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ON THE CLIFFORD-LITTLEWOOD-ECKMANN GROUPS: 
A NEW LOOK AT PERIODICITY mod 8 

T.Y. LAM(*) AND TARA SMITH 

1. The Groups Gs,t: an historical survey. For any pair of non-
negative integers s and t, let GSit denote the group generated by the 
symbols £, a i , . . . , a.s, 6 1 , . . . , bt with the following relations: 

f (1) €2 = 1, a? = *(V»), 6* = 1, Vj, 
(2) dibj = ebjdi, Vi , j , 

(1.1) < (3) CLiCLj = edjCLi, i ^ j , 

(4) öibj = efyft», i T^i, 
[(5) ebj^bjt, Vj. 

Here, the relations in (5) are needed only in the special case (s,t) = 
(0,1). For, as long as s -f-t > 2, it is easy to show that these relations 
follow from the others. In the case (s,t) — (0,1), the inclusion of the 
relation tb\ = b\e ensures that Go,i is the group Z2 ® Z2 (and not 
the free product Z2 * Z2 which is the infinite dihedral group). Thus, 
in all cases, e is a central element of order 2 in Gsj- Intuitively, 
we think of the element e as " -1" , and refer to the relations (2), 
(3) and (4) above by saying that the elements {a\,..., a.s, bi,...,bt} 
"pairwise anticommute". It is easy to see that any element of the group 
Gs,t

 c a n be written uniquely in the form ekai1 • • • a,imbjx • • • bjni where 
1 < z'i < • • • < im < s, 1 < Ji < • • • < jn < t and k e {0,1}. Thus, 
Gsj is a finite group of cardinality 2 r + 1 where r := s + t. 

The groups G8j are implicit in Clifford's work on "geometric alge­
bras" [4, pp. 398-399]. In fact, if C{ipH,t) denotes the Clifford algebra 
of the quadratic form (psj '•— s{—l) _L ̂ (1) over any field of character­
istic not 2, then Gaj, appears naturally as a subgroup of the group of 
units in this Clifford algebra. Some of the groups Gsj are of interest to 
physicists. In the study of the spin of the electron, the commutation re­
lations between angular momentum operators led to the consideration 
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of the triad of Hermitian matrices 

<••») - = ( ? ; ) • - ( ; D- - 0 - ° . ) -
These "Pauli spin matrices" anticommute in pairs; they have square I2 
and product i • I2, so they generate a group isomorphic to Go,3. On 
the other hand, io\,io<i and icr^ have square —I2 and product I2, so 
they generate the quaternion group G2,o- In his pioneer work on the 
quantum theory of the electron [8], Dirac found that the "coefficients" 
Qj, 1 < j < 4, in his relativistic wave equation satisfy the commutation 
rule [aj,afc]+ = 26jk, where [#,?/] + denotes the "anticommutator" 
xy + yx. Pointing out that it is not possible to represent the CHJ'S 
by 2 x 2 matrices, he gave a representation of them by the following 
4 x 4 Hermitian matrices: 

These four "Dirac matrices" in the unitary group f/(4) generate the 
Dirac group (of 32 elements), which is isomorphic to Go,4. Haenzel [19] 
brought to bear the group Go,5 whereby he related Dime's relativistic 
wave equation to the geometry of the icosahedron. More generally, the 
groups Go,2n arise naturally in quantum field theory. In the theory of 
Fermion fields, the creation operators Xj and the annihilation operators 
Vj, 1 < j < w, satisfy the commutation relations 

(1.4) [xj,Xk]+ = 0, [yj,yk}+ = °> lxj,yk]+ = Sjk 

for all j , k. Writing Xj = (qj +ipj)/2 and yj = (qj —ipj)/2, the relations 
above can be transformed into 

