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THE CALCULUS OF VARIATIONS FOR
PROCESSES WITH INDEPENDENT INCREMENTS

ALEH YABLONSKI

ABSTRACT. The purpose of this paper is to construct the
calculus of variations for general zero mean processes with
independent increments and, in particular for Lévy processes.
The calculus based on the operators D and ¢ is such that,
for the Gaussian processes, they coincide with the Malliavin
derivative and Skorohod integral, respectively. We introduce
the family of polynomials which contains the Sheffer set of
polynomials. By using these polynomials it is proved that the
operators D and § are equal respectively to the annihilation
and the creation operators on the Fock space representation
of L2(Q).

1. Introduction. The stochastic calculus of variations developed
by Malliavin [15] is a powerful tool in the studying the smoothness of
the densities of the solutions of stochastic differential equations. Some
years ago it was shown how this calculus could be used in finance. This
discovery led to an increase in the interest in Malliavin calculus.

In the Brownian setup the calculus of variations has a complete
form, and it is based on the operators D and & which are called
the Malliavin derivative and Skorohod integral, respectively (see the
elegant presentation in [16]). There are two different ways to define
the operator D which turn out to be equivalent for the Gaussian case:
one as a weak derivative in canonical space and the other one through
the chaos decomposition of L?((2).

In the Poisson case the definition of D is quite different. The small
perturbations of the trajectories lead to a certain difference operator,
see, e.g., [18]. For the extension of the definition of D for pure jump
Lévy processes and for the combined Brownian motion and Poisson
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process case, the reader is referred to [1, 4, 21]; see also [22] for the
one-dimensional Lévy processes and [5] for Lévy stochastic measures.

Alternatively, the operator D can be defined by its action on the chaos
representation of L2-functionals. But, in general, a Lévy process has
no chaotic representation property in the sense that Brownian motion,
Poisson process or so-called normal martingales do, see [14]. There are
two different chaotic expansions introduced in [9, 17]. By using these
expansions two types of Malliavin operators for some classes of Lévy
processes have been studied in the papers [2, 6, 7, 12, 13, 20]. The
relationship between them has been shown in [2]. It worth mentioning
here that most of the papers cited above deal with pure jump Lévy
process or combination of Brownian motion and Poisson process. The
general Lévy processes, satisfying certain conditions, were considered
in [2, 22], see also [14] for the normal martingale case.

The purpose of the present paper is to construct the stochastic calcu-
lus of variations for zero mean processes with independent increments,
in particular for general Lévy processes without drift. In the presenta-
tion of the stochastic calculus of variations we have chosen the frame-
work of an arbitrary family of infinitely divisible random variables. The
Gaussian part of this family can be described in the terms of the o-
finite measure u defined on the measurable space (T, .A), while the non
Gaussian part can be described the o-finite measure v on the other
measurable space (T x X, B). In Section 2 we combine these measures
into the measure 7 and obtain the analog of the Wiener space for the
infinitely divisible distributions. We define a system of generalized or-
thogonal polynomials, which include, in particular, the Sheffer system
of polynomials, and obtain a chaos decomposition in the term of these
polynomials.

Section 3 deals with multiple integrals with respect to L2-valued mea-
sure with independent values. In this section we establish the relation-
ship between multiple integrals and generalized orthogonal polynomi-
als.

In Section 4 we define the operator D and show that its action on
the chaos representation of L2-functionals coincides, in particular, with
derivatives considered in the papers [2, 6, 7, 13, 14, 16, 20] for certain
classes of processes.
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In the last section we introduce the operator ¢ which is adjoint of
the operator D. Then we show that this operator can be considered as
a Skorohod integral in the Gaussian case, see [28], and the extended
stochastic integral defined by Kabanov, see [11], in the pure discontin-
uous case.

2. The chaos decomposition. This section describes the basic
framework that will be used in the paper. The general context consists
of a probability space (£2, F, P) and a closed subspace P; of L*(f, F, P)
whose elements are zero mean infinitely divisible random variables. We
will assume that P; is isometric to the separable space L2(T x X, G, 7),
where 7 is a o-finite measure without atoms. In this case the elements
of P; can be interpreted as stochastic integrals of functions in L?(T" x
X, G, ) with respect to a random measure with independent values on
disjoint sets.

Suppose that g and v are o-finite measures without atoms on the
measurable spaces (T,.A) and (T x Xo, B) respectively. Define a new
measure 7(dtdr) = p(dt)oa(dz) + v(dtdz) on a measurable space
(T x X,G), where X = Xy U {A}, § = o(A x {A},B) and a(dz)
is the measure which gives mass one to the point A. We assume that
the Hilbert space H = L*(T x X, G, ) is separable. The scalar product
and the norm will be denoted by (-;-)g and ||-||g respectively.

Definition 2.1. We say that a stochastic process L = {L(h),h € H}
defined in a complete probability space (2, F, P) is an isonormal Lévy
process (or a Lévy process on H) if the following conditions are satisfied.

1. The mapping h — L(h) is linear.
2. £e* (M) = exp(¥(z, h)), where

W(z,h) = /T . ((eizh@vm) 1 izh(t.x)

X 1x, (z) - %thz(t,x)lA(w)>7r(dt dz).

In what follows we will always assume that F is generated by L, i.e.,
F =0o{L(h),h € H}.
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Remark 2.2. 1. Using the definition of measure 7 one can obtain the
following representation for ¥(z, h)

U(z,h) = 7522/:,1h2(t,A) w(dt)

+/ (e”h(t’w) -1- izh(t,m)) v(dtdx).
TxXo

Therefore the random variable L(h) has an infinitely divisible distribu-
tion with Lévy measure vh~!, see e.g., [24, Theorem 8.1, page 38].

2. It is easy to show that EL(h) = 0, E(L(h)L(g)) = (h;g)u for
all h,g € H and the mapping h — L(h) is continuous. Moreover, if
h € HN L®(T x Xo,B,v), then £|L(h)|* < oo for all k > 1, see e.g.,
[24, Theorem 25.3, page 159].

3. If measure v is zero, then L is an isonormal Gaussian process, see
e.g., [16, Definition 1.1.1, page 4].

4. By Kolmogorov’s theorem, on the Hilbert space H we can always
construct a probability space and a stochastic process {L(h)} verifying
the above conditions.

