CLASSES OF QUATERNION ALGEBRAS IN THE BRAUER GROUP

JÁN MINÁČ

Elman and Lam investigated fields L such that the classes of quaternion algebras over L form a subgroup in the Brauer group Br (L) of the field L [4]. They made the following list of examples: L is a finite field, a local field, a global field, a field of transcendence degree ≤ 2 over \mathbf{C} , a field of transcendence degree 1 over \mathbf{R} , $\mathbf{C}((t_1))((t_2))((t_3))$, where K((t)) means the field of formal power series in t over the field K.

Elman and Lam found in their paper [4] that if L is a nonformally real field and the classes of quaternion algebras form a subgroup in the Brauer group Br(L), then

$$u(L) \in \{1, 2, 4, 8\}.$$

Here u means the so-called u-invariant of the field. (See [4], or [6; Chapter 11, Theorem 4.10]

DEFINITION 1. A field K is called *linked* if and only if the classes of quaternion algebras form a subgroup of the Brauer group Br (K). (See also Definition 4.3 in [2].)

In [3] it is proved that a formally real Pythagorean field F is linked if and only if F is SAP.

Our goal is to characterize all linked fields $L = F(\sqrt{-1})$, where F is formally real Pythagorean with finite chain length. This will generalize the sixth example above. We shall use the possibility to attach, to each order space X of finite chain length, some graded ring R(X), which will be described explicitly in Definition 4. The main motivation for the introduction of R(X) is given by Theorem 5 below.

We use standard notation such as can be found in [5, 6, and 8]. For the reader's convenience, we shall recall just a bit of it.

Received by the editors on June 2, 1987 and in revised form on October 8, 1987. Copyright ©1989 Rocky Mountain Mathematics Consortium

J. MINÁČ

By (X, D) we mean an order space, where D is a 2-elementary group and X is a closed subgroup of the group of characters x(D) of D. (See [8, 9].) The elements of X are called orderings. Sometimes instead of (X, D) we shall write only X.

F(2) is the maximal 2-extension of the field F,

 $G_F = \operatorname{Gal}(F(2)|F),$

 $h_i(G) = \dim_{\mathbb{Z}/2\mathbb{Z}} H^i(G,2)$

 $H^*(G,2)$ is the graded cohomology ring of the pro-2-group G with coefficients in $\mathbb{Z}/2\mathbb{Z}$,

 $\operatorname{cd} G$ is the cohomological dimension of G.

One of the basic notions in the theory of order spaces is the chain length. It was introduced by Marshall in the paper [10, Definition 1.1].

DEFINITION 2. (MARSHALL). The *chain length* of the order space (X, D) is the largest integer $k \ge 1$ such that there exists elements $a_0, a_1, \ldots, a_k \in D$ such that, for each $i \in \{1, \ldots, k\}$, we have

 ${x \in X | x(a_{i-1}) = 1} \subseteq {x \in X | x(a_i) = 1}.$

If no such k exists we define the chain length to be infinity.

Unless otherwise stated we always assume $\operatorname{cl}(X) < \infty$.

Craven seems to have been the first to recognize the importance of order spaces of finite chain length in the field case [1]. In [10] Marshall proved the following theorem.

THEOREM 3. (MARSHALL). Let X be an order space and suppose that $cl(X) < \infty$. Then X can be obtained from one element order spaces by using a finite number of direct sums and group extensions.

We now define R(X) by induction on cl(X). By $R^i(X)$, $i \in \mathbb{N} \cup \{0\}$, we denote the subgroup of R(X) consisting of elements of degree *i*.

DEFINITION 4. (A) If cl(X) = 1, then we define $R(X) = R^0(X) = \mathbb{Z}/2\mathbb{Z}$.

(B) Suppose that

$$(X,D) \simeq (X_1,D_1) \oplus \cdots \oplus (X_s,D_s)$$

is the decomposition of (X, D) into connected components. Then

I. $R^0(X) \simeq \mathbf{Z}/2\mathbf{Z}$.

II. $R^1(X) = R^1(X_1) \oplus \cdots \oplus R^1(X_s) \oplus S(X)$, where S(X) is an abelian group of rank s - 1 over $\mathbb{Z}/2\mathbb{Z}$.

