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CLASSES OF QUATERNION ALGEBRAS 
IN THE BRAUER GROUP 

JAN MINÄC 

Elman and Lam investigated fields L such that the classes of quater­
nion algebras over L form a subgroup in the Brauer group Br(L) of 
the field L [4]. They made the following list of examples: L is a finite 
field, a local field, a global field, a field of transcendence degree < 2 
over C , a field of transcendence degree 1 over R , C ((ti))((t2))((t3)), 
where K((t)) means the field of formal power series in t over the field 
K. 

Elman and Lam found in their paper [4] that if L is a nonformally 
real field and the classes of quaternion algebras form a subgroup in the 
Brauer group Br(L), then 

u(L) e {1,2,4,8}. 

Here u means the so-called it-invariant of the field. (See [4], or [6; 
Chapter 11, Theorem 4.10] 

DEFINITION 1. A field K is called linked if and only if the classes of 
quaternion algebras form a subgroup of the Brauer group Br (K). (See 
also Definition 4.3 in [2].) 

In [3] it is proved that a formally real Pythagorean field F is linked 
if and only if F is SAP. 

Our goal is to characterize all linked fields L = F(\/—Ï), where F is 
formally real Pythagorean with finite chain length. This will generalize 
the sixth example above. We shall use the possibility to attach, to each 
order space X of finite chain length, some graded ring i?(X), which 
will be described explicitly in Definition 4. The main motivation for 
the introduction of R{X) is given by Theorem 5 below. 

We use standard notation such as can be found in [5, 6, and 8]. For 
the reader's convenience, we shall recall just a bit of it. 
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By (X, D) we mean an order space, where D is a 2-elementary group 
and X is a closed subgroup of the group of characters x{D) of D. (See 
[8, 9].) The elements of X are called orderings. Sometimes instead of 
(X, D) we shall write only X. 

F(2) is the maximal 2-extension of the field F, 

G F = Gal (F(2) |F) , 

ht(G) = dimz/2ZHl(G,2) 

H*(G,2) is the graded cohomology ring of the pro-2-group G with 
coefficients in Z / 2Z , 

cd G is the cohomological dimension of G. 

One of the basic notions in the theory of order spaces is the chain 

length. It was introduced by Marshall in the paper [10, Definition 1.1]. 

DEFINITION 2. (MARSHALL). The chain length of the order space 

(X,D) is the largest integer k > 1 such that there exists elements 

ao, a i , . . . , a& 6 D such that , for each i G { 1 , . . . , &}, we have 

{x G X|ar(ai_i) = 1} C {x € X\x(<n) = 1}. 

If no such k exists we define the chain length to be infinity. 

Unless otherwise stated we always assume c\{X) < oo. 

Craven seems to have been the first to recognize the importance of 

order spaces of finite chain length in the field case [1]. In [10] Marshall 

proved the following theorem. 

THEOREM 3. (MARSHALL). Let X be an order space and suppose that 
cl(X) < oo. Then X can be obtained from one element order spaces by 
using a finite number of direct sums and group extensions. 

We now define R{X) by induction on cl(X). By R^X), i G N U{0}, 
we denote the subgroup of R(X) consisting of elements of degree i. 

DEFINITION 4. (A) If cl(X) = 1, then we define R(X) = R°(X) = 
Z/2Z. 
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(B) Suppose that 

(XiD)^(XllD1)®'"®(XtnD8) 

is the decomposition of (X, D) into connected components. Then 

I. # ° ( X ) ~ Z / 2 Z . 

II. R}(X) = R1(X1)@- •0Ä1(XÄ)eS'(X), where S(X) is an abelian 
group of rank s — Ì over Z /2Z . 

III. RJiX) = RJiXx) 0 - • • 0 Rj{Xs), for i > 2. 

To define multiplication we view each R(Xi), i = 1 , . . . , 5, as naturally 
imbedded in R(X) and we set 

a G R{Xj), b G R(Xi) with i / j => ab = 0 

ceS(X) , d G Ä ( X ) ^ c d =0. 

(C) Suppose that 
(X,D) = (Y,E)xHi 

where H is a 2-elementary abelian group and (F, E) is a decomposable 
order space. We define R(X) as follows. 

Let /i7;, i G J, be a basis of the vector H over Z /2Z . We set 

R°(X) = {0,1} 

ß I ( X ) = J R 1 ( ^ ) © ^ 
Ä<(x) = ©w f t-Ä<-^(r) , i > 2 , 

where J means a set consisting of j different elements of {hi\i G / } , 
0 < j ' < i, Pj means the formal product of elements of J, and if j = 0, 
then J = (/) and ^ = 1. gjRl~i(Y) and i2*~J(F) are isomorphic as 
abelian groups. 