Example 2.3. Suppose that 7= R, x {1,...,d} and the measure
w is the product of the Lebesgue measure times the uniform measure,
which gives mass one to each point 1,...,d. Let X, = R%\ {0}
and the measure [ satisfying fXO(|ac|2 A 1)B(dz) < oo be defined on
the Borel o-algebra B(Xp). Denote by T the trivial o-algebra of the
set {1,...,d}, eg., T = {2,{1,...,d}}. Let a be a measure on T
such that a({1,...,d}) = 1. Assume that the o-algebra B is the
product of the Lebesgue o-algebra L times the trivial o-algebra T
times the Borel o-algebra B(Xj), and the measure v is the product
of the Lebesgue measure times the measure o times the measure
B. Set A = 0. In this case we have that B = L(10:4x i3 x {0} )>
t > 0,1 =1,...,d is a standard d-dimensional Brownian motion.
Furthermore, the random measure N(dtdz) on £ ® B(X)), defined
by N(dtdz) = L(1g4 dz1Rrd\{0}), is @ compensated Poisson measure
with the characteristic measure dt(3(dz), and for any h € H, the
random variable L(h) can be represented as the stochastic integral

L(h) = S50, J3* hi(t,0)dB} + [5* [ oy At 2)N (dt de).
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Denote by = = (z1,22,...,Zn,...) a sequence of real numbers.
Define a function F'(z,Z) by
(2.1) F(z,T) = exp <Z(—1)k+1?mk>.
k=1

If R(Z) = (limsup |zx|'/*)~ > 0 then the series in (2.1) converges for
all |z| < R(Z). So the function F(z,%) is analytic for |z| < R(T).

Consider an expansion in powers of z of the function F(z,T)
o0
= Z 2" P, (%)
n=0

Using this development, one can easily show the following equalities:

(2.2)

n

(n+1)Py1(Z Z J;kHPn,k(T), n >0,
0 -~ 0 if | > n,
(23) ooy ) = { (—1)*Y(1/1)Po_y(T) il < n.

Indeed, (2.2) and (2.3) follow from 0F /8z = Y o ((—1)¥z*z) 1 F and
OF /0z; = (—1)!"*Y(F/1)z! respectively. From (2.3) it follows that P,
depends only on finite number of variables, namely, zi,z2,...,Z,.
Since Py = 1, then (2.2) implies that P,(zy,z2,...,2,) is a polyno-
mial with the highest-order term (z7)/n!. The first polynomials are
Pi(z1) = z1 and Py(z1,72) = (2% — 22)/2.

Using the equality F(z,T+Y) = F(2,Z)F(z,y), where ¥ = (y1, y2,- .-,
Yny--.) and T4+7 = (z1+y1, 22+ Y2, - -, T+ Yn, .- . ) it is easy to show
that

n

(24) P +7) =) Pu(@)Pai(®)-
k=0
Ifu(y) = (y,y% 9% ...,y",...) then F(z,u(y)) =1+ 2y for |2y| < 1.
Hence P;(u(y)) = y and P,(u(y)) = 0 for all n > 2. Furthermore,

equation (2.4) implies that
(2'5) Ijn(f + E(y)) - Pn(f) = yPnfl(E)'
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We will call polynomials P,, generalized orthogonal polynomials. In
particular, from P,, we can obtain the classical orthogonal polynomials,
see e.g., [25]. Moreover, the Sheffer polynomials [26, 27] with gener-
ator function exp(A(z)z)B(z), x € R, where B and A are analytic
functions and B(0) = 1, can be obtained by using function F(z,Z) for
appropriative values of .

For example, if T = (z,0,0,...,0,...), then F(2,Z) = €** and
P,(Z) = z™/nl.

Ifz = (z,A,0,...,0,...), then

(2.6) F@@_m(m——g Eyixx

where H,(z,\) are the Hermite polynomials. So P,(z,\,0,...,0) =
H,(z,)\).

Ifz=(z—-tzz,...,z,...), then

(2.7) F(z,Z) = (1+2)e " ZC :Ut
where (), are the Charlier polynomials. Hence, n!P,(z —t,z,...,z) =
Cr(z,t).

Other classical orthogonal polynomials can be obtained in the same
way.

For h € HN L>(T x Xy, B,v), let T(h) = (zx(h))7; denote the
sequence of the random variables such that z1(h) = L(h), z2(h) =

(Wl&)+HM|,wMM——L@“xo*xbx&hW z)v(dtdr), k =
3,4,.

The relationship between generalized orthogonal polynomials and
isonormal Lévy process is given by the following result.

Lemma 2.4. Let h and g € HNL*(T x Xo,B,v). Then for all
n,m > 0 we have P,(Z(h)) and P, (Z(g)) € L*(Q), and

0 if n#m,

E(Pu(z(h))Pn(Z(9))) = { 1/n! (E(L(R)L(g)))" ifn=m



THE CALCULUS OF VARIATIONS 675

Proof. Since h,g € H N L*®(T x X,,B,v) and P,, P, are the
polynomials, then by Remark 2.2 P,,(Z(h)) and P,,(z(g)) € L%().

Denote by ¢(z,Z) the power of the exponent in the formula (2.1), i.e

oo
Z k+1 2F

k=1
Since

1
— = lim
B 1k sup ||zx (h )HLZ(Q

1/k
< lim sup <(5(L(hklxo)2))1/2 +/TXX |h(t,x)|kl/(dtdx)>

k—o0

1/2
= lim sup <</ R (t, z)v(dt dw))
k— o0 TxXo

1/k
+/ |h(t,ac)|k1/(dtdac)>
TxXp
1/k
< limsup ([Pl 7= k]l + IRIEE(RIE) T = [|Allze.

k—o0

Then the series

converges if |z| < 1/||h||L= < R, which implies that ¢(z,Z(h)) € L?(Q2)
for all |z| < 1/||h||Le-.

Let’s note that for all |z| < 1/||h|L~ we have In(1 + zhlx,) € H.
Indeed, by using Taylor’s formula, we get

22h?

In the same way one can obtain the following inequality

22h?

IIn(1+zh) — 2h| < — o
(L= [=llAllL=)?
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which implies that In(1 + zh(t, z)) — zh(t, z) is integrable with respect
to measure v(dtdz) for all |z| < 1/||h||Le.

So by using the linearity and the continuity of the mapping h — L(h)
we have for all |z| < 1/||h||Le
(2. 8)

o0

=3 (-1 k+1z < (hk1x0)+/

+L(hla) - = / B2(t, A)u(dt)
— L(In(1 + zhlx,))

+ / (In(1 4 zh(t, z)) — zh(t, z))v(dt dz)
TxXo

R*(t, z)v(dt dw))

+2L(h1y) — %Z/Th2(t,A)u(dt).

This random variable has an infinitely divisible distribution. By
Theorem 25.17 [24, page 165] F(z,Z(h)) = exp(é(z,z(h))) € L*(2)
if and only if

/ exp(2In(1 + zh(t, 2)))w(dt dz) < oo
|In(14zh(t,z))|[>1
But for all |z| < 1/||h||L~ we have

/ exp(2In(1 + 2h(t, z)))v(dt dz)
|In(142zh(t,z))|>1
:/ (1+ 2h(t, 2))2v(dt dz)
1+zh(t,@w)<e~?!

< / (1+ | 2h(t, z)))2v(dt de)
1—e~1<|zh(t,)]

(2-e)?
S (Er=iE

2*|[hll% < oo.

