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OSCILLATION THEOREMS
RELATED TO AVERAGING TECHNIQUE
FOR SECOND ORDER EMDEN-FOWLER TYPE
NEUTRAL DIFFERENTIAL EQUATIONS

ZHITING XU

ABSTRACT. Some oscillation theorems are established by
the averaging techniques for the second order Emden-Fowler
type neutral delay differential equation

(r(®)2'(6))" + a1 (®)]y(t = o1)|* Ty (t = o1)

+a2(t)|y(t — 02)Py(t — 02) =0, t > to,

where z(t) = y(t) + p(t)y(t — 7), 7, o1 and o2 are non-
negative constants, 0 < o« < 1, 8§ > 1, and r, p, qi1,
g2 € C([to,=),R). These theorems obtained here extend
and improve some known results. In particular, two interest-
ing examples that point out the applications of our results are
also included.

1. Introduction. In this paper, we study the problem of oscilla-
tion of the second order Emden-Fowler type neutral delay differential
equation

(1.1) ()2 (1) + @)yt —o1)|*y(t — o1)

+ @)yt —02) "yt —o2) =0, t2to,
where x(t) = y(t) + p(t)y(t — 7), and the following conditions are
assumed to hold:

(Al) 7, 01 and o9 are nonnegative constants, 0 < a < 1, 8 > 1;
(A2) r, q1, g2 € C([to,0), RY), and [* 1/r(s)ds = co, Rt = (0, 00);
(A3) p € C([to,©),R), and —1 < py < p(t) < 1, py constant.
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650 ZHITING XU

Let p € C([to — d,R), where § = max{r, 01,02}, be a given function,
and let yy be a given constant. Using the method of steps, (1.1)
has a unique solution y € C([to — J,0); R) in the sense that both
y(t) + p(t)y(t — 7) and 7(¢)(y(t) + p(t)y(t — 7))’ are continuously
differentiable for ¢ > t¢, y(t) satisfies (1.1) and

y(s) = p(s) for s € [tg — 0, to],

and
ly(t) +p(t)2(t — 7))}, = Yo-

For further questions concerning existence and uniqueness of solutions
of neutral delay differential equations, see [11].

We note that second order neutral delay differential equations are
used in many fields such as vibrating masses attached to an elastic bar
and some variational problems, etc., see, for example [11].

Our attention is restricted to those solutions of (1.1) which exist on
some half line [t,, c0) with sup{|y(¢)| : ¢ > T} > 0 for any T > t,,, and
satisfy (1.1). As usual, a solution of (1.1) is said to be oscillatory if
the set of its zeros is unbounded from above, otherwise it is called
nonoscillatory. (1.1) is called oscillatory if all of its solutions are
oscillatory. We say that (1.1) satisfies the superlinear condition if
¢1(t) = 0 and it satisfies the sublinear condition if ¢(t) = 0.

In the last decades, there has been an increasing interest in obtaining
sufficient conditions for the oscillation and/or nonoscillation of solu-
tions of second order linear and nonlinear neutral delay differential
equations (see, for example, [1-3, 5, 7-10, 14, 15, 17-21, 24] and
the references therein). For the second order neutral delay differential
equation

(1.2) [y(®) +p®)y(t — )" +a(t)f(y(t — ) = 0.

To the best of our knowledge, almost all of the known results obtained
for (1.2) required the assumption that the function f(y) satisfies f'(y) >
k> 0or f(y)/y >k > 0fory # 0 (see [2, 5, 7-10, 14, 15, 17, 18, 24],
etc.), which is not applicable for f(y) = |y|*sgny, the classical Emden-
Fowler case. Very recently, the results of Atkinson [4] and Belohorec [6]
for second order ordinary differential equation have been extended to
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(1.2) by Wong [21] under the assumption that the nonlinear function
f satisfies the sublinear condition

€ —€
0< d_u’ / d—u<oof0ralls>0,
ot flu) o— flu)

as well as the superlinear condition

* du % du
0< _—_—, —— < oo for all e > 0.
e f(w /_s f(u)

Also it will be of great interest to find some oscillation criteria for the
special case for (1.2), even in the Emden-Fowler equation

(13) (y(t) +p)y(t —7))" +a(®)ly(t — o) sgny(t —o) =0, A>0.