III. $R^i(X) = R^i(X_1) \oplus \cdots \oplus R^i(X_s)$, for $i \ge 2$.

To define multiplication we view each $R(X_i)$, i = 1, ..., s, as naturally imbedded in R(X) and we set

$$a \in R(X_j), b \in R(X_i) \text{ with } i \neq j \Rightarrow ab = 0$$

 $c \in S(X), d \in R(X) \Rightarrow cd = 0.$

(C) Suppose that

$$(X,D) = (Y,E) \times H,$$

where H is a 2-elementary abelian group and (Y, E) is a decomposable order space. We define R(X) as follows.

Let $h_i, i \in I$, be a basis of the vector H over $\mathbb{Z}/2\mathbb{Z}$. We set

$$egin{aligned} R^0(X) &= \{0,1\} \ R^1(X) &= R^1(Y) \oplus H \ R^i(X) &= \oplus_{q_i} g_j R^{i-j}(Y), & i \geq 2, \end{aligned}$$

where J means a set consisting of j different elements of $\{h_i | i \in I\}$, $0 \le j \le i$, g_j means the formal product of elements of J, and if j = 0, then $J = \phi$ and $g_{\phi} = 1$. $g_j R^{i-j}(Y)$ and $R^{i-j}(Y)$ are isomorphic as abelian groups.

Then multiplication is defined by the formulas

$$g_R a \cdot g_T b = g_R g_T a b,$$

where g_R, g_T are products of r and t different elements of $\{h_i | i \in I\}$, respectively, $a \in R^m(X)$, $b \in R^n(X)$ for some $m, n \in N$. If there exists $h_i, i \in I$, such that h_i divides both g_R and g_T then we put $g_R g_T = 0$. The product ab is defined inductively in R(Y). EXAMPLES. (1) Suppose that

$$X = X_1 \oplus \cdots \oplus X_s, \quad 2 \le s,$$

where $|X_1| = \cdots = |X_s| = 1$. Then

$$R^{0}(X) \simeq \mathbf{Z} / 2\mathbf{Z},$$

 $R^{1}(X) \simeq (\mathbf{Z} / 2\mathbf{Z})^{(s-1)},$
 $R^{i}(X) = \{0\} \text{ for } i \ge 2.$

(2) Suppose that

$$X = Y \times H,$$

where |Y| = 2 and |H| = 4. Let $\{a, b\}$ be a basis of H over the field $\mathbb{Z}/2\mathbb{Z}$. From example (1) we see that $R^0(Y) \simeq \mathbb{Z}/2\mathbb{Z} = \{0, 1, \}$ and $R^1(Y) \simeq \mathbb{Z}/2\mathbb{Z} = \{0, c\}$. Thus, from Definition 5, we see that

$$\begin{aligned} R^{0}(X) &= \{0, 1\} \\ R^{1}(X) &= \{a, b, c, a + b, a + c, b + c, a + b + c, 0\} \\ R^{2}(X) &= \{ac, bc, ab, ac + bc, bc + ab, ac + ab, ac + bc + ab, 0\} \\ R^{3}(X) &= \{abc, 0\} \\ R^{i}(X) &= \{0\} \quad \text{for} \quad i \geq 4. \end{aligned}$$

Thus we see that R(X) is isomorphic to $\mathbb{Z}/2\mathbb{Z}[A, B, C]/(A^2, B^2, C^2)$, where $\mathbb{Z}/2\mathbb{Z}[A, B, C]$ means a polynomial ring over the field $\mathbb{Z}/2\mathbb{Z}$ with indeterminates A, B, C and (A^2, B^2, C^2) is the ideal generated by A^2, B^2, C^2 .

THEOREM 5. (See [5, 14, 16].) Let F be a Pythagorean field with order space X_F of finite chain length. Then

(1)
$$H^*(G_{F(\sqrt{-1})}, 2) \simeq R(X),$$

where, by isomorphism, we mean isomorphism of graded rings.

REMARK. Craven proved that, for each order space X of finite chain length, there exists a Pythagorean field F such that $X_F \simeq X$ [1].

822

On the other hand it was observed in [12] that if X is an order space of finite chain length and F_1 and F_2 are formally real Pythagorean fields with $X_{F_1} \simeq X \simeq X_{F_2}$, then $G_{F_1} \simeq G_{F_2}$ and $G_{F_1(\sqrt{-1})} \simeq G_{F_2(\sqrt{-1})}$. Thus also $H^*(G_{F_1(\sqrt{-1})}, 2) \simeq H^*(G_{F_2(\sqrt{-1})}, 2)$. Hence we see that R(X) is well defined by formula (1) in Theorem 5. Our Definition 4 tells us how to compute R(X) directly from X.