So F(z,@(h)) € L*(Q) if |2| < 1/||h||z-
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Hence, for |z| < 1/||h||L~ and |y| < 1/||g||L= we get from (2.8)

E(F(2,2(h))F(y,7(9))) = € exp(¢(2,T(h)) + ¢(y, Z(9)))
= Eexp (L(In[(1 + 2zh1x,)(1 + yglx,)])

4 /TXX (In[(1 4 zh(t, 2))(1 + yg(t, ))]

— zh(t,x) — yg(t, z))v(dt dz)
+ L(zh1a 4+ ygla)

<5 LR R A

— exp( / (el 2h(te) (Lvg(ta)] _ g
— In[(1 + zh(t, z))(1 + yg(t, z))])v(dt dz)
[ ul(1+ shie,)(1+ vt )
- Zh(ta x) - yg(ta :I,‘))l/(dt dx)
+3 [ (Gh8) +ugl, 0) - 2420,
—y?g%(t, A))u(dt))
= exp (zy /T><X h(t,xz)g(t,z)m(dt d:v))

= exp(zy&(L(h)L(9))),
where we have used [24, Theorem 25.17, page 165] to calculate the
expectation.
Taking the (n+m)th partial derivative 9"+t™/(02"0y™) at z =y =0
in both sides of the above equality yields
0 if n # m,
E(ntmiFn(7(h)) P (#(9))) {n! (E(L(R)L(9)" ifn=m. 0O

Lemma 2.5. The random wvariables {e“") h € H N L®(T x
Xo, B,v)} form a total subset of L*(Q, F, P).

Proof. We claim that e*(®) € L2(Q) if h € HN L>®(T x Xy, B,v). In
fact, the random variable L(h) has an infinitely divisible distribution
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with Lévy measure vh™1(dy), see e.g., [24, Definition 8.2, page 38].
Hence, by Theorem 25.17 in [24, page 165], the variable eX(®) ¢ L2(Q)
if and only if fly\>1 eYvh™'(dy) < oo. But f‘y|>1 eYvhl(dy) =
flh(t z)|>1 M)y (dt dr) < ellMlee f\h(t )|>1 v(dtdr) < elllle=| |||, <
00, and we have that eX(") € L2(Q).

Let & € L?(Q) be such that £(¢eX™) = 0 for all h € H N L>(T x
Xo, B,v). The linearity of the mapping h — L(h) implies

(2.9) 5(§expisz(hk)> =0

for any z1,...,2, € R, hy,...,h, € HNL>®(T x Xo,B,v), n > 1.
Suppose that n > 1 and hq,...,h, € HNL®(T x X,G, ) are fixed.
Then (2.9) says that Laplace transform of the signed measure

7(B) = E(£15(L(h1),. .., L(hy))),

where B is a Borel subset of R”, is identically zero on R™. Conse-
quently, this measure is zero, which implies £(£1¢) = 0 for any G € F.
So £ = 0, completing the proof of the lemma. a

For each n > 1 we will denote by P, the closed linear subspace
of L?(Q,F,P) generated by the random variables {P,(Z(h)),h €
HNL*®(T x Xo,B,v)}. Py will be the set of constants. For n = 1,
Py coincides with the set of random variables {L(h),h € H}. From
Lemma 2.4 we obtain that P,, and P, are orthogonal whenever n # m.
We will call the space P,, chaos of order n.

Theorem 2.6. The space L?(Q2, F, P) can be decomposed into the
infinite orthogonal sum of the subspaces Pp:

LX(Q,F,P) = ém.

n=0

Proof. Let ¢ € L?(2, F, P) such that ¢ is orthogonal to all P,,, n > 0.
We have to show that £ = 0. For all h € HN L>(T x Xy, B,v) we get
E(EP,(T(h))) = 0. Since from the proof of Lemma 2.4 we have that
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F(z,%(h)) € L3(Q) for all z < 1/||h||L=, then E(EF(z,Z(h))) = O for
z < 1/||h||z=. Using equality (2.8) we obtain

0= E(EF (2, Z(R))) = E(Ee? =T
= £(¢exp (L(n(1+ 2h1x,))

+ / (In(1 + zh(t,z)) — zh(t,z))v(dt dz)

b L(zhly) — %/ 2Rt A)u(dr)) ).

T
Thus, for any z < 1/||h|| e,
(2.10) E(&exp(L(In(1 + zhlx,)) + L(zh1a))) = 0.

Since E(£F(z,Z(h))) is an analytic function for z < 1/| k||, then
E(exp(L(In(1 + zh1lx,)) + L(zh1a))) has an analytic extension to
z € [0;1] if h1x, > —1. For any g € H N L>(T x Xo,B,v) we have
(e9—1) € HN L>®(T x Xo,B,v) and (ef — 1)1x, > —1. Putting in
(2.10) b = (&9 — 1)1x, + g1la and z = 1, we deduce that £(¢eX9)) =0
for all g € HN L>®(T x Xy, B,v). By Lemma 2.5, we get £ = 0, which
completes the proof of the theorem. a

3. Multiple integrals. Since separable Hilbert space H has the
form H = L*(T x X, G, ), where 7 is a o-finite measure without atoms,
then the process L is characterized by the family of random variables
{L(A),A € G,m(A) < oo}, where L(A) = L(14). We can consider L(-)
as a L?(Q, F, P)-valued measure on the parametric space (T' x X, G),
which takes independent values on any family of disjoint subsets of
T x X. In that sense L(h) can be considered as the stochastic integral
of the function h € H with respect to L. The purpose of the section
is to show that the nth chaos P, is generated by multiple stochastic
integrals with respect to L. The construction of multiple stochastic
integral was provided by It6 in [10]. We briefly recall some basic facts
about them.

Set Go = {A € G: w(A) < o©o}. For any m > 1 we denote
by &, the set of all linear combinations of the following functions
feLl?(TxX)™,gm, am)

(31) f(tlvmla .. 7tm7$m) = 1A1><---><Am(t17$17 .- -7tm7mm)7
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where Ai,...,A,, are pairwise-disjoint sets in Gy. The fact that
measure 7 without atoms implies that &, is dense in L?((T' x X)™),
see e.g., [9, Theorem 2.1] or [16, pages 8-9].

We define the multiple integral of the mth order

Im(f) = L(A1) -+ L(Am),

for the functions f of the form (3.1), then I,,,(s) for all functions s in
Em by linearity and finally I,,(g) for all functions g in L2((T x X)™)
by continuity.

It was shown in [9, 10] that the definition is possible and the following
properties hold:

1. I, is linear.

2. I,(f) = I, (f), where f denotes the symmetrization of f, which
is defined by

f(tlamla--- mawm m|Zf (1) Lo (1)s - 7t¢7(m)7x0'(m))7

o running over all permutations of {1,...,m}.

3.
0 if p £ m,

E(Ln(f)I = ~ .
I} Ip(a)) { mf;9) 2 ((rxx)m) if p=m.
We refer to [9, 10, 16] for details.