This problem was posed by Wong [21, Remark d]. As an affirmative
answer to it, Saker [19], Saker and Manojlovi¢ [20] have established
some oscillation criteria for (1.2) and (1.3). However, these results
cannot be applied to (1.1). Therefore, in the present paper, by the
generalized Riccati technique [25] and the averaging technique [13, 16,
22, 23], we shall establish several Kamenev-type oscillation criteria
for (1.1). Our theorems extend and improve some known results in
[19, 20]. In particular, two interesting examples that point out the
applications of our results are also included.

2. Main results. In this section, we shall establish Kamemev-
type oscillation theorems for (1.1) under the cases when 0 < p(t) < 1
and —1 < pp < p(t) < 0, which extend the results in [13, 16, 22,
23] to (1.1). It will be convenient to make the following notations
in the remainder of this paper. Let ¢ € C!([tg,00),RT) and n €
C*([tp, ), R). Define

pmmin {58 200 )= wre )
Qi) = () {1 |/ OB~ p(t — )"V

<(1=p(e eyt ] ),
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@x(0) = o0 a0 + -0 o .

rt—o
In order to present our theorems, we first introduce, following Philos
[16], the function class & which will be extensively used in the sequel.
Namely, let Dy = {(t,s) e R®* :t > s>t} and D = {(t,s) e R* : t >
s > to}. We will say that the function H € C(D,R) belongs to the
class §, denoted by H € &, if

(H1) H(t,t) =0 for t > tg, H(t,s) > 0 on (t,s) € Doy;
(H2) H has a continuous and nonpositive partial derivative on Dy
with respect to the second variable;
(H3) For any given functions ¢ € C*([1,00),R*) and n € C'([1, ), R),
there exists a function h € C(D, R) such that
0 ¢'(s) , _2n(s)
—H(t H(t = —h(t,s)H(t
ott,) | 5 o 2T () = it ) ()
for (t,s) € Dy.

For ¢ € C([tg,0),R), we take an operator A( -;T,t), which is defined
in [22], in terms of H, as follows

t
A(p; T, t) :/ H(r,s)p(s)ds for t>T.
T
It is easy to verify that A(-;7,t) is a linear operator.
Theorem 2.1. Let H € §. Then (1.1) is oscillatory provided that

one of the following conditions holds.

(1) 0<p(t) <1, and

(2.1) lim sup

1
A — Zgh?;tg,t | = 0.
il H{(t, to) (Ql PR )

(2) =1 <po <p(t) <0, and

(2.2) lim sup

1
A(Qs — —gh%to,t) = .
P H(t,to) <Q2 4gh at07t> o0
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Proof. (1) Let y(t) be a nonoscillatory solution of (1.1). Without loss
of generality, we may assume that y(t) # 0 for ¢t > t;. Further, we
suppose that there exists a t; > to such that y(¢) > 0, y(t — 1) > 0,
y(t —o1) > 0, and y(t — o2) > 0 for ¢ > ¢;. Since the substitution
u = —y transforms (1.1) into an equation of the same form subject
to the assumptions of Theorem 2.1. As an analogous proof of Lemma
1 (1) [24], see also [15]. Then, for some T > t;, we have immediately
that

(2.3) z(t) >0, '(t)>0, (r(t)z'(t)) <0 for t>Ty.
Using (2.3), noting that x(t) > y(¢), we have
y(t) = z(t) —p()y(t —7) 2 x(t) —p(t)z(t — o) = (1 — p(t))(t).

Thus, for all ¢t > Ty,

Then (1.1) implies that

(2.4) (r(t)z'(t))" + a1 ()1 — p(t — 01))*z*(t — o)
+ @2(t)(1 — p(t — 02))P2P(t —09) <0, t>To.