(1.5) faj, <?*:]+ = fai>Pfc]+ = 26jfc, [Qj,Pk]+ = 0 

for all j,k. Denoting the set qi,p\,... ,qn,Pn straight through by 
6 i , . . . , 62n , (1.5) becomes [bj,bk]+ = 26jk, Vj ,k, so the ò / s generate 
the group Go,2n- This derivation of the group Go,2n was reported in 
the "Zusatz bei der Korrektur" of the paper by Jordan and Wigner 
[22] on Pauli's Exclusion Principle. On the last page of this paper, 
Jordan and Wigner used the Frobenius-Burnside theory of finite group 
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representations to show that , aside from 1-dimensional representations, 
Go,2n has only one irreducible unitary representation T, of dimension 
2 n . The group Go,2n and its irreducible representation T are also 
discussed in detail in [50; p.252, p.276] and [29; p.42, pp. 94-96]. 

Groups of the type Ga,o have also occurred in the physics litera­
ture. They were studied, for instance, in §15 of the paper of Jordan, 
von Neumann and Wigner [23] in connection with the mathematical 
foundations of quantum mechanics. Eddington's work [11, 12] on "E-
numbers" and sets of pairwise anticommuting matrices was likewise 
motivated by the quantum mechanical formalism. Eddington was par­
ticularly interested in "pentads" of 4 x 4 matrices which give rise to 
complex representations of Gs^o, and noted that these representations 
of Gs,o are closely related to the 4-dimensional real representations of 
G2,3 (cf. [11], [13, p.270]). Eddington's work was subsequently gen­
eralized by Newman [33]. In 1934, Littlewood [28] explicitly defined 
the family of finite groups GSiti and, using the general theory of group 
characters, gave a much more conceptual treatment of the results of 
Eddington and Newman on sets of anticommuting matrices. 

Another important source of the groups Gsj is provided by the 
Hurwitz Problem on the composition of quadratic forms (see [20, 
21] and [43]). The paper of Radon [37] and the posthumous paper 
of Hurwitz [21] were both devoted to solving the so-called Hurwitz 
equations: 

{ A? •?' = ^ n ' 
Aj+A)=0, 
AjAk + AkAj = 0, j ^ k , 

where A\,..., Aa are (real or complex) n x n matrices. Using purely 
matrix theoretic tools, Hurwitz and Radon determined the exact re­
lationship between s and n for the system of equations (1.6) to be 
solvable. This relationship is expressed by the "Radon function" which 
has since proved to be important in many branches of mathematics. In 
1942, apparently unaware of Littlewood's paper, Eckmann defined in 
[10] the groups G)S,o> and observed tha t a set of solutions to the Hurwitz 
equations (1.6) over a field F amounts to an n-dimensional orthogonal 
representation T of G,9,o over F with the property that T(e) = —In. 
Eckmann determined the irreducible orthogonal representations of G.so 
over F = R, and, using this, he arrived at a purely group-theoretic 
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proof of the theorem of Hurwitz-Radon on the composition of sums of 
squares. (By working carefully enough, it is not difficult to general­
ize Eckmann 's work to any field F of characteristic not 2.) Because 
of its clarity and elegance, Eckmann's paper [10] has been a popular 
reference for authors since 1942. 

In view of the above historical survey, we propose to call Gsj the 
Clifford-Littlewood-Eckmann groups, abbreviated as CLE-groups in this 
paper. 

In the topology literature, it is well-known that the Clifford algebras 
C(ifsj) obey a certain periodicity formula modulo 8, namely 

(1.7) C(¥>»+8.t) = C(v>.,t+8) = M 1 6 ( C ( ^ , t ) ) . 

This reduces the computation of C(ipsj) to low-dimensional cases, and 
leads to the explicit tables of Clifford algebras in [1] in the case F = R. 
(See [27, pp. 128-129] for the case of an arbitrary ground field F 
of characteristic not 2.) Since the CLE-group Gs<t spans the algebra 
C(ipsj), it seems natural to ask if there is also a periodicity mod 8 
phenomenon for the groups Gs%t, a n d , if so, whether the groups Gst 

can be determined explicitly in terms of just a few basic groups. 

