CLASSES OF QUATERNION ALGEBRAS IN THE BRAUER GROUP

JÁN MINÁČ

Elman and Lam investigated fields L such that the classes of quaternion algebras over L form a subgroup in the Brauer group $\operatorname{Br}(L)$ of the field $L[4]$. They made the following list of examples: L is a finite field, a local field, a global field, a field of transcendence degree ≤ 2 over \mathbf{C}, a field of transcendence degree 1 over $\mathbf{R}, \mathbf{C}\left(\left(t_{1}\right)\right)\left(\left(t_{2}\right)\right)\left(\left(t_{3}\right)\right)$, where $K((t))$ means the field of formal power series in t over the field K.

Elman and Lam found in their paper [4] that if L is a nonformally real field and the classes of quaternion algebras form a subgroup in the Brauer group $\operatorname{Br}(L)$, then

$$
u(L) \in\{1,2,4,8\} .
$$

Here u means the so-called u-invariant of the field. (See [4], or [6; Chapter 11, Theorem 4.10]

DEfinition 1. A field K is called linked if and only if the classes of quaternion algebras form a subgroup of the Brauer group $\operatorname{Br}(K)$. (See also Definition 4.3 in [2].)

In [3] it is proved that a formally real Pythagorean field F is linked if and only if F is SAP.

Our goal is to characterize all linked fields $L=F(\sqrt{-1})$, where F is formally real Pythagorean with finite chain length. This will generalize the sixth example above. We shall use the possibility to attach, to each order space X of finite chain length, some graded ring $R(X)$, which will be described explicitly in Definition 4. The main motivation for the introduction of $R(X)$ is given by Theorem 5 below.

We use standard notation such as can be found in [5, 6, and 8]. For the reader's convenience, we shall recall just a bit of it.

By (X, D) we mean an order space, where D is a 2 -elementary group and X is a closed subgroup of the group of characters $x(D)$ of D. (See $[\mathbf{8}, \mathbf{9}]$.) The elements of X are called orderings. Sometimes instead of (X, D) we shall write only X.
$F(2)$ is the maximal 2-extension of the field F,
$G_{F}=\operatorname{Gal}(F(2) \mid F)$,
$h_{i}(G)=\operatorname{dim}_{\mathbf{Z} / 2 \mathbf{Z}} H^{i}(G, 2)$
$H^{*}(G, 2)$ is the graded cohomology ring of the pro-2-group G with coefficients in $\mathbf{Z} / 2 \mathbf{Z}$,
$\operatorname{cd} G$ is the cohomological dimension of G.
One of the basic notions in the theory of order spaces is the chain length. It was introduced by Marshall in the paper [10, Definition 1.1].

DEFINITION 2. (MARSHALL). The chain length of the order space (X, D) is the largest integer $k \geq 1$ such that there exists elements $a_{0}, a_{1}, \ldots, a_{k} \in D$ such that, for each $i \in\{1, \ldots, k\}$, we have

$$
\left\{x \in X \mid x\left(a_{i-1}\right)=1\right\} \subsetneq\left\{x \in X \mid x\left(a_{i}\right)=1\right\}
$$

If no such k exists we define the chain length to be infinity.

Unless otherwise stated we always assume $\mathrm{cl}(X)<\infty$.
Craven seems to have been the first to recognize the importance of order spaces of finite chain length in the field case [1]. In [10] Marshall proved the following theorem.

Theorem 3. (MARSHALL). Let X be an order space and suppose that $\operatorname{cl}(X)<\infty$. Then X can be obtained from one element order spaces by using a finite number of direct sums and group extensions.

We now define $R(X)$ by induction on $\operatorname{cl}(X)$. By $R^{i}(X), i \in \mathbf{N} \cup\{0\}$, we denote the subgroup of $R(X)$ consisting of elements of degree i.

Definition 4. (A) If $\operatorname{cl}(X)=1$, then we define $R(X)=R^{0}(X)=$ Z $/ 2 \mathbf{Z}$.
(B) Suppose that

$$
(X, D) \simeq\left(X_{1}, D_{1}\right) \oplus \cdots \oplus\left(X_{s}, D_{s}\right)
$$

is the decomposition of (X, D) into connected components. Then
I. $R^{0}(X) \simeq \mathbf{Z} / 2 \mathbf{Z}$.
II. $R^{1}(X)=R^{1}\left(X_{1}\right) \oplus \cdots \oplus R^{1}\left(X_{s}\right) \oplus S(X)$, where $S(X)$ is an abelian group of rank $s-1$ over $\mathbf{Z} / 2 \mathbf{Z}$.
III. $R^{i}(X)=R^{i}\left(X_{1}\right) \oplus \cdots \oplus R^{i}\left(X_{s}\right)$, for $i \geq 2$.