Define the function

(25) wlt) = o(0) | JPE 0 )]
Differentiating (2.5) and using (2.4), we have
(2.6)
') = Sistut) + o) | LT TOZOTUZA) )
< Su) - o) [ a0 o)t )
O

¢(t) < r(t)a’(t)

m(t — 0'1)

)+¢@#@
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Since r(t)z'(t) < r(t — o1)a’(t — 01). For simplicity, let o1 > o2, (a
similar argument holds for o7 < 02), then z(¢ —o1) < (¢t —o2). Hence,
(2.6) yields that

(2.7)
w(t) = () q1 (t)(1 = p(t — 01)) 2" (t — 01)]

+qa(t)(1 = p(t — 02))%a” (¢ — 01) ]

2
(S8 a0+ o
The Young inequality [12, Theorem 61] implies that

a0 = ple - 01)e e = o)

+ ;:Z[QQ(t)(l — p(t — 0'2))ﬂw671(t _ 0_1)]

> [af " (0ah () (1= p(t = 01))* V(1 = p(t = 72) )7 =)]
Consequently,

(2.8) qi(t)(1 = p(t — 01))*2z* 1t — 01) + ga(2)
(1—p(t —02))’a” (t — o)

1/8—«a

> u[df OO (1 ple - o) O pla - eyt
Combining (2.7) and (2.8), we have
29) w(t) < ()| 20 4 210 1 L o2g s

_l’_
o(t)  r(t—o1) g(t)
Apply the operator A(-;T,t), t > T > Ty, to (2.9), and use (H3) to
find

(2.10) A(Qq1;T,t) < H(t, T)w(T) — A(hw 4+ g~ w?; T t).
Completing squares of w in (2.10) yields

AQ;T,t) <H(t,T)w(T)— A <gl (w + %gh>2 T, t)

1
+ ZA(th, Ta t)a
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which can be simplified to
(2.11)

2
A <Q1 — ighz;T, t) + A <gl (w + %;;h) i T, t) < H(t, T)w(T).

Set T = T, and in view of (H2), note that the second term is
nonnegative, so

(2.12) A <Q1 - igh2;T0,t> < H(t, To)w(Ty) < H(t,to)|w(Tp)|.

Thus, from (2.12) and (H2), we obtain
(2.13)

1 1
A <Q1 - Zgh2;to,t> =A <Q1 - ZghQ;to,T[))
1
+A <Q1 - Zghz;To,t)

To
gﬂwm/ 1Q1(s)| ds + H(t, to)|w(To)|

to

SHmm%/°mew+wwn

to

Divide (2.13) through by H(¢,to) and take limsup in it as t — oo.
Condition (2.1) gives a desired contradiction in (2.13). This proves
Case (1).

(2) Let y(t) be a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that y(t) # 0 for ¢ > t;. Further, we
suppose that there exists a t; > ¢¢ such that y(¢) > 0, y(t —7) > 0,
y(t —o1) > 0, and y(t — o2) > 0 for t > ¢;. As an analogous proof
of Lemma 1 (2) [24]. Then, for some Ty > t1, we still have that (2.3)
holds for ¢ > Tj. Noting that y(t) > z(t), we get

y(t —o1) > z(t—o01), y(t—o2) >x(t—o03) for t>Tp.
Then, (1.1) changes into

(2.14) (a(t)z'(t)) + q1(t)z®(t — 01) + @2() 2P (t — 02) <0, t > Tp.
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Consider the function w(t) defined by (2.5). As the same as the proof
of (2.6), and noting (2.3) and (2.14), we can obtain

(2.15) ,
w'(t) < (i((f))w(t) —®(t) [q1(t)z* Mt — 01) + g2 (t)z’ 7 (t — 01)]
20 (0

The Young inequality [12, Theorem 61] implies that

gi;[‘h(m“”(t — o]+ G lne (- o)
> [ T () gy ()]
Consequently,

(2.16) qu(t)z® H(t—01)+az2(t)z? L (t—01) > plel " (H)ay ()] /P
Combining (2.15) and (2.16), we have
P'(t) | 2n(t)

1
w'(t) < —Qo(t) + + w(t) — —wi(t), t>Tp.
(t) (t) o0 T ri—on) (t) o) (t)
The rest of the proof is similar to that of Case (1) and is thus omitted.
Hence, this completes the proof of Theorem 2.1. ]

Theorem 2.2. Let H € §. Then (1.1) is oscillatory provided that
one of the following conditions holds.

