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ON THE OSCILLATION OF FIRST ORDER
DELAY DYNAMIC EQUATIONS
WITH VARIABLE COEFFICIENTS

H.A. AGWO

ABSTRACT. In this paper we obtain some new oscillation
and nonoscillation criteria for the first order delay dynamic
equation with variable coefficients

v (O + Y piy(ni(t) = 0
=1

on a time scale T. Moreover, a new sufficient condition for
oscillation of

Y1)+ Y pily(ri(t) =0
=1

is obtained.

1. Introduction. In recent years, the theory of time scales, which
was introduced by Stefan Hilger in his Ph.D. thesis in 1988 in order to
unify continuous and discrete analysis, has received a lot of attention,
see [8]. In fact, there has been much research concerning the oscillation
and nonoscillation of solutions of differential equations on time scales
(or measure chains). We refer the reader to recent papers [1, 5, 6,
10] and the references cited therein. A book on the subject of time
scales, by Bohner and Peterson [2], summarizes and organizes much of
time scales calculus, see also the book by Bohner and Peterson [3] for
advances in dynamic equations on time scales.

In this paper, we are concerned with oscillation and nonoscillation of
the first order delay dynamic equation with variable coefficients

(1.1) y=(t) + Zpi(t)y(n(t)) =0
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2 H.A. AGWO

on a time scale T. Since we are interested in asymptotic behavior of
solutions, we will suppose that the time scale T under consideration is
not bounded above, i.e., it is a time scale interval of the form [tg, c0).
Throughout this paper, we assume that:

(Hy) pi(t), i =1,2,... ,n, are nonnegative real valued rd-continuous
functions defined on T,

(Hz) () : T— Tand ;(t) <tforallt € T,i=1,2,...,n.

By a solution of equation (1.1), we mean a nontrivial real valued
function y(¢) which satisfies equation (1.1) for all ¢ > t,. Our attention
is restricted to those solutions of equation (1.1) which exist on some
half line [t,, 00) and satisfy sup{z|(¢)| : ¢ > t;} > O for any t; > ¢,.

A solution y(t) of equation (1.1) is said to be oscillatory if it is
neither eventually positive nor eventually negative. Otherwise it is
called nonoscillatory. The equation itself is called oscillatory if all its
solutions are oscillatory.

We note that, if T = R, then o(t) = t, u(t) = 0, f2(t) = f'(t) and
then equation (1.1) becomes the first order delay differential equation
with several delays

(1.2) y'(t) + Zpi(t)y(n(t)) =0, t¢€to,o0)

which has been the subject of much investigation, see for example [4,
7, 9]

2. Some preliminaries on time scales. A time scale T is an
arbitrary nonempty closed subset of the real number R. On any time
scale T we define the forward and backward jump operators by

(2.1) o(t):=inf{seT:s >t} and p(t):=sup{seT:s<t}.
A point t € T, ¢t > inf T is said to be left-dense if p(t) = ¢, right-dense
if t > sup T and o(¢) = ¢, left-scattered if p(t) < ¢t and right-scattered
if o(t) > ¢. The graininess function g : T — [0,00) is defined by
p(t) :==o(t) —t.
For a function f: T — R the (delta) derivative is defined by
flo(t) = f(t))
2.2 Ay = 2220
(2.2 R =~
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f is said to be differentiable if its derivative exists. A useful formula is

(2-3) £ = flo(t) = f(t) + p(t) 2 ().

If f, g are differentiable, then fg and the quotient f/g (where gg° # 0)
are differentiable with

(2.4) (f9)® =29+ f79° = fg* + f29°
and

(z)A I e

2.5
(2:5) g 99°

If f2(t) > 0, then f is nondecreasing.

A function f : [a,b] — R is said to be right-dense continuous if it is
right continuous at each right-dense point, and there exists a finite left
limit at all left-dense points.

A function f : T — R is called regressive if 1 — p(t)f(t) # 0
for all ¢ € T. The set of all functions f : T — R which are
regressive and rd-continuous will be denoted by R = R(T) = R(T, R).
We define the set R™ of all positively regressive elements of R by
Rt ={feR:1—u(t)f(t) #0, t € T}

A function F with F2 = f is called an antiderivative of f and then
we define

b
(2.6) / F(H)AL = F(b) — F(a)

where a,b € T. It is well known that rd-continuous functions possess
antiderivatives. A simple consequence of formula (2.3) is

o(t)
(2.7) / £(5)As = u(t)F(2)

and infinite integrals are defined as

0o b
(2.8) / fe)at= lim [ At
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If p € R, then the exponential function is defined in [8] as

(29) co(t9) = | t £utn (P ),

for all s,t € T, where £,(z) is the cylinder transformation, which is
given by

T

For properties of this exponential function, see [2].