As it turned out, this is indeed possible, although the details for such 
a theory have apparently never appeared before. In §2, we shall fill this 
gap by describing a complete decomposition theory for the groups Gs,t 
in terms of four basic groups, namely, the two abelian groups of order 
4 and the two non-abelian groups of order 8 (Theorem 2.10). This 
analysis entails, in particular, a periodicity law mod 8 for the groups 
Gst, thus enabling us to account for the periodicity phenomenon at 
the more primitive level of groups (rather than algebras). In §5, we 
shall show that the periodicity of the groups {G.,,*} implies tha t of 
the graded Clifford algebras {C((psj.)}. One distinct advantage of this 
new derivation of Clifford algebra periodicity is that , in contrast to the 
usual derivation (as in, e.g., [27, pp. 126-128]), it does not depend on 
using the notion of graded tensor products of Clifford algebras. 

The decomposition theory mentioned in the paragraph above has 
many consequences. Indeed, almost all facts about the groups Gst, 
their representations, and their abelian subgroup structures can be de­
duced simply and systematically from this theory. In this approach, the 
determination of the Frobenius-Schur classification of the irreducible 
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representations of GSit becomes especially transparent. This extends 
Eckmann's results from the Gi9,o's to the G.^ 's , and, in the meantime, 
provides a purely group-theoretic alternative to the combinatorial treat­
ment in [10]. Some applications of this nature will be given in §3. 

From the viewpoint of the classification theory of finite p-groups, 
the CLE-groups form a class of 2-groups which is slightly larger than 
the class of extra-special 2-groups. Recall tha t a finite p-group G is 
called extra-special ([39, p. 140], [9, p. 179]) if its center Z(G) and its 
commutator subgroup G' both have order p (and therefore Z(G) = G'). 
The relation between extra-special 2-groups and the CLE-groups is 
given by 

PROPOSITION 1.8. (1) Any extra-special 2-group G is isomorphic to 
some CLE-group GH,t where s + t is even. (2) If s + t is even, Gst is an 
extra-special 2-group. (3) If s + t is odd, then G8j = G<s_i^ xZ(G t S^) 
whenever s > 1, and G,s^ == Gs,t-i><Z(Gsj) whenever t > 1. (See the 
beginning o/§2 for the definition o / " x " . ) Here, Gs-\it andGSìt-\ are 
extra-special by (2), and Z(G8it) has order 4. 

Part (2) and Part (3) of this Proposition will be clear from (2.3), (2.4) 
and the definition of " x " . Part (1) is an easy exercise in linear algebra 
which we shall leave to the reader. (If G is an extra-special 2-group, 
its commutator quotient group GjG' may be viewed as an F2-vector 
space. Let Z(G) = {1, e} and try to find an F2-basis {x\G',..., xnG'} 
of G/Gf such that XjXk = eXkXj (V j / k).) 

In group theory, it is well-known that any extra-special p-group is a 
"central product" of copies of the two non-abelian p-groups of order p3 

[39, p. 141]. In view of Proposition 1.8, this already implies that any 
CLE-group Gaj can be decomposed into a "product" of a number of 
very small 2-groups. However, the explicit decomposition of the G.^ 's 
in terms of the parameters s and t does not seem to have been given 
before, and their periodicity was never noted. What we shall do in §2 
may therefore be viewed as a concrete realization of the central product 
decomposition of the G.^ ' s . To make our treatment self-contained, this 
decomposition will be achieved entirely within the framework of the 
CLE-groups, without reference to the class of extra-special p-groups. 
In particular, to understand the proof of our Decomposition Theorem 
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2.10 requires only a bare minimum of group theory. 