(3) 0 < p(t) <1, and there ezist p1, 2 € C([tg,00),R) such that for
all T Z to,

1
. 3 - . >
(2.17) hilisogp H(t,T)A(Ql’T’ t) = (1),
. 1 2
. 3 <
(2.18) hgsogp HET) A(gh*;T,t) < @a(T),

where @1 and @2 satisfy

L 1 ~1 1 : _
(2.19) 1lg£f WA <g (cpl — Zg02>+ T, t> = oo.
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(4) =1 < po < p(t) <0, and there exist @1, p2 € C([to, o), R) such
that for all T > t,

(2.20) lim sup

1
P H(t,T) A(Q27T7 t) Z SOI(T)a

and (2.18) hold, where @1 and @2 satisfy (2.19).

Proof. We only show Case (3). The proof of Case (4) is similar to
that of Case (3). Proceeding as the proof of Case 1 of Theorem 2.1,
we have that (2.10) and (2.11) hold; again divide (2.11) by H(¢,7) and
drop the nonnegative second term, and obtain

AQuT,t) -

(2.21) THET)

2. < .
T A(gh*, T,t) <w(T), t>T

Take limsup in (2.21) as ¢ — oo, and note from (2.17) and (2.18) that

1

e1(T) — 1 p2(T) < w(T),

from which it follows that
(2.22)

2
1 1 1
—  _Afg7? - = Tt < A(g~ w?; T, t).
H(t,T) <g (‘Pl 4(102>+5 ) > = H(t,T) (g w L, )

On the other hand, by (2.10), we have

Al T — g Al T
< ll) - 7A@ T
Thus, by (2.17),
(2.23) liminf {;A(glwz;%,t) S AT t)}
mint \ 7, 7o) HET)

< w(Tp) — 1 (To) < Co.
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where Cj is a constant. According to (2.23), there exists a sequence
{tj}32, € [to,00) with lim; o t; = 0o such that

1 1
2.24) ——— A (¢ w? Ty, t;) — ————A(|h||w|; Ty, t;) < Co+1.
( ) H(tJ,TO) (g w5 Lo, J) H(t],T) (‘ H’lU|, 0 J) < Co+
Now, we claim that
1
(2.25) liminf ————A (g 'w? Tp,t) < oo.

t—o0 ]J(t7 To)
If (2.25) does not hold, and noting that (2.24), we get

1
2.26 lim —— A (g7 'w?; Ty, t;) = .
( ) ]1{20 H('I‘j,To) (g w o J) o0

So (2.24) and (2.26) gives, for j large enough,

A(h|lw); To,t;) o 1
A(g—le;To,tj) - 2,
that is,
1
(2.27) A(|h||w|; To, t;) > 4 (97 w? To, t;) -

The Cauchy-Schwarz inequality follows
(2.28) [A(IRlw]; To, £,)]* < A(gw®; T, t;) A(g|h % T, 1;).
From (2.27) and (2.28), we obtain

4

Alg™ % Toty) < s Algh® To, 1),

(2.29) = H{t,, To)

H(tjvTO)

By (2.18), the righthand side of (2.29) is bounded, which contradicts
(2.26). Thus (2.25) holds. Hence, by (2.22),

. 1 o 1 \?
lim inf WA (9 <901 - 1902>+ 3T, t)

1

which contradicts (2.19). This completes the proof of Case (3). u]
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Remark 2.1. For the superlinear equation, Theorems 2.1 and 2.2
improve the main results in [19]. For the Emden-Fowler type equation
(1.3), our results extend and improve the main results in [18].

3. Corollaries and examples. As Theorems 2.1 and 2.2 are
rather general, it is convenient for applications to derive a number of
oscillation criteria with the appropriate choice of the functions H, ¢ and
7n; here, we will give some corollaries of Theorems 2.1 and 2.2. Finally,
we will show the applications of our main results in two interesting
examples. We will see that equations (3.18) and (3.19) are oscillatory
based on our Corollaries 3.2 and 3.6, though the oscillations cannot be
demonstrated by the results of [1-10, 13-25] and other known criteria.

As an immediate consequence of Theorem 2.1, we have the following
corollary.

Corollary 3.1. Let H € . Then (1.1) is oscillatory provided that
one of the following conditions holds.