Before stating the main results in this paper, we need the following
lemmas.

Lemma 1 (see [8, 10]). If

" (imt))y(w <0

where t € [tg,00), pi(t) > 0, i = 1,2,...,n, then the following
inequality holds:

(2.11) y(t) < y(to) exp { /t: €us) < - iz:;pi(S))AS}-

Lemma 2. Ift € [ty,00),pi(t) > 0,73(t) < t, i =1,2,...,n, and
p(t) Z?:l pi(t) < 1, we have

Proof. From [10, Lemma 3|, we have
(2.12)

g (Bp)2ezon ([ oo (- En)os).

i=1
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where
n

te (lr(t),t] = [r*(tr),t], t>t1>7"(t).

Since

(2.13) 1- i/t pi(s)As <1 /1t (img)m,

i—1 Y/ Ti(t) (1) \ ;1

and
(2.14) exp /Ti(tl) Eu(s) < - Zz:;pi(s)>As
anpi(t)
<= = - :
;pi(t) exp ( - /T » Euts) ( - ; pi(5)> As>

From (2.12), (2.13) and (2.14) the result of this lemma follows.

3. Main results. In this section, we obtain a sufficient condition
for the oscillation and another sufficient condition for nonoscillation
for equation (1.1), by extending the technique in [10] to be suitable for
first order delay dynamic equations with several delays. Moreover, we
get a new sufficient condition for the oscillation of equation (1.2).

In the following theorem we get a sufficient condition for the existence
of positive solutions of equation (1.1).

Theorem 3.1. Assume that Hy, Hy hold and that there exists

ANeE= {)\>0:1—)\<ipi(t)>,u(t) >0}

and A > 0 such that
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/\Zpi(t)

iz:l;pi(t) exp < - /Tit(t)_ﬁu(s) < - AéPi(S)) AS)

where t > A. Then equation (1.1) has a positive solution.

(3.1)

— )

Proof. We shall construct a positive solution of equation (1.1) as
follows. Define
(3.2)

1 t< A,
o gm(w (= [ o - Ai:ilpxs))x(sms) L
Aipi(t)
Then 0 < z(t) < 1. i
Let
(3.3) 2 —I—Zpl exp( / gus)< /\Zp, > )
Then

(3.4) y=1-2X (sz >

Since z(t) € (0,1], A € E, we have z(t) > 0.
Define
t< A,

1
(3.5) y(t) = { exp (/At Euie) (2(5) — l)As> t> A

Then y(¢) > 0,

30)  w=ew( [ (- Aipxs))w(s))m
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From the definition

(3.7) y2(t) = (2(t) = Dy(t), t= A
From (3.3) and (3.7), we obtain

PO _
1+ O (t)

1 gpi(t) oo ((- [ ;t)fms)( Aipi(s>)x<s>)As)

g

which implies that

v (0 + 2 pi(By(mi(t) =0

Thus, we obtain a positive solution of equation (1.1). The proof is
complete. ]

In the following theorem we get a necessary condition for the existence
of positive solutions of equation (1.1).

Theorem 3.2. Assume that equation (1.1) has an eventually positive
solution and Hy, Hy hold. Then the following inequality holds:

(3.8)
A Z Di (t)
lim sup sup { — =1

o200 t>t5 A€ E ¢ "
0 Zpi(t) exp < - / “ u(s) ( -2 Zpl(s)> As)
i i=1

i=1

> 1.

Proof. Let y(t) be an eventually positive solution of equation (1.1).
Then

(3.9) (1) = - Zpi(t)y(n(t)) <0,
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and consequently y(t) < y(m(t)), ¢ = 1,2,...,n, eventually hold.
Hence,

(3.10) yA(t) + (ip,(t))y(t) <0.

Define

(3.11) A= {)\>O:>\A(t)+)\(zn:pi(t)>y(t) go}.