To define multiplication we view each $R\left(X_{i}\right), i=1, \ldots, s$, as naturally imbedded in $R(X)$ and we set

$$
\begin{aligned}
& a \in R\left(X_{j}\right), \quad b \in R\left(X_{i}\right) \text { with } i \neq j \Rightarrow a b=0 \\
& c \in S(X), \quad d \in R(X) \Rightarrow \mathrm{cd}=0
\end{aligned}
$$

(C) Suppose that

$$
(X, D)=(Y, E) \times H
$$

where H is a 2-elementary abelian group and (Y, E) is a decomposable order space. We define $R(X)$ as follows.
Let $h_{i}, i \in I$, be a basis of the vector H over $\mathbf{Z} / 2 \mathbf{Z}$. We set

$$
\begin{aligned}
R^{0}(X) & =\{0,1\} \\
R^{1}(X) & =R^{1}(Y) \oplus H \\
R^{i}(X) & =\oplus_{g_{j}} g_{j} R^{i-j}(Y), \quad i \geq 2
\end{aligned}
$$

where J means a set consisting of j different elements of $\left\{h_{i} \mid i \in I\right\}$, $0 \leq j \leq i, g_{j}$ means the formal product of elements of J, and if $j=0$, then $J=\phi$ and $g_{\phi}=1 . g_{j} R^{i-j}(Y)$ and $R^{i-j}(Y)$ are isomorphic as abelian groups.
Then multiplication is defined by the formulas

$$
g_{R} a \cdot g_{T} b=g_{R} g_{T} a b
$$

where g_{R}, g_{T} are products of r and t different elements of $\left\{h_{i} \mid i \in I\right\}$, respectively, $a \in R^{m}(X), b \in R^{n}(X)$ for some $m, n \in N$. If there exists $h_{i}, i \in I$, such that h_{i} divides both g_{R} and g_{T} then we put $g_{R} g_{T}=0$. The product $a b$ is defined inductively in $R(Y)$.

Examples. (1) Suppose that

$$
X=X_{1} \oplus \cdots \oplus X_{s}, \quad 2 \leq s
$$

where $\left|X_{1}\right|=\cdots=\left|X_{s}\right|=1$. Then

$$
\begin{aligned}
R^{0}(X) & \simeq \mathbf{Z} / 2 \mathbf{Z} \\
R^{1}(X) & \simeq(\mathbf{Z} / 2 \mathbf{Z})^{(s-1)} \\
R^{i}(X) & =\{0\} \text { for } i \geq 2
\end{aligned}
$$

(2) Suppose that

$$
X=Y \times H
$$

where $|Y|=2$ and $|H|=4$. Let $\{a, b\}$ be a basis of H over the field $\mathbf{Z} / 2 \mathbf{Z}$. From example (1) we see that $R^{0}(Y) \simeq \mathbf{Z} / 2 \mathbf{Z}=\{0,1$,$\} and$ $R^{1}(Y) \simeq \mathbf{Z} / 2 \mathbf{Z}=\{0, c\}$. Thus, from Definition 5 , we see that

$$
\begin{aligned}
& R^{0}(X)=\{0,1\} \\
& R^{1}(X)=\{a, b, c, a+b, a+c, b+c, a+b+c, 0\} \\
& R^{2}(X)=\{a c, b c, a b, a c+b c, b c+a b, a c+a b, a c+b c+a b, 0\} \\
& R^{3}(X)=\{a b c, 0\} \\
& R^{i}(X)=\{0\} \text { for } \quad i \geq 4 .
\end{aligned}
$$

Thus we see that $R(X)$ is isomorphic to $\mathbf{Z} / 2 \mathbf{Z}[A, B, C] /\left(A^{2}, B^{2}, C^{2}\right)$, where $\mathbf{Z} / 2 \mathbf{Z}[A, B, C]$ means a polynomial ring over the field $\mathbf{Z} / 2 \mathbf{Z}$ with indeterminates A, B, C and $\left(A^{2}, B^{2}, C^{2}\right)$ is the ideal generated by A^{2}, B^{2}, C^{2}.