Then multiplication is defined by the formulas 

9RO. • 9rb = gRgrab, 

where #/?, #T a r e products of r and t different elements of {hi\i G / } , 
respectively, a G Rm(X), b G Rn(X) for some m,n £ N. If there exists 
hi,i G / , such that hi divides both QR and gr then we put gugr = 0. 
The product ab is defined inductively in R(Y). 
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EXAMPLES. (1) Suppose that 

where |X i | = • • • = \X8\ = 1. Then 

i ? ° ( X ) ~ Z / 2 Z , 

R1(X)^(Z/2Z){S-1\ 

Ri{X) = {0} for i>2. 

(2) Suppose that 
X = Y x H, 

where |V| = 2 and \H\ = 4. Let {a, 6} be a basis of H over the field 
Z / 2 Z . From example (1) we see that R°(Y) ~ Z / 2 Z = {0,1,} and 
Ä 1 ^ ) - Z / 2 Z = {°>c}- T h u s > f r o m Definition 5, we see that 

Ä°(X) = {0,1} 

Rl (X) — {a, 6, c, a + 6, a + c, 6 + c, a + 6 + c, 0} 

A 2 (X) = {ac, 6c, a6, ac + 6c, 6c + a6, ac -f- a6, ac -j- 6c + a6,0} 

Ä 3 (X) = {a6c,0} 

Ä*(X) = {0} for i > 4. 

Thus we see that R(X) is isomorphic to Z /2Z [4, £ , C]/(yl2 , £ 2 , C 2 ) , 
where Z / 2Z [i4, ß , C] means a polynomial ring over the field Z /2Z 
with indeterminates A,B,C and (^42, B 2 , C 2 ) is the ideal generated by 
A\B2,C2. 

THEOREM 5. (See [5, 14, 16].) Let F be a Pythagorean field with 
order space Xp of finite chain length. Then 

(1) H*(GF{yrï),2)~R(X), 

where, by isomorphism, we mean isomorphism of graded rings. 

REMARK. Craven proved that , for each order space X of finite chain 
length, there exists a Pythagorean field F such that Xp ~ X [1]. 
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On the other hand it was observed in [12] that if X is an order space of 
finite chain length and F\ and F2 are formally real Pythagorean fields 
with XFl ~ X ~ XF2, then GFl ~ Gp2 and GFl{y^zj) ^ GF2(y/=T)-
Thus also H*{Gptjzi),?) — i/*(GF2(v/zi),2). Hence we see that 
R(X) is well defined by formula (1) in Theorem 5. Our Definition 
4 tells us how to compute R(X) directly from X. 

Finally we can write our theorem. 

THEOREM 6. Let L — F(v / r=T), where F is a formally real 
Pythagorean field with cl (F) < 00. 

Then L is linked if and only if XF can be written as a finite sum of 
order spaces Y of the following type: 

(1) st(Y) < 2 

(2) s t (F) = 3 and \Y\ = 8. 

PROOF. It is well known that Br (L)2 can be identified with H2(GL, 2), 
by sending [ ( ^ ) ] e Br2(Z) to (a) U (6) G H2{GL,2). Here (a), (b) are 
elements of H1(GL,2) which correspond to a, 6 G L respectively. U 
means cup product. 

From Theorem 5 we see that H2(GL,2) is additively generated by 
cup products of elements of the ring H1(GL,2). (From Merkurjev's 
Theorem we know that this is true for every field M with char M 7̂  2.) 
Thus L is linked if and only if each element of H2(GL,2) is a cup 
product of two elements of Hl(GL,2). Since H*(GL, 2) ~ R(XF), it is 
enough to investigate when each element of R2(XF) is the product of 
two elements of Rl(XF). 

(1) Suppose first that st(XF) < 1. If si{XF) = 0, then \XF\ = 1. 
Then, from Definition 5, we see that 

R(XF)~Z/2Z =R°(XF). 

In particular R2(XF) = {0}. 

If st(Xp) = 1, then from Example 1, we see that R2(XF) = {0}. 
Therefore L = F ( v

/ I r ï ) is linked. 

(2) Suppose that st (XF) = 2 and 

XF = X1 U - - - U I , , 
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is the decomposition of XF into connected components. We may 
assume that there exists c G N,c < s, such that 

st(Xi) = 2 for 1 < i < c 

st(Xi) = 0 for c + 1 < i < s( if c < s). 

(Recall that if st(Y) = 1, then F is a sum of one element order spaces 
Yj, 1 < j <m. Thus st(Vj) = 0 for each j G { 1 , . . . ,m}.) 