Finally we can write our theorem.

THEOREM 6. Let $L = F(\sqrt{-1})$, where F is a formally real Pythagorean field with $cl(F) < \infty$.

Then L is linked if and only if X_F can be written as a finite sum of order spaces Y of the following type:

- $(1) \,\operatorname{st}\,(Y) \leq 2$
- (2) st (Y) = 3 and |Y| = 8.

PROOF. It is well known that Br $(L)_2$ can be identified with $H^2(G_L, 2)$, by sending $[(\frac{a,b}{L})] \in \text{Br}_2(Z)$ to $(a) \cup (b) \in H^2(G_L, 2)$. Here (a), (b) are elements of $H^1(G_L, 2)$ which correspond to $a, b \in \dot{L}$ respectively. \cup means cup product.

From Theorem 5 we see that $H^2(G_L, 2)$ is additively generated by cup products of elements of the ring $H^1(G_L, 2)$. (From Merkurjev's Theorem we know that this is true for every field M with char $M \neq 2$.) Thus L is linked if and only if each element of $H^2(G_L, 2)$ is a cup product of two elements of $H^1(G_L, 2)$. Since $H^*(G_L, 2) \simeq R(X_F)$, it is enough to investigate when each element of $R^2(X_F)$ is the product of two elements of $R^1(X_F)$.

(1) Suppose first that $st(X_F) \leq 1$. If $st(X_F) = 0$, then $|X_F| = 1$. Then, from Definition 5, we see that

$$R(X_F) \simeq \mathbf{Z}/2\mathbf{Z} = R^0(X_F).$$

In particular $R^2(X_F) = \{0\}.$

If st $(X_F) = 1$, then from Example 1, we see that $R^2(X_F) = \{0\}$. Therefore $L = F(\sqrt{-1})$ is linked.

(2) Suppose that st $(X_F) = 2$ and

$$X_F = X_1 \cup \cdots \cup X_s,$$

J. MINÁČ

is the decomposition of X_F into connected components. We may assume that there exists $c \in N, c \leq s$, such that

$$st(X_i) = 2 \quad \text{for } 1 \le i \le c$$

$$st(X_i) = 0 \quad \text{for } c+1 \le i \le s (\text{ if } c < s).$$

(Recall that if st(Y) = 1, then Y is a sum of one element order spaces $Y_j, 1 \le j \le m$. Thus $st(Y_j) = 0$ for each $j \in \{1, \ldots, m\}$.)

By definition, part (1), we see that

$$R^2(X_F) = \bigoplus_{i=1}^c R^2(X_i).$$

Let $1 \leq i \leq c$. Then X_i is an indecomposable order space. Thus

$$X_i \simeq Z_i \times H_i,$$

where st $(Z_i) = 1$ and $|H_i| = 2$. From Definition 4, we see that

$$R^1(X_i) = R^1(Z_i) \oplus H_i$$
$$R^2(X_i) = A_i R^1(Z_i),$$

where A_i is the non-zero element of H_i . From Definiton 4 we see that $A_i^2 = 0$. Thus we can write

$$R^{2}(X_{i}) = \{A_{i}B_{i} | B_{i} \in R^{1}(X_{i})\}.$$

Moreover, from the definition of multiplication in Definition 4, we see that, for any $B_i \in R^1(X_i), i = 1, ..., c$, we have

(2)
$$A_1B_1 + \dots + A_cB_c = (A_1 + \dots + A_c)(B_1 + \dots + B_c).$$

Thus we see that every element of $R^2(X_F)$ is a product of two elements of $R^1(X_F)$.

(3) Suppose that $st(X_F) = 3$ and $|X_F| = 8$. Then there exist elements $A, B, C \in R^1(X_F)$ such that

$$R(X_F) = \mathbf{Z}/2\mathbf{Z}[A, B, C]/(A^2, B^2, C^2),$$

where $\mathbf{Z}/2\mathbf{Z}[A, B, C]$ means the polynomial ring in A, B, C over $\mathbf{Z}/2\mathbf{Z}$ and (A^2, B^2, C^2) means the ideal generated by A^2, B^2 and C^2 (see Example 2). Hence

$$R^{2}(X_{F}) = \{AB, AC, BC, A(B+C), (A+B)C, B(A+C), (A+B)(B+C), 0\}.$$

Thus again we see that every element of $R^2(X_F)$ is a product of two elements of $R^1(X_F)$.