If fe L*((T x X)P) and g € L?((T x X)?) are symmetric functions
the contraction of the indices of f and g is denoted by f ®; ¢ and is
defined by

(f Q1 g)(tla Ty ey tprg—2, xp+q—2)
:/ flt, e, tp 1,05 1,8, 2)
TxX
X g(tpy Tp, -y tprq_2, Tprq—2, S, 2)m(ds dz).

Notice that f ®; g € L2((T x X)Pt2-2),

The following, so called product formula, will be useful in the sequel.
It was initially derived by It6 [9] for the Gaussian case and by Kabanov
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[11] for the Poisson case, then extended by Russo and Vallois [23] to
products of two multiple stochastic integrals with respect to a normal
martingale.

Proposition 3.1. Let f € L*((T x X)P) be a symmetric function,
and let g € L*(T x X) be such that fglx, € L*((T x X)P). Then

(32)  L(f)L(g) = La(f ®@9) + Il 1(f @19) +pl(folx,)-

Proof. The proof of the proposition can be obtained as slight
modification of the proof of Proposition 1.1.2 in [16]. i

The next result gives the relationship between generalized orthogonal
polynomials and multiple stochastic integrals.

Theorem 3.2. Let P, be the nth generalized orthogonal polynomial
and z(h) = (zk(h))7Ly, where z1(h) = L(h), z2(h) = L(h*1x,)+]|hl%,
zp(h) = L(A*1x,) + [y, Wt 2)v(dtdz), k = 3,4,... and h €
Np>2LP(T x X, B,v) N H. Then it holds that

(3.3) 1Py (z(h)) = I, (h®"),

where h®™(t1, T1, ... tn, Tn) = h(t1,21) -+ - h(tn, Tn).

Proof. We will prove the theorem by induction on n. For n =1 it is
immediate. Assume it holds for 1,2,...,n. Using the product formula
(3.2) and recursive relation for generalized orthogonal polynomials
(2.2), we have

s (B0 = L)1) = -y (900 [
TxX

—nL,(h®" Y @ (h?1y,))
= n!P,(T(h))L(k) — n!||h||3 Poo1(Z(R))

— nl,_y (RN (K21 x,)

+n(n = DI, o (h®0-2) / B3¢, @) (dt dx)
TXX()

R(t, x)w(dtdw))
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+n(n—1)I,_1(h®"2 @ (h*1x,))
1

~1
=l Y (=) api(h)Poi(@(h)

k=0
+ n!P,_2(Z(h)) /T . h3(t, z)v(dt dz)
+n(n—1)I,_1(R®" D @ (h*1yx,)) =
=n! Z(_l)k+1xk+1(h)Pn—k(f(h))
k=0
+nl(=1)" Py (@(h) / WL (L 2w (dt de)
T><Xo

+nl(=1)"I (R ) n'z 1) 211 (h) Pk (T(h))
= (n+ 1)!Poy1(z(h)),

which completes the proof of the theorem. o

From this theorem and Theorem 2.6 we deduce the following classical
result of It6.

Corollary 3.3 [10]. Any square integrable random wvariable £ €
L?(Q,F, P) can be expanded into a series of multiple stochastic in-

tegrals:
€= Ii(fr)
k=0

Here fy = &&, and Iy is the identity mapping on the constants.
Furthermore, this representation is unique provided the functions fi, €
L2((T x X)¥) are symmetric.

Assuming T =Ry, Xo = R\ {0}, X =R, p(dt) = dt and v(dtdz) =
dtB(dzx), where the measure 3 such that fR\{O}(az2 A1)B(dz) < oo, we
have that for any symmetric function f,, € L?((R+ x R)™) the multiple
stochastic integral I,(f,) with respect to the process {L(h),h € H}
coincides with an iterated integral with respect to L2-valued measure
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L(dt dx) generated by L(h

() —n'/ / /tz_/fn (b1, 21, s 2) L(dty dy) -

L(dt,dzy,).

This equality can be shown for elementary processes f, € &, and in
the general case the equality will follow by the density arguments,
taking into account that the iterated stochastic integral verifies the
same isometry property as the multiple stochastic integral.

Consider the process L} = L(1jg,4h), h € H. It is easy to show by
definition that L? has independent increments. Let F* = o{L" s <
t} VN, t > 0, be a o-algebra generated by L" and the family N of
P-null sets of F. Then LI is a martingale with respect to {F/'};>o.
Since L(dt dz) is an L2-valued measure with independent values on any
family of the disjoint subsets of R4 x R, then {I, (h®”1%’;]) t>0}is
a square integrable martingale with respect to {F} }i>o for any h € H.

Hence, it follows from equation (3.3) that P, (Z(1jo,qh)) = In (h®"1%7;])

is a square integrable martingale with respect to {F}'};>o for any
h € Np>2LP(R4y x (R\ {0}),B,v) N H. So we obtain the following

result.

Proposition 3.4. Let P, be the nth genemhzed orthogonal poly-
nomial, L} = L(1j,4h) = fo 5,0)dB; + fo Jr\(oy (s, 2)N(ds dz),
t >0, where h € ﬂpzsz(R+ x (R\ {0}) B,v)NH, B; = L(l[o;t}l{o})
and N(dsdr) = L(1r\jo}lasdz). Set Fh=o{L" s <t}, t >0, and
T(h) = (zk(t,h))72, such that

ai(t.h) = /th(sOdB o[ s,
o(t,h) = / [ Fle e N ) + / (s, 0)u(ds)
¥ / f g e etds o),
wten)= [ [ weoSasa [ [ saasa)
s
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Then P,(Z(t,h)) is a square integrable martingale with respect to
{F o

Remark 3.5. If the function h(t,z) = z and the measure v
has the form v(dtdz) = dtS(dz), where the measure S such that
fR\{O} |z|*B(dz) < oo for all k > 2, then the martingales

¢
// *N(dsdx), k>2,
0 JR\{0}

are so-called Teugels martingales and

¢ ¢
/ / 2 N (ds dx) + / / z*v(ds dz)
0 JR\{0} 0 JR\{0}

are power jump processes, see e.g., [25].

Example 3.6. If the measure p is the Lebesgue measure and the
measure v is equal to zero, then for h = 1o we have that LM = B,
is a Brownian motion and (¢, h) = By, x2(t,h) =t and zx(¢,h) =0
for all k > 3. Hence, P,(Z(t,h)) = H,(By,t) is a martingale, where
H,(y, z) is the nth Hermite polynomial (2.6), see e.g., [8, 25].

Example 3.7. If the measure y is equal to zero and the measure v
is the product of the Lebesgue measure times the delta-measure, which
gives mass one to the point 1, then for h(s,z) = x1[,(s) we have
L' = P, — t, where P; is a Poisson process. Hence, z;(t,h) = P; —t
and x(t,h) = P, for all k > 2. Then P,(Z(¢,h)) = Cpr(P;,t) is a
martingale, where C),(y, z) is the nth Charlier polynomial (2.7), see
e.g., [19, 25].