By definition, part (1), we see that 

R2(xF) = ®UR2(Xi)-

Let 1 < i < c. Then X\ is an indecomposable order space. Thus 

Xi ~ Zi x Hi, 

where st (Zi) = 1 and \Hi\ = 2. From Definition 4, we see that 

R1{Xi) = R1(Zi)mHi 

R2(Xl) = AtR
1(Zl), 

where Ai is the non-zero element of Hi. From Defintion 4 we see that 
A? = 0. Thus we can write 

R2(Xi) = {AiBi\Bi£R1(Xi)}. 

Moreover, from the definition of multiplication in Definition 4, we see 
that , for any Bi € Rl(Xi), i = 1 , . . . , c, we have 

(2) AiBi + • • • 4- ACBC = (Ai + -'. + Ac)(Bl + • • • 4- Bc). 

Thus we see that every element of R2(Xp) is a product of two elements 
o(Rl(XF). 

(3) Suppose that st(XF) = 3 and \Xp\ = 8. Then there exist elements 
A,B,C e R*(XF) such that 

R(XF) = Z / 2Z [A, B, C}/(A2, B2, C 2 ) , 
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where Z /2Z [A, B, C] means the polynomial ring in A, B, C over Z /2Z 
and (A2,B2,C2) means the ideal generated by A2,B2 and C2 (see 
Example 2). Hence 

R2(XF) 

= {AB, AC, BC, A(B + C), (A + B)C, B(A + C), (A + £ ) ( £ + C), 0}. 

Thus again we see that every element of R2(XF) is a product of two 
elements of Rl(Xp). 

(4) Suppose that Xp is a finite sum 0f=1Yï of order spaces Y^i — 
1 , . . . , d of type (1) or (2) described in our theorem. Then 

R2(XF) = ®ti&(Yi)-

On the other hand we see from (1), (2), and (3) that, for each 
i e { 1 , . . . ,d}, every element d of R2(Yi) can be written in the form 
AjBi where A{,Bj G Rl(Yi). Thus any element of R2(Xp) can be 
written as 

AiBi + • • • + AnBn = {Ax + . . . 4- i4n)(Si 4- • • • + Bn) , 

where Ai,Bi G R1(X{) for each i € { l , . . . , d } . Thus we see that if 
Xp can be written as a finite sum of order spaces Y of the type (1) 
st(F) < 2 or (2) st(F) = 3 and \Y\ = 8, then the field L = F(yf^ï) is 
linked. 

Suppose now that L = F(>/—!) is linked. Then, from Elman and 
Lam [4], we see that 

u(L) < 8. 

Hence, from a theorem in [13], which asserts that u(L) = sst(F) if 
st(F) < oo and u(L) = oo if and only if st(F) = oo, we see that 

st(F) < 3. 

Since we already know that if st(Xp) < 2, then L = F(v^—Ï) is always 
linked, we will assume that st(F) = 3. 

First we show that Xp cannot be indecomposable unless \Xp\ — 8. 
Suppose that, contrary to our assumption, Xp is indecomposable and 
\Xp\ > 8. Then we can write 

Xp = Y xH, 
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where H ^ {1}. Since s t (A>) = s t (F) + log2 \H\ and s t ( A » = 3 we 
see that log2 \H\ <E {1,2 ,3} . If log2 \H\ = 3, then s t (F) = 0. Hence 
\X\ = 8. Thus we may assume that \H\ = 2 or 4. 

Case 1. | i / | = 2. We may assume that R(Y) C R(XF) and that 

F = F i U - - - U 7 s , 2 < 8 , 

is the decomposition of Y into its connected components. Since 
s t (F ) = 2, there exists i G { 1 , . . . , s} such that st(Yi) = 2. 

We may assume that z = 1. Since st(Fi) = 2 and Y\ is indecompos­
able we can write Y\ — Z\ x H\, where H\ is a 2-elementary group of 
rank 1 or rank 2. We may and will assume moreover that the rank of 
Hi is 1, since if the rank Hi is 2 then st(Zi) = 0, and we can write 

Y1=Z[xH[, 

where \Z[\ = 2 and \H[\ = 2. 

From Definition 5 we see that 

R1(XF) = R1(Y)(BH 

Ä 1 ( y ) = M © ( e j = 1 Ä 1 ( i r o ) 

(3) R2(XF) = dRi(Y)®R2(Y) 

R2{Y) = ®°=1R
2(Yi) 

R2(Yi) = a-Rl(Z1), 

where M is a 2-elementary abelian group of rank s — 1, a is the non-zero 
element of Hi and d is the non-zero element of H. 

Let, furthermore, b e R1(Zi) - {0} and e e Rl{Y2). Then, from (3) 
and Definition 4, we see that 

{0,d} = {zeR1(XF)\dz = 0} 

O^ab 

be = 0 = ac 

and the elements a, ò, c, d are linearly independent over Z /2Z . 
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We claim that the element ab + cd cannot be expressed as a product 
of two elements of Rl(XF). Indeed, suppose that we are wrong and 
that there exist elements v,w e Rl(XF) such that 

(4) ab + cd — vw. 