As pointed out to us by Bruno Kahn, the decomposition of the 
groups Gsj can be interpreted in terms of the quadratic form theory 
over the field F2. The two germane references here are the papers 
of Wall [49] and Quillen [35]. From the viewpoint of quadratic form 
theory, the classification of the groups Gs,t amounts essentially to the 
determination of the rank, the defect, and the Arf invariant (if defined) 
of the quadratic form 

(1.9) qsA := x\ H h x\ + ^ X{Xj, r := s + t. 
l<i<j<r 

over F 2 . These quadratic form invariants were computed in [49] and 
[35] in the special case t = 0: Wall did this by constucting an explicit 
"symplectic basis" for the commutator quotient group of GS,Q, while 
Quillen did it by using the structure of the Clifford algebra C((fSio) as 
determined in the paper of Atiyah, Bott and Shapiro [1]. For us, the 
quadratic form invariants of qs,t (for any (s, t)) are easy to write down, 
since we have completely determined the groups GSit in §2. The details 
of this beautiful connection between group theory and quadratic forms 
will be explained in §4 of the paper. 

We shall now conclude this introductory section with a remark. Con­
cerning the groups Go,2n which arise from the consideration of the 
commutation relations (1.4) and (1.5), we have been informed by Pro­
fessor Harry Morrison that it is also of interest to physicists to con­
sider countably infinite systems of creation and annihilation operators 
{xjil/j : 3 — 1 ,2 ,3 , . . . } satisfying (1.4). The mathematical problem 
of analyzing the representations of these commutation relations by op­
erators on Hilbert spaces has been dealt with in two papers of Garding 
and Wightman [17, 18]. As these authors pointed out, earlier work of 
Friedrichs and von Neumann already showed that the Jordan-Wigner 
result (about the uniqueness of an irreducible unitary representation) 
no longer holds in the case of infinitely many operators. We thank 
Professor Morrison for pointing out to us the references [17] and [18], 
but we shall not use or discuss the results of these papers here since the 
consideration of infinite groups and infinite dimensional representations 
is beyond the scope of our paper. 
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2. Classification and periodicity of the groups G s t . Besides 
Go,o — Z2 (the cyclic group of two elements), the four most basic groups 
among the G.^'s are: 

(2.1) 

C := Gi,o (the cyclic group of order 4), 
K := Go,i (the Klein 4-group), 
Q := G2,o (the quaternion group of order 8), 
D := Go,2 (the dihedral group of order 8). 

It is also easy to see that D = G 1,1. Let us now show how to use 
the four groups above to compute all of the CLE-groups. The method 
we use is completely elementary. First we note the following (easy) 
computation for the commutator subgroup and the center of G«,*: 

(2.2) G'tyt = [G.,t,G.t] = (e) if (s>t) ± (0,0), (1,0), (0,1); 

(2 .3) Z(G^-{^ai...aM...bt) |f 
r = s + t is even, 
r = s + t is odd. 

Another easy computation yields the following squaring formulas in 

Gs,t' 

( \2 f ep if v 
(2.4) ( a M - - - o i p 6 i l - - - 6 i , J = | cp+i i f p 

+ 9 = 0, l(mod4), 
+ <7 = 2,3(mod4), 

where %\,...,%p are distinct and j i , . . . , j q are distinct. 

Now consider the category C whose objects are groups with a dis­
tinguished central involution e, and whose morphisms are 6-preserving 
group homomorphisms. For two groups (G, e) and (# , e) in this cate­
gory C, we define GxH to be the quotient group of G x H obtained 
by identifying (e, 1) with (l,e). Then GxH is an object in C with 
distinguished central involution e = (e, 1) = (l,e). This group has the 
following universal property: if a : G —> K, ß : H —» K are morphisms 
in C such that a(G) commutes elementwise with ß(H), then there is a 
unique morphism 7 : GxH —+ K which makes the following diagram 
commutative: 
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GxH 

where p ,q are the obvious inclusion maps. This definition of GxH is 
a modified version of the central product construction in group theory 
(cf. [39: p.141], [9: p.179]). If G and H are finite groups in C, we 
clearly have \GxH\ = \G\ • \H\/2. The group Z 2 (with the non-identity 
element as e) serves as the trivial object in C, with Z2XH = H for any 
H in C. The classification of the CLE-groups is made possible by the 
following isomorphism theorem for Gs^xGmin. 