4. The derivative operator. In this section we introduce the
operator D. Then we will show that it is equal to the Malliavin
derivatives in the Gaussian case, see e.g., [16], and to the difference
operator defined in [18, 21] in the Poisson case. We will also prove
that the derivative operators defined via the chaos decomposition in
[2, 3, 13, 14, 20, 22] for certain Lévy processes coincide with the
operator D.
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We denote by Cy°(R™) the set of all infinitely continuously differen-
tiable functions f : R™ — R such that f and all of its partial derivatives
are bounded.

Let S denote the class of smooth random variables such that a random
variable £ € S has the form

(4'1) f: f(L(hl)a"'aL(hn))a

where f belongs to C2°(R"™), hy,...,h, are in H, and n > 1.
Lemma 4.1. The set S is dense in LP(QY), for any p > 1.

Proof. Let {hx}3>; be a dense subset of H. Define F, =
o(L(h1),.-.,L(hy)). Then F, C Fp11 and F is the smallest o-algebra
containing all the F,,;s. Choose a g € LP(2). Then

9= E(g|F) = lim E(g|Fn).

By the Doob-Dynkin lemma we have that for each n, there exists a
Borel measurable function g, : R®™ — R such that

E(g‘fn) = gn(L(hl)a v aL(hn))

Each such g, can be approximated by functions fr(,? ) where f,(,? ) S
Cg°(R™) such that || £ (L(h1), - . - ,L(hn))=gn(L(B1), - - - ,L(hn)) || o)
converges to zero as m — o0o. Since f,(,?)(L(hl),...,L(hn)) €S, we
have the statement of the lemma. m]

Definition 4.2. The stochastic derivative of a smooth random
variable ¢ of the form (4.1) is the H-valued random variable D¢ =
{D: 2, (t,z) € T x X} given by

of

k=1

(L(P1); - - L(hn)) (¢, ©) 1 (z)

+ (f(L(hl) 4 hi(t2),- ., L(hn) + ha(t, )

— f(L(R), -, L) ) 1, (@),
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We will consider D¢ as an element of L2(T x X x Q) = L*(Q; H);
namely, D¢ is a random process indexed by the parameter space T'x X.

Remark 4.3. 1. If the measure v is zero or hg,k = 1,...,n, from (4.1)
such that hy(t,z) =0, k = 1,...,n, when & # A then D¢ coincides
with the Malliavin derivative, see for example, [16, Definition 1.2.1,
page 24].

2. If the measure yu is zero or hg, k = 1,...,n from (4.1) such that
hi(t,z) = 0, k = 1,...,n, when 2 = A then D¢ coincides with the
difference operator defined in [21].

3. If T =R, the measure p is the Lebesgue measure, X is a metric
space and the measure v is the product of the Lebesgue measure times
the measure 3 satisfying [,,(|z|> A1)3(dz), then D is the operator V=~
from [22].

Lemma 4.4. Suppose that £ is smooth functional of the form (4.1)
and h € H. Then

(4.3) E((DE& hym) = E(EL(R)).

Proof. The proof will be done in several steps.

Step 1. Suppose first that

é- — eizlL(hl) e eiZnL(hn)‘

Then £ € S and

E£(EL(R)) = %diz (5 exp <izn:sz(hk) + izL(h)))

k=1
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_ %% exp ( - %/T (izkhk(t, A) + 2h(t, A))zp(dt)

k=1

+/T><X0 (exp (izn:Zkhk(t,.Z') +izh(t,x)> 1

—i(ézkhk t,x) + zh(t, z) >1/(dt dac))

< )
_ (/ h(t, x)( exp(i 3 znh(t, ))1>y(dtdx)
)

z=0

k=1

xr
/htA khktA )
2

<ew (-3 [ (Z (6, 4)) ula)

k=1

o (o)

k=1

—1- Zkhktx> dtdx))

_5(§)</TXXO h(t,a:)( p< i zihu (t, )>

k=1

- 1> v(dtdz)
—i—i/Th(t, A)zn:zkhk(t,A)u(dt)>.

k=1

On the other hand,

E((DE, By = € /T  Duaht (it do)

_5/TX (Xp(kz_lk hk)+hk(tx))>
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n

~ exp (z sz(hk)> ) h(t, z)v(dt dz)

k=1

+5/Tiilzj exp (iész(hk)>hj(t,A)u(dt)
- 5(5)( /T ) (exp <iizkhk(t,m)> - >u(dtdm)

k=1

+i /T h(t, A) zn:zkhk(t, A)p(dt)).

k=1

Hence we have (4.3). By linearity we deduce that (4.3) also holds
for smooth variables of the form (4.1), where the function f is a
trigonometric polynomial.

Step 2. Assume that & is of the form (4.1) such that f € C;°(R"™)
is periodic on every variable function. Then there is a sequence of
trigonometric polynomials g, such that g,, — f and 0¢,,/0zr —

Of /0xy, for every k = 1,...,n uniformly on R™ as m — co. Denote
Mm = gm(L(h1),...,L(hy)). Then n,, € S, and by Step 1, we get
(4.4) E(mmL(h)) = E(Dnm; b))

Since 7, — £ in L?(2) and Dn,,, — D¢ in L*(T x X x Q) then letting
m — oo in (4.4) we obtain (4.3).

Step 3. Assume that & is of the form (4.1). Consider the sequence
{Xm,m =1,2,...} of functions, such that X,, € C*(R"), 0 < X, <1,
Xm(z) = 1if |z| < m, X(z) = 0, if |z] > m+ 1 and |VX,,| < 2.
Define g,, as a periodic extension on all variables of the function
fXm. Then (»n = gm(L(hy),...,L(h,)) is a smooth variable such
that |Gnl < |fllz= and [DGn| < Vo= S0, il Hence, by the
dominated convergence theorem (,, — & in L*(Q2) and D(,, — D¢ in
L*(T x X x Q) as m — oo. Since by Step 2 (4.3) is true for (,, then
letting m — oo completes the proof of the lemma. O

Applying this lemma to the product of two smooth functionals we
obtain the “integration by parts” formula.
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Lemma 4.5. Suppose & and n are the smooth functionals and h € H.
Then

(4.5) €(&nL(h)) = E(E(Dn; h) ) +EM(DE; b)) +E((Dn; hlx, DE) ).

As a consequence of the above lemma, we obtain the following result.

Lemma 4.6. The expression of the derivative DE given in (4.2) does
not depend on the particular representation of € in (4.1).

Proof. Let & = f(L(hy),...,L(hy)) = 0. We have to show that
D¢ = 0. From Lemma 4.5 we get for any n € S and h € H

0 =E((¢nL(h)) = E(&(Dn; b)) + EM(DE hym) + E((Dn; hlx, DE) ).
Hence,
(4.6) EM(D& hym) + E((Dn; hlx,DE)r) = 0.

Replacing n by £ in (4.6) we obtain

/ E(Dy +€)?h(t, x)v(dt dz) = 0.
TxXo

Hence, D; ,£ = 0 for v x P-almost all (¢,z,w) € T' x Xo x Q.

