will now show

(5.4) {p() 1P € T(f),v € A;} C Ag(y).

Fix p € N(Asu) : Ai)eya,c) and v € Aj. Then, clearly p(y) € Afj)-
This completes the proof of (5.4). Now we show

(5.5) {p(v) | p € ¥(f),v € Aj} € Ag(jy-1-

To prove (5.5), we let By := {0}, and By := A \ Ax_y for k €
{2,...,n}. We note that (By, Bs,...,By,) is a partition of G. Now
for each j € n, we choose an element 3; € B;. We define a mapping
g:G— G by

9(v) = Bk

for all k € n and v € By. We show
(5.6) g is compatible with L.

Fix £,m € G, m € n, and assume that £ — n lies in A,,. Let k,{
be such that £ € By and n € B;. We assume k > [. If £ = [,
then g(&) = g(n), and thus g(§) —g(n) = 0 € A,,. If & > [, then
we notice that £ € Ay \ Ak_1, and since | < k, we have n € Ap_1.
Hence, £ —1 ¢ A_1. Thus, m > k. Since g(§) — g(n) = By — Bra) €
Ay € Ap C Ap, the difference g(£) —g(n) lies in A,,,, which completes
the proof of (5.6). From the definition of g, we obtain that g lies in
Meen(As() + Aj)coe,e) = W(F). Since g(B;) = Br) & Apij-1, we
obtain (5.5). Hence, the r that yields the value of the lefthand side of
(5.3) is equal to f(j). This completes the proof of (5.3), and hence of
(5.2). Equation (5.2) implies that ¥ is injective. Next, we prove that
for all f,g € S(n), we have

(5.7) f<g ifandonlyif ¥(f)<¥(g).

Since the lattice operations A and V are uniquely determined by their
corresponding order, (5.7) will imply that ¥ is a lattice isomorphism
from S(n) to Z, see [8, page 41]. The “only if”-direction of (5.7) is
obvious. For the “if”-direction, we assume ¥(f) < ¥(g). Since ® is
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order preserving, we obtain ®(¥(f)) < ®(¥(g)). Thus by (5.2), we
have f < g. mi

For a finite lattice £, we let its height be |C| — 1, where C is a chain
of maximal cardinality in L.

Corollary 5.2. Let G be a finite group with |G| > 2, let n € N, and
let Ay, As, ..., A, be normal subgroups of G with {0} = A; < Az <
e < Apy < A, = G. We assume that for all i € {2,...,n}, we
have |A;/A;—1| > 3. Let L := {A1,As,... , A}, and let T be the set of
ideals of the near-ring Cy(G, L). Then:

(1) The near-ring Co(G, L) has C(n) ideals, where

Cln) = njltl (2:>

is the nth Catalan number.
(2) The lattice T is of height ().

(3) The near-ring Co(G, L) is subdirectly irreducible, and its unique
minimal ideal is (0 : An_1)cy(a,c) N (A2 : G)oya,c)-

(4) Co(G, L) has n — 1 mazimal ideals.

Proof. By Theorem 5.1, the number of ideals is |S(n)|, which is equal
to C(n) by [13, page 224]. This completes the proof of item (1). For
item (2), we observe that by [5, Corollary II.1.14], the height of 7
is equal to the number of meet irreducible elements of Z that are not
equal to Cy(G, £). By Theorem 5.1, this number is equal to |M (S(n))|,
where M (S(n)) is the set of meet irreducible elements of S(n) that are
not equal to the identity function idp. For 4,7 € n with 1 <17 < j <,
we define a function ¢; ; by B

k ifk<i-—1,
k ifk>j.

Then we have:

(5.8) M(S(n)) ={ti; |i,j €n,1<i<j<n}
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To prove D, let 4,5 € n with ¢ < j. We suppose that ¢; ; is the
meet of two elements in S(n), and we let f,g € S(n) be such that
the meet of f and g is ¢; ;. We will show that f = t;; or g = t; ;.
Seeking a contradiction, we suppose f # t; ; and g # ¢; ;, and we let
k be the smallest number such that f(k) # ¢; ;(k) or g(k) # t; (k).
Clearly, we have k£ > ¢ and k < j. We assume that f(k) > ¢; j(k) and
g(k) = t; j(k). We will now prove g = t; ;. To this end, let [ € n. If
I < k, then g(I) = t;;(1) is immediate. If I > k and [ < j, then we
have f(1) > f(k) > t;j(k) =i = t;;(1). Since min(f(l),g(1)) = t;;(1),
we must have g(l) = ¢; ;(I). If [ > j, then we have t; ;(I) = [. Since
g € S(n), we have g(I) < I. Thus, we obtain g(I) = t;;(I) also in
this case. Hence, we have proved g = ¢; ;, a contradiction. Clearly,
if f(k) = t;;(k) and g(k) > t;;(k), we obtain f = ¢;; in the same
way. Hence ¢;; is meet irreducible, which completes the proof of 2.
For C, we let f be a meet irreducible element of M(S(n)). We let
A:={ken]| f(k) <k}. Since f # idp, A is not empty. Now we prove
that, for all I € n, we have N

(5.9) f(1) = min{t sy x(l) | k€ A}.

We fix | € n. For <, we show that

(5.10) F() <ty ()

forallk € A. Letk € A. If 1 < f(k) orl > k, (5.10) follows immediately
from tyy k(1) = 1. If 1 > f(k) and [ < k, we have f(I) < f(k) =
ts(k),k(1). For > of (5.9), we observe that the claim is obvious if f(I) = 1.
Now we assume f(I) < [. In this case, we have f(l) = t)(l). Since
I € A, this equality implies t;¢y;(I) > min{t;u) (1) | € A}, which
completes the proof of (5.9). Since f is meet irreducible, we obtain
that there is a k € A such that f = t;() . This completes the proof
of C of (5.8). From (5.8), we obtain that we have precisely () meet
irreducible elements in S(n)\ {idn}. Hence the lattice S(n) is of height

(5 )- This completes the proof of item (2).

To prove item (3), we use the isomorphism ¥ given in Theorem 5.1,
and obtain that the meet irreducible elements in the ideal lattice
Co(G, L) are precisely the () ideals (4; : A;)Co(G, L) with 1 <4 <
j <n. Fori=1,j=mn, we obtain that 0 = (A} : 4,)¢,(c,c) is a meet
irreducible ideal, and hence Cy(G, L) is subdirectly irreducible. Using
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the lattice isomorphism of Theorem 5.1, it is also possible to describe
the unique minimal ideal I of Cy(G, £). Since min(t1,n—1, t2,n) < f for
all f € S(n) not identically 1, we have I = ¥(min(t1,,-1, t2,n)) = (A1 :
An-1)co(a,c) N (Az 0 An)cy(a,c)- This completes the proof of item (3).

Item (4) follows from the fact that the functions ¢t;_; ; with j € n\{1}
are the coatoms of the lattice S(n). o

We know that for n € {2,3}, Corollary 5.2 is also true for infinite
groups G. For n = 2, this follows from the fact that My(G) is a simple
near-ring [9, Theorem 1.42], and for n = 3, this is proved in [3, 4].

Acknowledgments. The fact that the Catalan numbers are needed
in Section 5 was first noticed using [12].
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