THEOREM 2.5. Let G = Gs,txGm,n, and r = s + t Then G is 
isomorphic to the groups in the right-hand column of the chart below 
depending on the parity of s and on the congruence class of r modulo 
4: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

s 

odd 

even 

odd 

even 

odd 

even 

r (mod 4) 

0 1 

2 

2 

0 

1 

Cx.s,t X(_TTt,m 

3 | 

G 

L*s+n,t + m 

(j.s+m,t+n 

PROOF. As usual, we think of Gst = (e, ai,...,aSì &!,...,&*) 
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and Gm,n = (e, a[,..., a'm, b[,..., b'n) as subgroups of G. Let z = 
a i . . . as b\ . . . bti and consider the group 

K := (e, 2 a i , . . . , a ^ , 2ÒÌ,... ,z&^) Ç G. 

Note that G.s,£ and K generate G. Moreover, (za^)2 — z2e, (zbj)2 = 
z2 and any two distinct elements from {za^,..., zaf

m^ zb[,..., zbf
n} 

"anticommute". In cases (5) and (6), r is odd, so z is central in GSit 

(by (2.3)) and K commutes elementwise with Gsj> Furthermore, by 
(2.4), z2 = e in these two cases, so (za^)2 = 1 and {zb1-)2 — e. This gives 
K = Gn,m and we see easily that G = Gs,t><K — G<s,£xGn,m. In the 
cases (1), (2), (3) and (4), z is not central in Gsj and it anticommutes 
with each a?; and 6j. Hence, any two distinct elements from 

{ai, . . . ,a. s , 6! , . . . ,6 t , s a i , . . . , z a i , . . . ,20^, zb[,... ,zb'n} 

anticommute. In the cases (1) and (2), we have (by (2.4)) (zbr-)2 = 
z2 = e and (2a')2 = z2e = 1, so G = Gs+nyt+m- In the cases (3) and 
(4), we have (za^)2 = z2e = e and (zbj)2 = z2 = 1, so G = G.9+m,£+n. D 

Note that, in the two cases (7) s = odd, r = 3(mod4), and 
(8) s = even, r = l(mod4), the argument above does not yield any 
new information on the group G,S£xGm,n. This is why we did not 
include these two cases in the formulation of Theorem 2.5. 

Using the notation in (2.1), we have the following special cases of the 
theorem: 

COROLLARY 2.6. 

( l )GxG m , n Ç*GxG n , m (s = 1, * = 0 : Case (5)). 

(2) QxGm , n ï* Gn + 2 ,m (a = 2, t = 0 : Case (2)). 

(3) DxG m , n S* Gn ,m + 2 (* = 0, t = 2 : Case (2)). 

(4) DxG m , n ^ G m + i , n + i (s = 1, t = 1 : Case (3)). 

We shall refer to (4) above as the "Diagonal Law". By (2) and (3) 
here, we have 

Gm+4,n == QxGn)77l+2 — Qx(Z)xGm i n) , 
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Gm,n+4 — DxGn+2,m — Dx^QxGm^n). 

Since the product " x " is commutative as well as associative (up to 
natural isomorphisms), we have proved 

COROLLARY 2.7. Gm+4,n = Gm,n+4 = DxQxGmin. In particular, 
for m = n = 0, we get G4,0 — Go,4 = DxQ. 

The isomorphism ^4,0 — Go,4 was observed by Coxeter in [6, §6], al­
though Coxeter did not point out that the (Dirac) group Go,4 is in fact 
isomorphic to DxQ. Letting (m,n) = (2.0) in (2.6) (4), we see that the 
Dirac group is also isomorphic to G3J. This explains why physicists 
often represent a set of generators of the Dirac group by four pairwise 
anticommuting matrices, one with square I and the three others with 
square - / . (This is clearly more convenient for space-time considera­
tions in relativity.) There are at least three such representations in use 
in the physics literature: the Dirac representation, the chiral represen­
tation, and the Majorana representation (cf. [5, pp. 688-689]). 