Clearly, 1 € A. Because
o(t) ot) y ™
0> / v (s)As + )\/ (Zpi(s)>y(s)As
t t —
= 4(0(0) - 50+ M o) )uto)utt)
i=1
> =)+ 2 L ni0) )uloute)
i=1
which implies that A € E. Therefore, A C E. So F is nonempty. Define
A Zpi(t)
i=1
n t n °
Sonten (= [ (-1 n0))as)
i=1 7i(t i=1

Assume that (3.8) is not true, which implies that

(3.12)  f(t,\) =

(3.13) lim sup sup f(¢,\) < 1.

o200 t>t5 A€ E

Then there exist ¢y and a positive constant ¢ > 1 such that f(¢,\) < 1/c
for all ¢ > ty. For any A € A, by Lemma 1 there is t; such that

€u(s) < - A ém(ﬁ) A8>

t

1) w0 s ([
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(- [ 3E))
and then

which implies that

(3.16) sz ) > )\c< sz >
and then
=0+ 3 p ) 2 00+ e L ni))uto)

0 +Ac(§pi<t>)y<t> <0

and consequently Ac € A.

Following the above analysis, there is t; such that for any ¢ > ¢4,

y(t) < y(7i(t)) exp (/:(t) Eu(s) < - )\Cgpi(s)>AS>,
iz (= [ o redomo)as)

i.e.,




10 H.A. AGWO

and then
Spu) t )
=1 "0 > ;pz(t) exp < “ fu(s)( AC;Pz(S)>AS>
> \? < ip(t))

Repeating the above procedure, we have, for any positive k, A\c*~! € A
and there exists t; such that for any ¢ > tg,

) <@ ([ (=37 Ynio)s)

and
Zp,-(t)y(ri(t)) n
(3.17) = > )\ck< pi(t)>.
y(t) ;
Therefore,
Zpi(t)ll(ﬁ'(t))
i=1
On the other hand, from Lemma 2 we have
(3.19)

L ipi(t)
1— i(s)As < — tl:1 - ‘
2 /n(wp v ;pi(t) exp < - /nu) Eu(s) ( - ’\;pi(s)>m>

i=1
Since f(t,1) < 1/c, then

izj;pi(t)
> i1 pi(t) exp < - /T:(t) €u(s) ( - i}p,(s)) As>

1
<-,
C

(3.20)
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and consequently,

n t 1
(3.21) Z/ pi(s)As > 1——>0.
i=1 Ti(t)

Let 1—1/c=¢and Y, f:i(t) pi(s)As = w(t). Define

n r 1
g(r) = / pi(s)As—Ew(t), t>r>mn(t), i=1,2,...,n,

Ar={re C)[n(t),t] NT:g(r) <0},

It is easy to see that:
(i) g(-) is nondecreasing,
(11) Ti(t) S Al, te AQ, A UAy = U?Zl[Ti(t),t] NnT,
(iii) for any rq € Ay, 1o € Ay, we have r; < ro.

Consequently, we have that there exists t* € U, [r;(¢),¢]N'T such that

9(t")9(o(t")) < 0.

From (ii), we obtain that ¢t* € A;, o(t*) € Az and for any ri € Ay,
ro € Ay, we have 1y < t*, o(t*) < ro.

If

CESIIED o) ITCTIRDTRI0 o) B

i=1

then integrating equation (1.1) from t* to o(¢t*), we have

y(o(t) —y(") + u(t?) Zpi(t*)y(ﬂ'(t*)) =0.
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Because y(o(t*)) > 0, we have

u(t*) S pit) (R(E) < y(E"),
Zpi(t*)y(ﬂ'(t*)) )
(8.28) ) )

and consequently, from (3.17) and (3.23), we obtain

S plt)y(m(t)) 1
kb < =L < <

_y(t*)(gpxt*)) u(t*)(im(t*)>

which is a contradiction, because ¢ > 1.

[STINCM

)

Now, we consider the case that

mLo o) 5 w(t)
(s)As < = < —2.
;/t pi(s)As <3< =
If pu(t*) =0, then
n o’(t*) n i
S [0 neas=ue)(Xne)) <o
i=1Yt" i=1

Then we have

= z(t) 2 3

ot t) _ w(t)
324 / (S As = K > —_,
(3.24) ; Ti(t)p( ) 5 3
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If p(t*) > 0, we can also obtain (3.24); otherwise,

n t*
Z/ pi(s)As < wt)
i—1 7 Ti(t) 3

or
n

Z/t* pi(s)As < @ e C)[n(t),t] AT.

i=1 7 Ti(t)

It

g

~—

Z/ pi(s)As < %,

i=1 7 7i(t)

then for any r; € Ay,

n r1 "
Z/ pi(8)As < w
oo 3
Tf .
- t
Z/ pi(s)As < w,
i=1 7 7i(t) 3
then for any ro € A,,
nLor 2w (t
Z/ pi(s)As > m
T (t) 3

i=1

Therefore,

n T2 n 1
Z/ pi(s)As — Z/ pi(s)As
i—1 /(1) i—1 Y Ti(t)

so we have . )
g t
Z/ pi(s)As > m,
— Ji 6

which is a contradiction. Therefore, (3.24) holds.