Theorem 5. (See $[\mathbf{5}, \mathbf{1 4}, \mathbf{1 6}]$.) Let F be a Pythagorean field with order space X_{F} of finite chain length. Then

$$
\begin{equation*}
H^{*}\left(G_{F(\sqrt{-1})}, 2\right) \simeq R(X) \tag{1}
\end{equation*}
$$

where, by isomorphism, we mean isomorphism of graded rings.

REmark. Craven proved that, for each order space X of finite chain length, there exists a Pythagorean field F such that $X_{F} \simeq X[1]$.

On the other hand it was observed in [12] that if X is an order space of finite chain length and F_{1} and F_{2} are formally real Pythagorean fields with $X_{F_{1}} \simeq X \simeq X_{F_{2}}$, then $G_{F_{1}} \simeq G_{F_{2}}$ and $G_{F_{1}(\sqrt{-1})} \simeq G_{F_{2}(\sqrt{-1})}$. Thus also $H^{*}\left(G_{F_{1}(\sqrt{-1})}, 2\right) \simeq H^{*}\left(G_{F_{2}(\sqrt{-1})}, 2\right)$. Hence we see that $R(X)$ is well defined by formula (1) in Theorem 5. Our Definition 4 tells us how to compute $R(X)$ directly from X.
Finally we can write our theorem.

THEOREM 6. Let $L=F(\sqrt{-1})$, where F is a formally real Pythagorean field with $\mathrm{cl}(F)<\infty$.

Then L is linked if and only if X_{F} can be written as a finite sum of order spaces Y of the following type:
(1) $\operatorname{st}(Y) \leq 2$
(2) st $(Y)=3$ and $|Y|=8$.

Proof. It is well known that $\operatorname{Br}(L)_{2}$ can be identified with $H^{2}\left(G_{L}, 2\right)$, by sending $\left[\left(\frac{a, b}{L}\right)\right] \in \operatorname{Br}_{2}(Z)$ to $(a) \cup(b) \in H^{2}\left(G_{L}, 2\right)$. Here (a), (b) are elements of $H^{1}\left(G_{L}, 2\right)$ which correspond to $a, b \in \dot{L}$ respectively. \cup means cup product.

From Theorem 5 we see that $H^{2}\left(G_{L}, 2\right)$ is additively generated by cup products of elements of the ring $H^{1}\left(G_{L}, 2\right)$. (From Merkurjev's Theorem we know that this is true for every field M with char $M \neq 2$.) Thus L is linked if and only if each element of $H^{2}\left(G_{L}, 2\right)$ is a cup product of two elements of $H^{1}\left(G_{L}, 2\right)$. Since $H^{*}\left(G_{L}, 2\right) \simeq R\left(X_{F}\right)$, it is enough to investigate when each element of $R^{2}\left(X_{F}\right)$ is the product of two elements of $R^{1}\left(X_{F}\right)$.
(1) Suppose first that $\operatorname{st}\left(X_{F}\right) \leq 1$. If $\operatorname{st}\left(X_{F}\right)=0$, then $\left|X_{F}\right|=1$. Then, from Definition 5, we see that

$$
R\left(X_{F}\right) \simeq \mathbf{Z} / 2 \mathbf{Z}=R^{0}\left(X_{F}\right)
$$

In particular $R^{2}\left(X_{F}\right)=\{0\}$.
If st $\left(X_{F}\right)=1$, then from Example 1 , we see that $R^{2}\left(X_{F}\right)=\{0\}$. Therefore $L=F(\sqrt{-1})$ is linked.
(2) Suppose that st $\left(X_{F}\right)=2$ and

$$
X_{F}=X_{1} \cup \cdots \cup X_{s}
$$

is the decomposition of X_{F} into connected components. We may assume that there exists $c \in N, c \leq s$, such that

$$
\begin{array}{ll}
\operatorname{st}\left(X_{i}\right)=2 & \text { for } 1 \leq i \leq c \\
\operatorname{st}\left(X_{i}\right)=0 & \text { for } c+1 \leq i \leq s(\text { if } c<s)
\end{array}
$$