C O R O L L A R Y 2.8. 

(1) QxQ^DxD^G2,2. 

( 2 ) Q x G ^ D x G ^ G 2 , i ^ G 0 , 3 . 

(3)QxK^G3,0. 

(4) CxC^KxC. 

(These isomorphisms, incidentally, show the lack of a cancellation law 
for the modified product "x" . ) 

PROOF. By (2.6)(2) with (ra ,n) = (2,0), we have QxQ ^ G2,2 and 
by (2.6)(3) with (ra,n) = (0,2), we have DxD ^ G2,2. This proves 
(1). Similarly, we have QxC ^ Q x G i , 0 = G2,i and DxC *Ê DxGh0 ^ 
Go,3, and (2.6) (1) shows that DxC ^ QxC. This proves (2). By (2.6) 
(2), QxK ^ QxG 0 , i = G3,o, so we have (3). Finally, CxC and KxC 
are both isomorphic to the ordinary direct product of C and Z 2 , so we 
have (4). D 
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From now on, to simplify the notation, we shall write G H for GxH. 
Applying (2.7) twice and (2.8) (1), we get 

COROLLARY 2.9. (PERIODICITY mod 8) Gm+8,n = £>4Gm?n = 
Gm,n+8-

(Here, and in the following, Dk means DD • • • D with k factors.) 

We can now prove the 

DECOMPOSITION THEOREM 2.10. Let G = GM and r = s + t. Then 
G is isomorphic to exactly one of the following products: 

D\ D{~XQ, DlK, Di~xQK or D{C. 

We shall call these the canonical forms. The first two canonical forms 
occur when r is even; the last three canonical forms occur when r is 
odd. 

PROOF. We first determine G,9,0 for 0 < s < 7. Beyond G0,o -
Z2, Gi,o = C and G2,o = Q, we have G3,o = QK by Corollary 2.8 (3) 
and G4,o = DQ by Corollary 2.7. Moreover, 

G5,o = DQGito * DQC S D2C by (2.7) and (2.8)(2), 

G6,o = DQG2,Q <* DQQ * D3 by (2.7) and (2.8)(1), 

G7,o = DQGw ^ DQQK ^ D3K by (2.7) and (2.8)(1). 
Similarly, we can derive canonical forms for Go,* for 0 < t < 7. The 
remaining groups Gs,t can then be determined by the Periodicity Law 
(2.9) and the Diagonal Law (2.6) (4). We display the canonical forms 
for the groups Gsj with s, t < 7 in the following chart: 

D3C 
D2Q 
DQK 
DQ 
DC 
D 
K 

z2 

D3Q 
D2QK 
D2Q 
D2C 
D2 

DK 
D 
C 

D3QK 
D3Q 
D3C 
D3 

D2K 
D2 

DC 

Q 

D4Q 
D4C 
D4 

D3K 
D3 

D2C 
DQ 
QK 

D5C 
D5 

D4K 
D4 

D3C 
D2Q 
DQK 
DQ 

D6 

D5K 
D5 

D4C 
D3Q 

D2QK 
D2Q 
D2C 

D6K 
D6 

D5C 
D4Q 

D3QK 
D3Q 
D3C 
D3 

D7 

DQC 
DbQ 

D4QK 
D4Q 
D4C 
D4 

D3K 
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Noting that \Dl\ = \Dl~lQ\ = 2 2 z + 1 and \DlK\ = \Dl~lQK\ = 
\DlC\ = 2 2 z + 2 , we see that , for r = 2z, Gs,t is isomorphic to one 
of D% Dl~1Qi while, for r = 2z + 1, Gs,t is isomorphic to one of 
DlK, Di~lQK or D*C. (We note, incidentally, that along the line 
s + t = 2z, the two groups A = Dl, B = Dl~lQ occur with the 
"AABB" pattern, while, along the line s + 1 = 2i + 1, the three groups 
X = D{K, Y = Di~lQK and Z = DlC occur with the "XZYZ" 
pattern.) 