(4) Suppose that X_F is a finite sum $\bigoplus_{i=1}^{d} Y_i$ of order spaces $Y_i, i = 1, \ldots, d$ of type (1) or (2) described in our theorem. Then

$$R^2(X_F) = \bigoplus_{i=1}^d R^2(Y_i).$$

On the other hand we see from (1), (2), and (3) that, for each $i \in \{1, \ldots, d\}$, every element C_i of $R^2(Y_i)$ can be written in the form $A_i B_i$ where $A_i, B_i \in R^1(Y_i)$. Thus any element of $R^2(X_F)$ can be written as

$$A_1B_1 + \dots + A_nB_n = (A_1 + \dots + A_n)(B_1 + \dots + B_n),$$

where $A_i, B_i \in R^1(X_i)$ for each $i \in \{1, \ldots, d\}$. Thus we see that if X_F can be written as a finite sum of order spaces Y of the type (1) $\operatorname{st}(Y) \leq 2$ or (2) $\operatorname{st}(Y) = 3$ and |Y| = 8, then the field $L = F(\sqrt{-1})$ is linked.

Suppose now that $L = F(\sqrt{-1})$ is linked. Then, from Elman and Lam [4], we see that

$$u(L) \leq 8.$$

Hence, from a theorem in [13], which asserts that $u(L) = s^{\operatorname{st}(F)}$ if $\operatorname{st}(F) < \infty$ and $u(L) = \infty$ if and only if $\operatorname{st}(F) = \infty$, we see that

$$\operatorname{st}(F) \leq 3.$$

Since we already know that if $st(X_F) \leq 2$, then $L = F(\sqrt{-1})$ is always linked, we will assume that st(F) = 3.

First we show that X_F cannot be indecomposable unless $|X_F| = 8$. Suppose that, contrary to our assumption, X_F is indecomposable and $|X_F| > 8$. Then we can write

$$X_F = Y \times H,$$

J. MINÁČ

where $H \neq \{1\}$. Since $\operatorname{st}(X_F) = \operatorname{st}(Y) + \log_2 |H|$ and $\operatorname{st}(X_F) = 3$ we see that $\log_2 |H| \in \{1, 2, 3\}$. If $\log_2 |H| = 3$, then $\operatorname{st}(Y) = 0$. Hence |X| = 8. Thus we may assume that |H| = 2 or 4.

Case 1. |H| = 2. We may assume that $R(Y) \subset R(X_F)$ and that

$$Y = Y_1 \cup \dots \cup Y_s, \quad 2 \le s,$$

is the decomposition of Y into its connected components. Since st(Y) = 2, there exists $i \in \{1, ..., s\}$ such that $st(Y_i) = 2$.

We may assume that i = 1. Since $st(Y_1) = 2$ and Y_1 is indecomposable we can write $Y_1 = Z_1 \times H_1$, where H_1 is a 2-elementary group of rank 1 or rank 2. We may and will assume moreover that the rank of H_1 is 1, since if the rank H_1 is 2 then $st(Z_1) = 0$, and we can write

$$Y_1 = Z_1' \times H_1',$$

where $|Z'_1| = 2$ and $|H'_1| = 2$.

From Definition 5 we see that

(3)

$$R^{1}(X_{F}) = R^{1}(Y) \oplus H$$

$$R^{1}(Y) = M \oplus \left(\bigoplus_{i=1}^{s} R^{1}(Y_{i}) \right)$$

$$R^{2}(X_{F}) = dR^{1}(Y) \oplus R^{2}(Y)$$

$$R^{2}(Y) = \bigoplus_{i=1}^{s} R^{2}(Y_{i})$$

$$R^{2}(Y_{1}) = a \cdot R^{1}(Z_{1}),$$

where M is a 2-elementary abelian group of rank s-1, a is the non-zero element of H_1 and d is the non-zero element of H.