(Recall that if $\operatorname{st}(Y)=1$, then Y is a sum of one element order spaces $Y_{j}, 1 \leq j \leq m$. Thus $\operatorname{st}\left(Y_{j}\right)=0$ for each $j \in\{1, \ldots, m\}$.)
By definition, part (1), we see that

$$
R^{2}\left(X_{F}\right)=\oplus_{i=1}^{c} R^{2}\left(X_{i}\right)
$$

Let $1 \leq i \leq c$. Then X_{i} is an indecomposable order space. Thus

$$
X_{i} \simeq Z_{i} \times H_{i}
$$

where st $\left(Z_{i}\right)=1$ and $\left|H_{i}\right|=2$. From Definition 4, we see that

$$
\begin{aligned}
& R^{1}\left(X_{i}\right)=R^{1}\left(Z_{i}\right) \oplus H_{i} \\
& R^{2}\left(X_{i}\right)=A_{i} R^{1}\left(Z_{i}\right)
\end{aligned}
$$

where A_{i} is the non-zero element of H_{i}. From Defintion 4 we see that $A_{i}^{2}=0$. Thus we can write

$$
R^{2}\left(X_{i}\right)=\left\{A_{i} B_{i} \mid B_{i} \in R^{1}\left(X_{i}\right)\right\}
$$

Moreover, from the definition of multiplication in Definition 4, we see that, for any $B_{i} \in R^{1}\left(X_{i}\right), i=1, \ldots, c$, we have

$$
\begin{equation*}
A_{1} B_{1}+\cdots+A_{c} B_{c}=\left(A_{1}+\cdots+A_{c}\right)\left(B_{1}+\cdots+B_{c}\right) \tag{2}
\end{equation*}
$$

Thus we see that every element of $R^{2}\left(X_{F}\right)$ is a product of two elements of $R^{1}\left(X_{F}\right)$.
(3) Suppose that $\operatorname{st}\left(X_{F}\right)=3$ and $\left|X_{F}\right|=8$. Then there exist elements $A, B, C \in R^{1}\left(X_{F}\right)$ such that

$$
R\left(X_{F}\right)=\mathbf{Z} / 2 \mathbf{Z}[A, B, C] /\left(A^{2}, B^{2}, C^{2}\right)
$$

where $\mathbf{Z} / 2 \mathbf{Z}[A, B, C]$ means the polynomial ring in A, B, C over $\mathbf{Z} / 2 \mathbf{Z}$ and $\left(A^{2}, B^{2}, C^{2}\right)$ means the ideal generated by A^{2}, B^{2} and C^{2} (see Example 2). Hence

$$
\begin{aligned}
& R^{2}\left(X_{F}\right) \\
& =\{A B, A C, B C, A(B+C),(A+B) C, B(A+C),(A+B)(B+C), 0\}
\end{aligned}
$$

Thus again we see that every element of $R^{2}\left(X_{F}\right)$ is a product of two elements of $R^{1}\left(X_{F}\right)$.
(4) Suppose that X_{F} is a finite sum $\oplus_{i=1}^{d} Y_{i}$ of order spaces $Y_{i}, i=$ $1, \ldots, d$ of type (1) or (2) described in our theorem. Then

$$
R^{2}\left(X_{F}\right)=\oplus_{i=1}^{d} R^{2}\left(Y_{i}\right)
$$

On the other hand we see from (1), (2), and (3) that, for each $i \in\{1, \ldots, d\}$, every element C_{i} of $R^{2}\left(Y_{i}\right)$ can be written in the form $A_{i} B_{i}$ where $A_{i}, B_{i} \in R^{1}\left(Y_{i}\right)$. Thus any element of $R^{2}\left(X_{F}\right)$ can be written as

$$
A_{1} B_{1}+\cdots+A_{n} B_{n}=\left(A_{1}+\cdots+A_{n}\right)\left(B_{1}+\cdots+B_{n}\right),
$$

where $A_{i}, B_{i} \in R^{1}\left(X_{i}\right)$ for each $i \in\{1, \ldots, d\}$. Thus we see that if X_{F} can be written as a finite sum of order spaces Y of the type (1) $\operatorname{st}(Y) \leq 2$ or $(2) \operatorname{st}(Y)=3$ and $|Y|=8$, then the field $L=F(\sqrt{-1})$ is linked.