Substituting this expression into (4.6) we have for all h € H and
nes,

/T E(nDya€)h(t, A)u(dt) = 0.

Since by Lemma 4.1 the set S is dense in L?*(Q), then D; o€ = 0 for
p x P-almost all (¢,w) € T x €, which implies the desired result. o

Operating in the same way we obtain the following lemma.

Lemma 4.7. The operator D is closable as an operator from LP(2)
to LP(QY; H), for any p > 1.
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Proof. Let {&,,n > 1} be a sequence of smooth random variables
such that £|¢,|P — 0 and D¢, converges to ¢ in LP(2; H). Then from
Lemma 4.5 it follows that for any h € HNL>®(T x Xy, B,v) andn € S
we have

E(€unL(h)) = E(En(Dn; h) ) + EM(DEns hy i) + E((DEns hlx,) Dnyy)-

Taking the limit as n — oo, since , 1x,Dn and (Dn; h) g are bounded,
and h € HN L (T x Xy, B,v), we obtain

(4.7) EM(Ghy ) + E(Chlx,Dn)yr) = 0.

If h(t,z) = 0 for  # A, then (4.7) implies that
| £0ahit, M)u(a) =o.
T

Thus ;o = 0 p x P-almost all (¢t,w) € T' x Q. Substituting this
expression into (4.7), we have for any h € H

(4.8) € . (Cteh(t, 2)(n + Dy en))v(dt da) = 0.

Let ¢, € Cs°(R) be such that 0 < ¢, (z) < e* and ¢,, — €* for all
z € R. Putting in (4.8) 7 = ¢,(L(g)) and h(t,z) = u(t,z)e= 9%,
where v € H and g € HN L>®(T x Xy, B,v) and then letting n — oo,
we get

/ (M9 ¢, L Yult, @) (dt dz) = 0.
TxXo

Since by Lemma 2.5 the set of the random variables {eX(9) g €
HNL>(T x Xo,B,v)} is a total family in L?(Q), it follows that ¢; , = 0
for m x P-almost all (¢,z,w) € T x X x Q, completing the proof of the
lemma. o

We will denote the closure of D again D and its domain in L?(Q) by
DUr,
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In the same way we can introduce iterated derivatives for smooth
random variables. If € is a smooth random variable and % is an integer,
we set

k _
Dtl,zl,...,tk,zk§ - Dthwl U Dtk,ﬂ%g'

By induction one can prove that this operator is closable as an
operator from LP(Q) to LP((T x X)* x Q) for all p > 1. We will
denote its closure by D* and its domain in LP(§2) by D*P.

Now we will state the chain rule.

Proposition 4.8. Suppose p > 1 is fived and £ = (£,...,€™)
is a random vector whose components belong to the space DV'P. Let
¢ € CLH(R™) be a function with bounded partial derivatives such that
#(€) € LP(Q). Then ¢(£) € DYP and

(4.9) Dio¢(€)

_ {Z;';l 0 /0 (€) Di,a* if o= A,
A(EL + Dy 1Y, . €™ + Dy 1 €™) — (€L, .. €M) ifx #£ A

Proof. The proof can be easily obtain by approximation & by smooth
random variables and the function ¢ by smooth functions with compact
support. O

Applying the above proposition, we obtain that L(h) € D2 for all
h € H and D, ,L(h) = h(t, x).

By using the same arguments one can show the following result.

Lemma 4.9. It holds that P,(z(h)) € D" for allp > 1, h €
HNL>®(T x Xo,B,v),n=1,2,... and

(4.10) Dyo Pn(T(h)) = P (Z(h))h(t, z).

Proof. As in the proof of Proposition 4.8, one can obtain that
P,(z(h)) e DYP forallp > 1, h € HNL>®(T x Xo,B,v),n=1,2,...
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and (4.9) holds. Then the definition of Z(h) and equality (2.3) imply

_ 0P,

Dy aPp(z(h)) = i

((h))h(t,A) = P_1(Z(h))h(t, A).

It follows from the relationships (4.9) and (2.5) that for z # A we
have

Dy 2 Pn(Z(h)) = Po(Z(h) +u(h(t, 2))) — Po(T(h)) = h(t, z) Po_1(T(h)),

where u(y) = (y,v%,...,y",...). The proof is complete. O

The product rule can be proved in the same manner.

Proposition 4.10. Let £ € DY?, p > 1 and 1 is a smooth variable
from S. Then £n € DY and

(4.11) D(&n) = ¢Dn+nDE + DEDNlx,.

Proof. The equation (4.11) holds if £ and 7 are smooth variables.
Then, the general case follows by a limit argument, using the fact that
D is closed. ]

The following result shows the action of the operator D via the chaos
decomposition.

Proposition 4.11. Let £ € L*(Q) with a development

(oo}

(4.12) €= Ii(f),

k=0

where f, € L*((T x X)*) is symmetric. Then & € DY? if and only if

(4.13) D kRl il Tz rxoxpey < 00
k=1
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and in this case we have

(4.14) Dip€ =y klya(fi(t,2))

k=1

and € [, (D¢ o€)*m(dt dx) coincides with the sum of the series (4.13).
Proof. The proof will be done in several steps.
Step 1. Suppose first that

(4.15) £ = Py(a(h) = —

- k!Ik(h@n)’

with h € H N L®(T x Xy, B,v). Then by Lemma 4.9 £ € D12 and by
equality (4.10) we get

D12 Po(@(h)) = Po_y(Z(R))A(t, ).

Hence, for all (t,z) € T x X, we have
(4.16) D o€ = kI 1(fu(, t, ).

Equality (4.16) holds for any linear combination of random variables
of the form (4.15). Since formula (4.16) implies that £||DE||% = kEE?,
then it follows that Py is included in D2,

Step 2. Let € € L?(2) have an expansion (4.12). Suppose that (4.13)
holds. Define

n

=Y I(fr)-

k=0

Then the sequence &, converges to ¢ in L?(f2), and by Step 1 we have
&, € DY and Dy, = Y kIk—1(fx(-,t,z)). It follows from (4.13)
that Dy ,&, converges in L*(Q; H) to the righthand side of (4.14).
Therefore, £ € D12 and (4.14) holds.

Step 3. Suppose ¢ € D2, Note that formula (4.5) holds for
¢ € D2 and n € D'? for some p > 2 if h € HN L>®(T x Xo,B,v).
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Since, by Proposition 4.9, n = P, (z(g)) € DY for all p > 1 and
g € HNL>®(T x Xy, B,v), then we have

Jim (E(Dgy;nh) a + E(DEn; Dnhlx, ) n)
= lim E(&unL(h) — & (Dr; h) 1)

= E(EnL(h) — &(Dn; h)w)
=E(D&nhyg + E(DE; Dnhlx, ) u.