13
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Integrating (1.1) from 7*(t) to t**, where

n

€ (), §N'T = [7(1), 1],

i=1

we obtain
no e
y(t) = y(r* (1)) + Z/  POE(A =0,
i=1 T*(t
which implies that
o n 5
(3.25)  y(r*(¥)) > y(T*(t**))/ ( )Zpi(S)AS > y(r"(t™)-
T*(t) ;—1
Integrating (1.1) from ¢t** to t, we get
noot
o0) - u(e)+ Y [ nouln(s)as =0
— S

which implies that

B26) oy 2 0) [ Y meas= gy o).
=1
From (3.25) and (3.26), we obtain
(3.27) W) = (§) ).
From (3.17) we have
Dy (D)
2 vty y(r ().

(3.28) Ak < =

AN
y<t>(;pi<t>)

’
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hence, from (3.27) and (3.28) we get
* (kK 2
Ak < M < <§> ,
y(t*) o

which is a contradiction, because ¢ > 1 and k can be taken to be a
sufficiently large integer. Therefore,

lim sup sup f(¢,\) >
to=0 t>t9 A€ E

The proof is complete. a

Corollary 3.1. If
(3.29)

AZpl

lim sup sup <1,

o200 t>t) \eE Zpl exp < / gﬂ s)( )\sz > )

then all solutions of equation (1.1) are oscillatory.

Remark 3.1. We note that, if T = R, equation (1.1) becomes the first
order delay differential equation (1.2) with several delays. From this,
we have

<1

A pi(t)
lim sup sup =1

o= t>t5 AEE ¢ -
0 Zpl exp (/ )\Zp,(s)) ds

(1) =1

where E = R™. Let
A Zpi(t)
i=1
n t n
Zp,-(t) exp (/ )\Zpi(s)) ds
i=1 T

(1) =1

g(>" t) =
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Then

Zpi (t)

sup g(\, t) = —; — <1
A€E
eZpi(t)/ Zpi(s) ds
i=1 7i(t) =1
therefore, if
n t n
S [ Smras
- Ti(t) _
(3.30) lim inf =2 © i1 > -,
t—o0 e

Zpi(t)

then all solutions of equation (1.2) are oscillatory. Condition (3.30) is
a new criteria for oscillation of equation (1.2).

In the following we give an example to show the importance of the
above result.

Example. Consider the delay differential equation

1 1
(3.31) y’(t)+3 (H—COSt)y(t—7r)+H(l—i—sint)y(t—%r) =0, t>0,
€

e

i.e.,
1
pi(t) = §(1 +cost), T =m,
1
p2(t) = 1—56(1 +sint), T =2m.
We have

(1)
t+m t+2m
liminf</ i(l%—cos()d(—i—/ l—;(a(l—i-sin()d()

t—o00 3e
1 1
=—(Tr—-10 -
156( m ) < e
This shows that the well-known sufficient condition
oLt 1
htn_lﬂlf.}fz pi(s)ds > -
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does not hold.

(2)

t—o0

lim inf <[%(1 +cost)] [115(1 +sint)]>1/2(37r) <l

This shows that the well-known sufficient condition
n 1/n n 1
hgg)lf (r[lpz(t)> Zln > -

does not hold.

3)
t
h?iigp/t,r{?)l (1+cos()+%(l+sm§)} d¢
156(6%—\/_6) <1.

This shows that the well-known sufficient condition

t
limsup/ sz( )ds >1
t_ =

does not hold.

(4)

lim inf (3 (1 +cost)+12—56( —|—smt)> 171' (7-v29) < 1

t—oo be e

This shows that the well-known sufficient condition
- 1
htrgg.}f Z Tipi(t) > -

does not hold. But, according to (3.30), one can write

1
p1(t) + p2(t) = e — (64 5cost +sint)
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lim inf
t—o0

(pl(t) [ (1(s) +pa(s)) ds + p2(t) [, (p1(s) + p2(s)) ds>
p1(t) + p2(t)

=4.8021 > 1
e

This shows that every solution of (3.31) oscillates.

Remark 3.2. Equation (3.31) is also oscillatory, since the well-known

sufficient condition
.. 1
htn_l> ggf /t sz )ds > -

holds. Since
.. t 4 1
lmint [ (p1(s) +pas)) ds = 55 > 1.
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