To show that (4) is impossible we shall construct a basis U of the 
vector space Rl(XF) such that {a,6,c,d} C U and the set {UiU2\U\, 
U2 € U}-{0} is a basis of the vector space R2(XF) over Z /2Z . Indeed, 
from (3), we see that we can find U inductively as follows: 

U = {d} U T, 

where T is a basis of the vector space RX(Y), 

T = rMUU; s
= 1T„ 

Ti =TnR1(Yi), 

TM = T n M. 

We shall assume that each element of Rl(Xp) is written in the basis 
U. Then we say that an element u G U enters the expression of 
Z £R1(XF) if and only if 

m 

2 = 1 

where Uj, G U and U{ ^ u for each i E { 1 , . . . , m}. Otherwise we say 
that an element u does not enter Z. 

From relation (4) we see that d enters the expression of either v or 
w. Suppose for example that 

v = d + A, AeR}(XF), 

and d does not enter the expression of A. Then we have 

w = c + B, B€R1(XF), 

and c does not enter the expression of B. From the equality vw = ab+cd 
we get 

ab = dB + cA + AB. 
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Thus 
dB = AB + ab + cA. 

If d does not enter the expression of B we see that d does not enter 
expression of the element AB + ab + cA. Thus dB = 0 and B = 0, too. 
Hence 

ab = cA. 

Since c does not enter the expression of ab and ab / 0 we see that 
equality ab = cA is impossible. 

Suppose now that d enters the expression of B. Then we can write 

B = d + C, 

where d does not enter the expression of C. Then we find ab = 
dC + cA + Ad + AC. 

Hence 
rf(C + A) = aft + cA + AC. 

As before we find that 
C + A = 0. 

(C + A cannot be d, since d does not enter the expressions of C and 
A.) Thus 

aò = cA, 

which is impossible. 

This proves that element ab -h cd cannot be written as u • w with 
u,w eRl(XF). 

Case 2. Xp = Z x H, \H\ = 4 and st(Z) = 1. Since we have already 
investigated the case \Xp\ = 8 and st(Xjr) = 3, we shall assume that 
\XF\ / 8. This means that \Z\ > 3. 

From Definition 5 we see that 

(5) Rl(XF) = Rl(Z)®H 

(6) R2(XF) = cR1(Z)®dR1(Z)®cdR°(Z), 

where {c, d} is the vector basis of H. 
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Since \Z\ > 3, there exist elements a, 6 G Rl(Z) linearly independent 
over Z /2Z. 

By a calculation completely analogous to the calculation in Case 1, 
we see that the element 

ac + bde R2(XF) 

cannot be written in the form v • w, where v &n w are elements of 
RX(XF). 

Thus we see that, in both Cases 1 and 2, the classes of quaternion 
algebras do not form a subgroup of the Brauer group Br (L). 

We now claim that if L is a linked field and Y is any connected 
component of the order space Xp with st(F) = 3, then |V| = 8. 

Indeed, if this were not true, there would exist a connected component 
Y of the order space Xp such that st(Y) = 3 and \Y\ > 8. According 
to the considerations above we know that there exists an element 
/ € R2(Y) such that / cannot be expressed as a product of two 
elements of the group Rl(Y). On the other hand, from the way R(X) 
is constructed from R(Z), where Z runs over all connected components 
of X,we see that any element of the group R2(Y) which is a product of 
two elements of the group Rl {Xp) is actually a product of two elements 
of the group Rl(Y). Thus we see that the element / € R2(Y) cannot 
be expressed as a product of two elements of the group R1(X). Since 
the additive group generated by products of two elements of the group 
Rx(Xp) is the group R2(Xp) we see that the set of products of two 
elements of the group Rl(Xp) does not form a group, a contradiction 
to the definition of linked field. 

This proves that if the field L = F(y/^i) is a linked field, then XF 

is a finite sum of order spaces Y such that st(F) < 2 or st(F) = 3 and 
|K| = 8. 

Since we have already proved that if Xp is a sum of order spaces Y 
as above, then L is a linked field; our proof is finished. D 

REMARK. It would be interesting to characterize all Pythagorean 
fields F such that F(>/--T) is linked. 

Note that if st(F) < 1, then H2(GF{^zjy2) = {0} and therefore 
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F(y/^î) is linked. Also if s t (F) > 4, then 2I3F ^ I4F and 

I4F(^Î) ~ I4F/2I3F / {0}. 

Thus st(F(y/^l)) > 4 and u(F(yf^\) > 16. Therefore, from [4], we 

see that F( \ /—Î) is not linked. 

It remains to investigate the cases s t (F) £ {2,3}. As far as I know 

this is still an open question. 
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