Suppose now that $L=F(\sqrt{-1})$ is linked. Then, from Elman and Lam [4], we see that

$$
u(L) \leq 8
$$

Hence, from a theorem in [13], which asserts that $u(L)=s^{\mathrm{st}(F)}$ if $\operatorname{st}(F)<\infty$ and $u(L)=\infty$ if and only if $\operatorname{st}(F)=\infty$, we see that

$$
\operatorname{st}(F) \leq 3
$$

Since we already know that if $\operatorname{st}\left(X_{F}\right) \leq 2$, then $L=F(\sqrt{-1})$ is always linked, we will assume that $\operatorname{st}(F)=3$.

First we show that X_{F} cannot be indecomposable unless $\left|X_{F}\right|=8$. Suppose that, contrary to our assumption, X_{F} is indecomposable and $\left|X_{F}\right|>8$. Then we can write

$$
X_{F}=Y \times H
$$

where $H \neq\{1\}$. Since $\operatorname{st}\left(X_{F}\right)=\operatorname{st}(Y)+\log _{2}|H|$ and $\operatorname{st}\left(X_{F}\right)=3$ we see that $\log _{2}|H| \in\{1,2,3\}$. If $\log _{2}|H|=3$, then $\operatorname{st}(Y)=0$. Hence $|X|=8$. Thus we may assume that $|H|=2$ or 4 .
Case 1. $|H|=2$. We may assume that $R(Y) \subset R\left(X_{F}\right)$ and that

$$
Y=Y_{1} \cup \cdots \cup Y_{s}, \quad 2 \leq s
$$

is the decomposition of Y into its connected components. Since $\operatorname{st}(Y)=2$, there exists $i \in\{1, \ldots, s\}$ such that $\operatorname{st}\left(Y_{i}\right)=2$.
We may assume that $i=1$. Since $\operatorname{st}\left(Y_{1}\right)=2$ and Y_{1} is indecomposable we can write $Y_{1}=Z_{1} \times H_{1}$, where H_{1} is a 2-elementary group of rank 1 or rank 2. We may and will assume moreover that the rank of H_{1} is 1 , since if the rank H_{1} is 2 then $\operatorname{st}\left(Z_{1}\right)=0$, and we can write

$$
Y_{1}=Z_{1}^{\prime} \times H_{1}^{\prime}
$$

where $\left|Z_{1}^{\prime}\right|=2$ and $\left|H_{1}^{\prime}\right|=2$.
From Definition 5 we see that

$$
\begin{align*}
R^{1}\left(X_{F}\right) & =R^{1}(Y) \oplus H \\
R^{1}(Y) & =M \oplus\left(\oplus_{i=1}^{s} R^{1}\left(Y_{i}\right)\right) \\
R^{2}\left(X_{F}\right) & =d R^{1}(Y) \oplus R^{2}(Y) \tag{3}\\
R^{2}(Y) & =\oplus_{i=1}^{s} R^{2}\left(Y_{i}\right) \\
R^{2}\left(Y_{1}\right) & =a \cdot R^{1}\left(Z_{1}\right),
\end{align*}
$$

where M is a 2-elementary abelian group of rank $s-1, a$ is the non-zero element of H_{1} and d is the non-zero element of H.

Let, furthermore, $b \in R^{1}\left(Z_{1}\right)-\{0\}$ and $c \in R^{1}\left(Y_{2}\right)$. Then, from (3) and Definition 4, we see that

$$
\begin{aligned}
\{0, d\} & =\left\{z \in R^{1}\left(X_{F}\right) \mid d z=0\right\} \\
0 & \neq a b \\
b c & =0=a c
\end{aligned}
$$

and the elements a, b, c, d are linearly independent over $\mathbf{Z} / 2 \mathbf{Z}$.