Let, furthermore, $b \in R^1(Z_1) - \{0\}$ and $c \in R^1(Y_2)$. Then, from (3) and Definition 4, we see that

$$\{0,d\} = \{z \in R^1(X_F) | dz = 0\}$$
$$0 \neq ab$$
$$bc = 0 = ac$$

and the elements a, b, c, d are linearly independent over $\mathbf{Z}/2\mathbf{Z}$.

We claim that the element ab + cd cannot be expressed as a product of two elements of $R^1(X_F)$. Indeed, suppose that we are wrong and that there exist elements $v, w \in R^1(X_F)$ such that

$$(4) ab+cd=vw.$$

To show that (4) is impossible we shall construct a basis U of the vector space $R^1(X_F)$ such that $\{a, b, c, d\} \subset U$ and the set $\{U_1U_2|U_1, U_2 \in U\} - \{0\}$ is a basis of the vector space $R^2(X_F)$ over $\mathbb{Z}/2\mathbb{Z}$. Indeed, from (3), we see that we can find U inductively as follows:

$$U = \{d\} \cup T,$$

where T is a basis of the vector space $R^1(Y)$,

$$T = T_M \cup \bigcup_{i=1}^s T_i;$$

$$T_i = T \cap R^1(Y_i),$$

$$T_M = T \cap M.$$

We shall assume that each element of $R^1(X_F)$ is written in the basis U. Then we say that an element $u \in U$ enters the expression of $Z \in R^1(X_F)$ if and only if

$$Z = u + \sum_{i=1}^m u_i,$$

where $u_i \in U$ and $u_i \neq u$ for each $i \in \{1, \ldots, m\}$. Otherwise we say that an element u does not enter Z.

From relation (4) we see that d enters the expression of either v or w. Suppose for example that

$$v = d + A, \quad A \in R^1(X_F),$$

and d does not enter the expression of A. Then we have

$$w = c + B, \quad B \in R^1(X_F),$$

and c does not enter the expression of B. From the equality vw = ab+cdwe get

$$ab = dB + cA + AB.$$

Thus

$$dB = AB + ab + cA.$$

If d does not enter the expression of B we see that d does not enter expression of the element AB + ab + cA. Thus dB = 0 and B = 0, too. Hence

$$ab = cA$$
.

Since c does not enter the expression of ab and $ab \neq 0$ we see that equality ab = cA is impossible.

Suppose now that d enters the expression of B. Then we can write

$$B = d + C,$$

where d does not enter the expression of C. Then we find ab = dC + cA + Ad + AC.

Hence

$$d(C+A) = ab + cA + AC$$

As before we find that

$$C + A = 0.$$

(C + A cannot be d, since d does not enter the expressions of C and A.) Thus

$$ab = cA$$
,

which is impossible.

This proves that element ab + cd cannot be written as $u \cdot w$ with $u, w \in R^1(X_F)$.

Case 2. $X_F = Z \times H$, |H| = 4 and $\operatorname{st}(Z) = 1$. Since we have already investigated the case $|X_F| = 8$ and $\operatorname{st}(X_F) = 3$, we shall assume that $|X_F| \neq 8$. This means that $|Z| \geq 3$.

From Definition 5 we see that

(5)
$$R^1(X_F) = R^1(Z) \oplus H$$

(6)
$$R^2(X_F) = cR^1(Z) \oplus dR^1(Z) \oplus cdR^0(Z),$$

where $\{c, d\}$ is the vector basis of H.

828

Since $|Z| \ge 3$, there exist elements $a, b \in R^1(Z)$ linearly independent over $\mathbb{Z}/2\mathbb{Z}$.

By a calculation completely analogous to the calculation in Case 1, we see that the element

$$ac + bd \in R^2(X_F)$$

cannot be written in the form $v \cdot w$, where v an w are elements of $R^1(X_F)$.

Thus we see that, in both Cases 1 and 2, the classes of quaternion algebras do not form a subgroup of the Brauer group Br(L).

We now claim that if L is a linked field and Y is any connected component of the order space X_F with st(Y) = 3, then |Y| = 8.