(6) 0 <p(t) <1, and

3.1 li A(Qq:to,t) =
(3.1) im sup ity (Q1;t0,t) = 00,
and

1
3.2 li A(gh?;to,t) < oo.
(3.2) MU ) (gh*;to,t) < o0

(6) =1 <po < p(t) <0, and

(3.3) lim sup A(Q2;to,t) = o,
t—o0 ( ’ t())

and

(3.4) lim sup A(gh?;tg,t) < oo.

t—00 (t,t0)

Corollary 3.2. Suppose that one of the following conditions holds.
Then (1.1) is oscillatory.
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(1) 0<p(t) <1, and

.. o 1
(3.5) htlglong(t)/t 01(s) ds > T

(8) =1 <po <p(t) <0, and

. * 1
(3.6) htrggolf G(t)/t 02(s) ds > 1

0=

61(t) = p | ()az () (1= p(t —0o1))*@ D
x(1 = p(t = 02))7 =] e

o) = [ 00 w] "

Proof. We only show Case (7); the proof of case (8) is analogous to
that of case (7). By (3.5), there exist two numbers T > ¢ty and k£ > 1/4
such that

G(t)/ 01(s)ds >k for ¢t>T, and lim G(t)= oo.
t

Let
H(t,s) = [G(t) — G(s)]?, ¢(t) =G(t), and n(r) = _2G1(t)
Then
h(r,s) = &
’ r(s — 01)[G(t) — G(s)]
Define
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Thus, for all t > T,

4@ 0 = [[160) - GeFeEa(-6i) + g5

—160) - 6 (Gmenr) - })

4
+ [ (ewen - 1)

« <G2( ) _ucm) + 3G(s)> G (s) ds
~(r_ L
> ( ;
1
4

) [ (58—t
(e

__§>

G(T)
AG(H)G(T) - —Gz( );
and
A(gh*; T,t) = 2[G*(t) - G*(T)].
Hence, it follows from Corollary 3.1 (5) that (1.1) is oscillatory. o

Corollary 3.3. Let n € C([to,),R). Then (1.1) is oscillatory
provided that one of the following conditions holds.

(9) 0 <p(t) <1, and for some \ > 1,

t

(3.7) t sup GAL@ / [G(t) — G(s)]*Qs(s) ds = oo,

(10) —1 < po < p(t) <0, and for some A > 1,

(3.8) lmsup G+@ /t G(t) — G()P Qa(s) ds = oo

where

Qs(t) = do(t) { [l (D=1 — bt — 1)) D
(1 —p(t — 02))6(1—04)}1/5*“ L_m® n’(t)} ’

T(t — 0'1)
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bo(t) = exp [2/1&:%@], G(t):/t:r(Tlal)ds.

Proof. Let H(t,s) = [G(t) — G(s)]*. Then h(t,s) = \/(g(s)[G(t) —
G(s)])- Note that

2

A(gh*;Tt) = ——
(9h*T,t) =

[GA1(t) - GAH(T)].
It is easy to show that Corollary 3.3 follows from Corollary 3.1. ]
Following the classical ideas of Kamenev [13], we define H(t, s) as
H(t,s)=(t —s)*, (t,s)€D,

where A > 1. Then, by Theorem 2.1, we have

Corollary 3.4. Let n € C([to,),R). Then (1.1) is oscillatory
provided that one of the following conditions holds.

(11) 0 < p(¢) <1, and for some A > 1,

(3.9) hmsup—A {ts Q3(s) — ( )*2(5)}ds:oo

t—o0

(12) =1 < po < p(t) <0, and for some A > 1,

t—o00

(3.10) limsup —)\ { (t — 5)*Qa(s) — —(t - ))‘_29(3)} ds = 00,
where Q3(t) and Q4(t) are defined in Corollary 3.3.

With the same choice of the function H(t,s) in Corollaries 3.3 and
3.4, more general Kamenev-type oscillation criteria for (1.1) can be
obtained by Theorem 3.2. Now, we state it here for completeness.
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Corollary 3.5. Let n € C([tg,0),R) and lim;_,o G(t) = co. Then
(1.1) is oscillatory provided that one of the following conditions holds.