We claim that the element $a b+c d$ cannot be expressed as a product of two elements of $R^{1}\left(X_{F}\right)$. Indeed, suppose that we are wrong and that there exist elements $v, w \in R^{1}\left(X_{F}\right)$ such that

$$
\begin{equation*}
a b+c d=v w \tag{4}
\end{equation*}
$$

To show that (4) is impossible we shall construct a basis U of the vector space $R^{1}\left(X_{F}\right)$ such that $\{a, b, c, d\} \subset U$ and the set $\left\{U_{1} U_{2} \mid U_{1}\right.$, $\left.U_{2} \in U\right\}-\{0\}$ is a basis of the vector space $R^{2}\left(X_{F}\right)$ over $\mathbf{Z} / 2 \mathbf{Z}$. Indeed, from (3), we see that we can find U inductively as follows:

$$
U=\{d\} \cup T
$$

where T is a basis of the vector space $R^{1}(Y)$,

$$
\begin{aligned}
T & =T_{M} \cup \cup_{i=1}^{s} T_{i}, \\
T_{i} & =T \cap R^{1}\left(Y_{i}\right) \\
T_{M} & =T \cap M
\end{aligned}
$$

We shall assume that each element of $R^{1}\left(X_{F}\right)$ is written in the basis U. Then we say that an element $u \in U$ enters the expression of $Z \in R^{1}\left(X_{F}\right)$ if and only if

$$
Z=u+\sum_{i=1}^{m} u_{i}
$$

where $u_{i} \in U$ and $u_{i} \neq u$ for each $i \in\{1, \ldots, m\}$. Otherwise we say that an element u does not enter Z.

From relation (4) we see that d enters the expression of either v or w. Suppose for example that

$$
v=d+A, \quad A \in R^{1}\left(X_{F}\right)
$$

and d does not enter the expression of A. Then we have

$$
w=c+B, \quad B \in R^{1}\left(X_{F}\right)
$$

and c does not enter the expression of B. From the equality $v w=a b+c d$ we get

$$
a b=d B+c A+A B
$$

Thus

$$
d B=A B+a b+c A
$$

If d does not enter the expression of B we see that d does not enter expression of the element $A B+a b+c A$. Thus $d B=0$ and $B=0$, too. Hence

$$
a b=c A
$$

Since c does not enter the expression of $a b$ and $a b \neq 0$ we see that equality $a b=c A$ is impossible.
Suppose now that d enters the expression of B. Then we can write

$$
B=d+C
$$

where d does not enter the expression of C. Then we find $a b=$ $d C+c A+A d+A C$.

Hence

$$
d(C+A)=a b+c A+A C
$$

As before we find that

$$
C+A=0
$$

($C+A$ cannot be d, since d does not enter the expressions of C and A.) Thus

$$
a b=c A
$$

which is impossible.
This proves that element $a b+c d$ cannot be written as $u \cdot w$ with $u, w \in R^{1}\left(X_{F}\right)$.

Case 2. $X_{F}=Z \times H,|H|=4$ and $\operatorname{st}(Z)=1$. Since we have already investigated the case $\left|X_{F}\right|=8$ and $\operatorname{st}\left(X_{F}\right)=3$, we shall assume that $\left|X_{F}\right| \neq 8$. This means that $|Z| \geq 3$.
From Definition 5 we see that

$$
\begin{equation*}
R^{1}\left(X_{F}\right)=R^{1}(Z) \oplus H \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
R^{2}\left(X_{F}\right)=c R^{1}(Z) \oplus d R^{1}(Z) \oplus c d R^{0}(Z) \tag{6}
\end{equation*}
$$

where $\{c, d\}$ is the vector basis of H.

Since $|Z| \geq 3$, there exist elements $a, b \in R^{1}(Z)$ linearly independent over $\mathbf{Z} / 2 \mathbf{Z}$.
By a calculation completely analogous to the calculation in Case 1, we see that the element

$$
a c+b d \in R^{2}\left(X_{F}\right)
$$

cannot be written in the form $v \cdot w$, where v an w are elements of $R^{1}\left(X_{F}\right)$.
Thus we see that, in both Cases 1 and 2 , the classes of quaternion algebras do not form a subgroup of the Brauer group $\operatorname{Br}(L)$.
We now claim that if L is a linked field and Y is any connected component of the order space X_{F} with $\operatorname{st}(Y)=3$, then $|Y|=8$.