It follows from equation (4.9) that n + 1x,Dn = P,(Z(g)) +
1x,9Pmn_1(Z(g)). Then, for all m = 1,2,..., we obtain

Jimn (6 (D& P ((9) )i + (D Pr—) (7(9))gh1x, 1)
= E(DE Pr(a(g))h) 1 + (D8 Prv-1((9))gh L )

Since Py = 1 and lim,, o, E(DE&; Po(T(9))h)yr = E(DE; Po(T(9))h)m
for all h € HN L>®(T x Xy, B,v), then we deduce by induction that

im E(D&n; P (T(9))h) 1 = E(DE; Prn(T(9))1) -

n— oo

For n > m the expectation £(D&,,; P, (T(g))h)u is equal to
(408 [ prastalbieom(at )| Po(ala)) ).
TxX
Hence, the projection of (D¢&,; h) g on the mth chaos is equal to
(m+ 1)Im</ fm+1(-,t,x)h(t,x)w(dtdm)).
TxX

If {e;,i=1,2,...} is an orthonormal basis of H, then
Zkk!”fkniz((TxX)k)

) = 522 <(k + 1)Ik</T fr1 (1, x)ei(t, z)m(dt dm)))2

XX
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Z (D€ eii, = |1 D€ 220,y < 0

which completes the proof of the proposition. i

Remark 4.12. This proposition implies that the operator D is an
annihilation operator on the Fock space on Hilbert space H.

The equations (4.14) can be considered as a definition of the operator
D. This approach was developed for pure jump Lévy process, the
particular case of Poisson processes, the case of general Lévy process
with no drift and the case of certain class of martingales in [2, 3, 13,
14, 20, 22].

Applying the lemma above one can easily obtain the action of the
operator D* via chaos expansion.

Proposition 4.13. Let £ € D™? with a development (4.12). Then

o0

D:rlb,ml,...,tm,zmg :Z k(k_]‘) ) (k_m—’—l)lkfm(fk(: tl: T1y---) t’m7 Zm))
k=m
and
m &2 — k'2 2
(4.17) EID™EN 2 rxxymy) = D m”kaLz((TxX)k)‘
k=m

Moreover € € D™2 if and only if the series in the righthand side of
(4.17) converges.

The following result is an evident modification of Proposition 1.2.5
from [16, page 32], and it shows how to compute the derivative of
a conditional expectation with respect to a o-algebra generated by
stochastic integrals. Let A € G. We will denote by F4 the complete
o-algebra generated by the random variables {L(B),B C A,B € Go}.
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Proposition 4.14. Suppose that ¢ € DY2, and A € G. Then
E(E|F4) € DY2, and we have

Dy,2(E(€|Fa)) = E(Dro€| Fa)lalt, )

almost everywhere in T x X x (2.

Remark 4.15. In particular, if £ is F4-measurable and belongs to
D2, then D, ,£ = 0 almost everywhere in A x (0.

5. The Skorohod integral. In this section we consider the adjoint
of the operator D, and we will show that it coincides with the Skorohod
integral [28] in the Gaussian case and with extended stochastic integrals
introduced by Kabanov [11] in the pure jump Lévy case. See also [2,
3, 13, 22]. So it can be considered as a generalization of the stochastic
integral. We will call it the Skorohod integral and will establish the
expression of it in terms of the chaos expansion as well as prove some
of its properties.

We recall that the derivative operator D is a closed and unbounded
operator defined on the dense subset D2 of L?(Q) with values in
L?(Q; H).

Definition 5.1. We denote by ¢ the adjoint of the operator D and
will call it the Skorohod integral.

The operator § is a closed, unbounded operator on L?(Q; H) with
values in L?(2) defined on Dom §, where Dom ¢ is the set of processes
u € L*(Q; H) such that

& Dy ,&u(t, x)w(dt dz)
TxX

< clléllz2 (o)

for all ¢ € D2, where c is some constant depending on w.
If u € Dom §, then §(u) is the element of L%(Q) such that

(5.1) E(o(u)) =€ . Dy ,&u(t, x)m(dt dz)

for any £ € D12,
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The following proposition shows the behavior of ¢ in terms of the
chaos expansion.

Proposition 5.2. Let u € L*(Q; H) with the expansion
(5.2) u(t,2) = Y Lu(fult,2))
k=0

Then u € Dom ¢ if and only if the series
(5.3) §(w) =Y e (fi)
k=0

converges in L*(Q).

Recall that fi is a symmetrization of f; in all its variables is given
by

. 1
fk(tlawla . tkaxkat I) k+1(fk(t17w17'"7tk7xkat7$)

+ka (t1,@1,. .05 tic1, Tim1, €,
Iati—i-lvxi—i-lv"'atkaxk))-

Proof. The proof is the same as in the Gaussian case, see e.g., [16,
Proposition 1.3.1, page 36]. O

Remark 5.3. It follows from Proposition 5.2 that the operator §
coincides with the Skorohod integral in the Gaussian case and with
the extended stochastic integral introduced by Kabanov for pure jump
Lévy processes, see e.g., [2, 3, 11, 13, 16, 22, 28|.

It follows from the proposition above that Dom ¢ is the subspace of
L?(Q) formed by the processes that satisfy the following condition:

(54) Z k+ 1 'kaHL2 (T'x X)k+1) < 00.
k=1

If u € Dom 4, then the sum of the series (5.4) is equal to £§(u)?.
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Note that the Skorohod integral is a linear operator and has zero
mean, e.g., £(d(u)) = 0 if u € Dom . The following statements prove
some properties of 4.

Proposition 5.4. Suppose that u is a Skorohod integrable process.
Let £ € DY? be such that E( [}, (6% 4 (Dy,0€)*1x, )u(t, z)?m(dt dz)) <
0o. Then it holds that

(5:5) 3¢+ 1x,DEu) = €6(u) = [ (Desbult,a)n(dt do),

TxX

provided that one of the two sides of the equality (5.5) exists.

Proof. Let n € S be a smooth random variable. Then by the product
rule (4.11) and by the duality relation (5.1), we get

5(/TXX(Dt,zn)(£ +1x, (%) D o €)ult, z)m(dt dm))
- /T . E(u(t, x)(Dy,e(€n) — nDy ,&))m(dt dx)

=€ (n(f&(u) - (D¢, o&)u(t, x)m(dt dx))),

TxX

and the result follows. O

As in the Gaussian case, in order to prove some other properties of
the Skorohod integral, we will define a class of processes contained in
Dom §, see [16].

Definition 5.5. Let L'? denote the class of processes u € L*(T x
X x Q) such that u(t,z) € DY? for almost all (t,z), and there
exists a measurable version of the multi-process Dy ,u(s,y) satisfying

E [1yx Jrwx (Deou(s, y))?m(dt dz)m(ds dy) < oo.
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If the process u has the expansion (5.2), then u € L'? if and only if
the series

frochos(

oo

2
kI“(fk(-,t,x,s,y))) r(dt da)r(ds dy)
k=1

= kRSl e oy
k=1

converges.