(13) 0 < p(t) < 1, and there exists ¢ € C([to,0), R) such that for
some A > 1 and all T > ty,

B11)  tmsw s [ G0 - GEPQs()d > (1),

t— o0

where @ satisfies

(312)  liminf Gj(t) / g1 (8)[G(t) — G(s)] 02(s) 1 ds = oo,

(14) =1 < po < p(t) < 0, and there exists ¢ € C([tg,0),R) such
that for some A\ > 1 and all T > ty,

t
313 tmswp s [ 160 - GO ds 2 p(T)
where ¢ satisfies (3.12), Qs(t), Qa(t) and G(t) are defined in Corol-
lary 3.3.

Corollary 3.6. Let n € C([to,),R). Then (1.1) is oscillatory
provided that one of the following conditions holds.

(15) 0 < p(t) < 1, and there exist 1, w2 € C([to,o0), R) such that
for some A > 1 and oll T > tg,

(3.14) lim sup tiA/ (t —5)*Q3(s)ds > o1 (T),

t—o0 T

1

¢
(3.15) lim sup Py /T (r —s)* 2971 (s) ds < @o(T),

t—o0

where @1 and @9 satisfy

t

316)  tminfx [ o7l (o)(E o) <901(8) - 3902(3))2 ds = oo

t—o0
T +
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(16) —1 < po < p(t) <0, and there exist @1, p2 € C([ty, ), R) such
that for some A > 1 and all T > ty,

(3.17) hmsup—)\/ (t—s) Q4( )ds > o1 (T),

t—o0

and (3.15) hold, where @1 and @2 satisfy (3.16), Q3(t) and Q4(t) are
defined in Corollary 3.3.

Example 3.1. Consider the following Emden-Fowler type neutral
delay equation

319) (40 + Lgu- D) +alyle—3) >y

a(t)ly(t = 2)P/Cr Dyt —2) =0, >3,

where r(t) = 1, p(t) = p/vt+3, p = £1, n is positive integer,
a=1/2n+1), 8= (4n—|— 1)/(2n + 1), and q1, g2 € C([3,0),RT)
with q1(t)g2(t) > A1/t*, (A1 > 0). Now, we consider the following two
cases.

Case 1. p = 1. Noting that p(t — 3) > p(t — 2), we have

VAL 1
Then
liminf G(¢ 9 )ds > liminf(t—3) / \/_ (1——> ds = v/ 1.
t—o00 t—o00 \/_

Hence, by Corollary 3.2 (7), (3.18) is oscillatory if A > 1/16.

Case 2. p = —1. we have
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Then

liminfG(t)/ 02(s)ds > liminf (¢t — / \/—ds =+/A1.
¢

t—o0 t—o0

It follows from Corollary 3.2 (8) that (3.18) is oscillatory if A\ > 1/16.

Example 3.2. Consider the following Emden-Fowler type neutral
delay equation

(3.19) [(t+3)(y(t) +py(t — 1) +ar()]y(t - 3)|7**y(t - 3)
+a(t)y(t—2) Pyt —2) =0, t>3,
where r(t) = t+3, -1 <p <1, a =1/3, 8 =5/3, and q1, g2 €

C([3,00), RT) with q1(t)g2(t) > A2/t, (A2 > 0). Let n(t) = 1/2t2.
Now, we consider the following two cases.

Case 1. 0 < p < 1. A direct computation yields

1 <(1—p)\/5+1+i>

p=1, g(t)=1, and Qs(t) > NG 4t5

For Corollary 3.6 (15), let A = 2. Then, for all t > T > 3,

1 t
hin sup o / (t —5)’Q3(s) ds
—00 T
> lim sup / { A-pvds 1 1 }ds

PR $3/2 3 | 45
2(1 —p)v/ 1 1
= (7 + o+
JT 272 " 167*
and
1 t
liin Sup 5 / g (s)ds = 0.
—00 T
So, set
2(1 —p)vA
01(T) = (1=p) 2 and w2(T) =0
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Then
1t ) 1 2
imint [ 6)(6 -9 (901(8)—1902(8)>+d8
t
_ 2 _ 2
:1iminf4)\2(1 p) /(t 8) ds = oo
t—o0 t2 S
T

It follows from Corollary 3.6 (15) that (2.19) is oscillatory.
Case 2. p=1. Then

p=1 g)=1 Qu(t)= i Bt w

The rest of the proof is similar to that of Case 1. Hence (3.19) is
oscillatory by Corollary 3.6 (16).

()
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