Indeed, if this were not true, there would exist a connected component Y of the order space X_{F} such that $\operatorname{st}(Y)=3$ and $|Y|>8$. According to the considerations above we know that there exists an element $f \in R^{2}(Y)$ such that f cannot be expressed as a product of two elements of the group $R^{1}(Y)$. On the other hand, from the way $R(X)$ is constructed from $R(Z)$, where Z runs over all connected components of X, we see that any element of the group $R^{2}(Y)$ which is a product of two elements of the group $R^{1}\left(X_{F}\right)$ is actually a product of two elements of the group $R^{1}(Y)$. Thus we see that the element $f \in R^{2}(Y)$ cannot be expressed as a product of two elements of the group $R^{1}(X)$. Since the additive group generated by products of two elements of the group $R^{1}\left(X_{F}\right)$ is the group $R^{2}\left(X_{F}\right)$ we see that the set of products of two elements of the group $R^{1}\left(X_{F}\right)$ does not form a group, a contradiction to the definition of linked field.
This proves that if the field $L=F(\sqrt{-1})$ is a linked field, then X_{F} is a finite sum of order spaces Y such that $\operatorname{st}(Y) \leq 2$ or $\operatorname{st}(Y)=3$ and $|Y|=8$.

Since we have already proved that if X_{F} is a sum of order spaces Y as above, then L is a linked field; our proof is finished.

REmARK. It would be interesting to characterize all Pythagorean fields F such that $F(\sqrt{-1})$ is linked.
Note that if $\operatorname{st}(F) \leq 1$, then $H^{2}\left(G_{F(\sqrt{-1})}, 2\right)=\{0\}$ and therefore
$F(\sqrt{-1})$ is linked. Also if st $(F) \geq 4$, then $2 I^{3} F \neq I^{4} F$ and

$$
I^{4} F(\sqrt{-1}) \simeq I^{4} F / 2 I^{3} F \neq\{0\} .
$$

Thus $\operatorname{st}(F(\sqrt{-1})) \geq 4$ and $u(F(\sqrt{-1}) \geq 16$. Therefore, from [4], we see that $F(\sqrt{-1})$ is not linked.
It remains to investigate the cases $s t(F) \in\{2,3\}$. As far as I know this is still an open question.

Acknowledgements. I am grateful to Michel Spira, Professors B. Jacob, T.Y. Lam, P. Ribenboim, T.M. Viswanathan, and to the referee for their suggestions and improvement of exposition. I also happily acknowledge the excellent working conditions at the Mathematical Science Research Institute at Berkeley.

REFERENCES

1. T. Craven, Characterizing reduced Witt rings, J. Algebra 53 (1978), 68-77.
2. R. Elman, Quadratic forms and the u-invariant III, Conference on quadratic forms 1976, Queen's Papers in Pure and Applied Math. No. 46 (1977), 422-444.
3. and T.Y. Lam, Quadratic forms over formally real fields and Pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194.
4. and ——, Quadratic forms and the u-invariant II, Invent. Math. 21 (1973), 125-137.
5. B. Jacob, On the structure of Pythagorean fields, J. Algebra 68 (1981), 247267.
6. T.Y. Lam, The Algebraic Theory of Quadratic Forms, W.A. Benjamin, Reading, Mass. (2nd Printing with Revisions: 1980).
7. - Orderings, Valuations and Quadratic Forms, CBMS, Vol. 52 Amer. Math. Soc (1983).
8. M. Marshall, The Witt ring of a space of orderings, Trans. A.M.S. 258 (1980) 505-521.
9. ——, Classification of finite spaces of orderings, Canad. J. Math. XXXI (1979), 320-330.
10. -, Spaces of orderings IV, Canad. J. Math. XXXII (1980), 603-627.
11. J. Mináč, Stability and cohomological dimension, C.R. Math. Rep. Acad. Sci., Canada VIII (1980), 13-18.
12. Galois groups of some 2 -extensions of ordered fields, C.R. Math. Rep. Acad. Sci., Canada VIII (1980), 103-108. Corrigendum VIII (1986), 261.
13. -, The u-invariant and stability index, C.R. Math. Rep. Sci. Canada. IX (1987), 167-171.
14. - Cohomology rings and spaces of orderings, in preparation.
15. - Galois groups, order spaces and valuations, Thesis, Queen's University, Kingston, Ontario, Canada, May, 1986.
16. A. Wadsworth, p-Henselian fields: K-theory, Galois cohomology and graded Witt rings, Pacific J. Math. 105 (1983), 473-495.

Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720
Current address: University of Western Ontario, Department of Mathematics, Middlesex, College, London, Ontario, Canada N6A 5B7