Since ||kaL2((T><X)’C+1) S ||fk||L2((T><X)k+1)v then from (54) we de-
duce that L2 C Dom 6.

The proofs of the following propositions are the same as in the
Gaussian case, see for instance, [16, pages 38—40].

Proposition 5.6.  Suppose that v € LY? and for almost all
(t,z) € T x X the two-parameter process {Dy u(s,y),(s,y) € T x
X} is Skorohod integrable, and there exists a version of the process
{8(Dy zul(-,+)), (t,z) € T x X} which belongs to L*(T x X x Q). Then
§(u) € DY2, and we have

(5.6) Dy z6(u) = u(t, ) + 6(Dy zu(, ).
Proposition 5.7. Suppose that u € L%? and v € LY2. Then we
have
(5.7)
E(0(u)d(v)) :/ E(u(t, z)v(t, z))m(dt dz)
TxX

+/TXX/TXXE(Ds,yu(t,w)Dt,zv(S,y))ﬂ'(dtdac)ﬂ'(dsdy),

Now we will show that the operator § is an extension of the Ito
integral. Let B = {B‘(t);t > 0,i = 1,...,d} be a d-dimensional
Brownian motion, and N (dt dx) is a compensated Poisson measure on
the Borel o-algebra of R%\ {0}, with characteristic measure v(dt dz) =
dtS(dz), where the measure 8 such that fRd\{o}(mQ A1)B(dz) < oo.
For each ¢ > 0 we will denote by F; the o-algebra generated by the

random variables {B?(s), N((0;8] x A); 0<s<t, i=1,...,d, A€
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B(R%\ {0}), B(A) < oo} and the null sets of F. Suppose that T, Xy
and the measures ¢ and v hold as in Example 2.3. We denote by L2
the subset of L?(; H) formed by (F;)-predictable processes.

Proposition 5.8. LZ C Dom §, and the restriction of the operator §
to the space LZZ, coincides with the usual stochastic integral, that is,

Z/ i(t,0)dB(t / /Rd\{o} u(t, z)N(dt dz).

Proof. The proof follows along the same line as the proof for the
Gaussian case, see e.g., [16, Proposition 1.3.4, pages 41-42] and,
therefore, is omitted. ]

Acknowledgments. I would like to thank Bernt @ksendal for
his encouragement and interest, Gulia Di Nunno and Arne Lgkka
for their valuable comments, Paul Kettler for the attentive reading
and the Department of Mathematics, University of Oslo, for its warm
hospitality.

REFERENCES

1. R.F. Bass and M. Cranston, The Malliavin calculus for pure jump Lévy
processes and applications to local time, Ann. Probab. 14 (1986), 490-532.

2. F.E. Benth, G. Di Nunno, A. Lgkka, B. @ksendal and F. Proske, Ezplicit rep-
resentation of the minimal variance portfolio in markets driven by Lévy processes,
Math. Finance 13 (2003), 54-72.

3. F.E. Benth and A. Lgkka, Anticipative calculus for Lévy processes and stochas-
tic differential equations, Preprint series in Pure Mathematics 6, University of Oslo,
2002.

4. K. Bichteler, J.B. Gravereaux and J. Jacod, Malliavin calculus for processes
with jumps, Gordon and Breach Science Publisher, New York, 1987.

5. G. Di Nunno, On orthogonal polynomials and the Malliavin derivative for Lévy

stochastic measures, Preprint series in Pure Mathematics 10, University of Oslo,
2004.

6. G. Di Nunno, T. Meyer-Brandis, B. @ksendal and F. Proske, Malliavin calculus
for Lévy processes, Preprint series in Pure Mathematics 16, University of Oslo, 2003.

7. G. Di Nunno, B. @ksendal and F. Proske, White noise analysis for Lévy
processes, J. Funct. Anal. 206 (2004), 109-148.

8. T. Hida, Brownian motion, Springer-Verlag, New York, 1980.



THE CALCULUS OF VARIATIONS 701

9. K. It6, Multiple Wiener integral, J. Math. Soc. Japan 3 (1951), 157-169.

10. , Spectral type of the shift transformation of differential processes with
stationary increments, Trans. Amer. Math. Soc. 81 (1956), 253—-263.

11. Yu.M. Kabanov, On extended stochastic integrals, Theoret. Probab. Appl. 20
(1975), 710-722.

12. J.A. Léon, J.L. Solé, F. Utzet and J. Vives, On Lévy processes, Malliavin
calculus and market models with jumps, Finance Stochast. 6 (2002), 197-225.

13. A. Lgkka, Martingale representation and functionals of Lévy processes,
Preprint series in Pure Mathematics, University of Oslo 21, 2001.

14. J. Ma, P. Protter and J. San Martin, Anticipating integrals for a class of
martingales, Bernoulli 4 (1998), 81-114.

15. P. Malliavin, Stochastic analysis, Springer-Verlag, New York, 1997.
16. D. Nualart, The Malliavin calculus and related topics, Springer, Berlin, 1995.

17. D. Nualart and W. Schoutens, Chaotic and predictable representations for
Lévy processes, Stochastic Process. Appl. 90 (2000), 109-122.

18. D. Nualart and J. Vives, Anticipating calculus for the Poisson process based
on the Fock space, Lecture Notes Math. 1426, Springer Verlag, New York, 1990.

19. H. Ogura, Orthogonal functionals of the Poisson process, Trans. IEEE Inf.
Theory 4 (1972), 473-481.

20. B. Qksendal and F. Proske, White noise for Poisson random measures,
Preprint series in Pure Mathematics 12, University of Oslo, 2002.

21. J. Picard, On the existence of smooth densities for jump processes, Probab.
Theory Rel. Fields 105 (1996), 481-511.

22. N. Privault, An eztension of stochastic calculus to certain non-Markovian
processes, preprint, 1997.

23. F. Russo and P. Valois, Product of two multiple stochastic integrals with
respect to a normal martingale, Stochastic Proc. Appl. 73 (1998), 47-68.

24. K-1. Sato, Lévy processes and infinitely divisible distributions, Cambridge
University Stud. Adv. Math. 68, Cambridge University Press, Cambridge, 1999.

25. W. Schoutens, Stochastic processes and orthogonal polynomials, Lecture
Notes Stat. 146, Springer, New York, 2000.

26. I.M. Sheffer, A differential equation for Appell polynomials, Bull. Amer.
Math. Soc. 40 (1935), 914-923.

27. , Concerning Appell sets of polynomials and associated linear func-

tional equations, Duke Math. J. 3 (1937), 593-609.

28. A.V. Skorohod, On generalization of a stochastic integral, Theory Probab.
Appl. 20 (1975), 219-233.

DEPARTMENT OF FUNCTIONAL ANALYSIS, BELARUSIAN STATE UNIVERSITY, F.
SKARYNA AvV., 4, 220050, MINSK, BELARUS

Email address: yablonski@bsu.by, yablonski_oleg@rambler.ru, alehy@
math.uio.no




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