Indeed, if this were not true, there would exist a connected component Y of the order space X_F such that $\operatorname{st}(Y) = 3$ and |Y| > 8. According to the considerations above we know that there exists an element $f \in R^2(Y)$ such that f cannot be expressed as a product of two elements of the group $R^1(Y)$. On the other hand, from the way R(X) is constructed from R(Z), where Z runs over all connected components of X, we see that any element of the group $R^2(Y)$ which is a product of two elements of the group $R^1(X_F)$ is actually a product of two elements of the group $R^1(Y)$. Thus we see that the element $f \in R^2(Y)$ cannot be expressed as a product of two elements of the group $R^1(X)$. Since the additive group generated by products of two elements of the group $R^1(X_F)$ is the group $R^2(X_F)$ we see that the set of products of two elements of two elements of the group $R^1(X_F)$ does not form a group, a contradiction to the definition of linked field.

This proves that if the field $L = F(\sqrt{-1})$ is a linked field, then X_F is a finite sum of order spaces Y such that $st(Y) \le 2$ or st(Y) = 3 and |Y| = 8.

Since we have already proved that if X_F is a sum of order spaces Y as above, then L is a linked field; our proof is finished. \Box

REMARK. It would be interesting to characterize all Pythagorean fields F such that $F(\sqrt{-1})$ is linked.

Note that if $st(F) \leq 1$, then $H^2(G_{F(\sqrt{-1})}, 2) = \{0\}$ and therefore

 $F(\sqrt{-1})$ is linked. Also if $st(F) \ge 4$, then $2I^3F \ne I^4F$ and

$$I^4F(\sqrt{-1}) \simeq I^4F/2I^3F \neq \{0\}.$$

Thus st $(F(\sqrt{-1})) \ge 4$ and $u(F(\sqrt{-1}) \ge 16$. Therefore, from [4], we see that $F(\sqrt{-1})$ is not linked.

It remains to investigate the cases $st(F) \in \{2,3\}$. As far as I know this is still an open question.

Acknowledgements. I am grateful to Michel Spira, Professors B. Jacob, T.Y. Lam, P. Ribenboim, T.M. Viswanathan, and to the referee for their suggestions and improvement of exposition. I also happily acknowledge the excellent working conditions at the Mathematical Science Research Institute at Berkeley.

REFERENCES

1. T. Craven, Characterizing reduced Witt rings, J. Algebra 53 (1978), 68-77.

2. R. Elman, *Quadratic forms and the u-invariant* III, Conference on quadratic forms 1976, Queen's Papers in Pure and Applied Math. No. 46 (1977), 422-444.

3. ——— and T.Y. Lam, Quadratic forms over formally real fields and Pythagorean fields, Amer. J. Math. **94** (1972), 1155-1194.

4. — and — , *Quadratic forms and the u-invariant* II, Invent. Math. **21** (1973), 125-137.

5. B. Jacob, On the structure of Pythagorean fields, J. Algebra 68 (1981), 247-267.

6. T.Y. Lam, The Algebraic Theory of Quadratic Forms, W.A. Benjamin, Reading, Mass. (2nd Printing with Revisions: 1980).

7. ———, Orderings, Valuations and Quadratic Forms, CBMS, Vol. 52 Amer. Math. Soc (1983).

8. M. Marshall, The Witt ring of a space of orderings, Trans. A.M.S. 258 (1980) 505-521.

9. ——, Classification of finite spaces of orderings, Canad. J. Math. XXXI (1979), 320-330.

10. ——, Spaces of orderings IV, Canad. J. Math. XXXII (1980), 603-627.

11. J. Mináč, Stability and cohomological dimension, C.R. Math. Rep. Acad. Sci., Canada VIII (1980), 13-18.

12. ——, Galois groups of some 2-extensions of ordered fields, C.R. Math. Rep. Acad. Sci., Canada VIII (1980), 103-108. Corrigendum VIII (1986), 261.

13. ——, The u-invariant and stability index, C.R. Math. Rep. Sci. Canada. IX (1987), 167-171.

14. ——, Cohomology rings and spaces of orderings, in preparation.
15. ——, Galois groups, order spaces and valuations, Thesis, Queen's University, Kingston, Ontario, Canada, May, 1986.

16. A. Wadsworth, p-Henselian fields: K-theory, Galois cohomology and graded Witt rings, Pacific J. Math. 105 (1983), 473-495.

MATHEMATICAL SCIENCES RESEARCH INSTITUTE, 1000 CENTENNIAL DRIVE, BERKELEY, CA 94720

Current address: UNIVERSITY OF WESTERN ONTARIO, DEPARTMENT OF MATH-EMATICS, MIDDLESEX, COLLEGE, LONDON, ONTARIO, CANADA N6A 5B7