Finally, to prove the uniqueness of the canonical form, we must show 
that the five groups A,B,X,Y and Z are mutually non-isomorphic. 
This can be done as follows. For any finite group /f, write 1(H) 
for the number of elements h G H such that h2 = 1. For instance, 
1(D) = 6, I(K) = 4, and 1(C) = I(Q) = 2. Using these, and an 
induction on z, we can easily compute 1(H) for the five groups under 
consideration: 

H 

I(H)\ 

1 Di 

1 2*(2* + 1) 
Di~lQ 

2*(2* - 1) 

DlK 

2 i + 1 ( 2 i + l) 

Di~lQK 

2 i+1(2 i - 1) 

DlC 
2 2 i + l 

Since the five numbers listed are different, no two of the five groups 
can be isomorphic. D 

REMARK 2.13. It is also possible to give a purely representation-
theoretic proof of the last conclusion above. In fact, in the next section, 
we shall show that X, Y, Z have "types" I, II, III respectively (in the 
sense of representation theory), so no two of them are isomorphic. 
Similarly, it will be clear that A has "type" I and B has "type" II, 
so A, B are also not isomorphic. 

It is worth noting that the canonical forms of the groups G,s,o and 
Go,t (0 < 5, t < 8) are formally related by the formula 

(2.14) G0,t = ^ ~ 4 G , , o 

whenever s -h t = 8. Here, in case t < 4, the negative powers of D are 
to be "cancelled" by the D-powers in the canonical form for GS,Q. In 
fact, for any s, t > 0 such that s -f t = 8, we have, by Corollaries 2.9 
and 2.6 (4), 

D Gmjn+t — Gm+giTl+t — D Gm+SiTii 
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so formally 

(2.15) Gm^n+t = D Gm+Ä>n. 

For m = n = 0, we get the special case (2.14). 

For purposes of studying the spin groups Spin (n) and their represen­
tations, it is also useful to look at the subgroup G*t of GSit consisting 
of all elements ekdil • • • aipbj1 • • • bj where p -f q is even. However, it 
can be easily seen that 

(9 Ifrt r + <* f G*-ht if « > 1, 
( 2 ' 1 6 ) G^-\Gt.hs if t > 1. 

Therefore, our results also yield the complete determination of the 
groups Gft. (The symmetry property Gs-i,t — Gt-i,s implied by 
(2.16) is already clear from (3) and (4) of Corollary 2.6.) 

As a final remark, we should point out that, in the definition of the 
groups G8j, one can also try to replace some or all of the anticommuting 
relations between {a\,..., a(S, &i,. . . , bt} by commuting relations (and 
keep all the other relations). For any group G obtained in this way, 
one can show (with a little bit of work) that there is an isomorphism 
G = Grn,nxZ(G) for some m,n such that ra-fn is even, and, moreover, 
Z(G) is isomorphic to either K — K or K — K • C. Thus, such groups 
G are also completely determined by the results of this paper. The 
"canonical" forms of these groups will be similar to those of the groups 
Gm,n, except that we may now have more than one factor of K. The 
reader can check easily that passing from the Gm,n 's to the new groups 
corresponds exactly to forming the "closure" of the class of groups 
{Gm,n} with respect to the product "x". For instance, G = G\^G^^ 
is a group of the new type. This product corresponds to one of the two 
cases not treated in Theorem 2.5; nevertheless, the group G has the 
canonical form DQKK. It is of interest to note that the six matrices 
furnished by Veblen on p.509 of [47] satisfy exactly the commuting and 
anticommuting relations (as well as the squaring relations) between the 
generators of G = Gi,2xG35o, so Veblen's matrices (without the scalar 
factors) correspond precisely to a 4-dimensional irreducible complex 
representation of G. 

3. Applications. The first application of the decomposition theory 
in §2 is the immediate determination of the irreducible real as well 
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as complex representaions of the CLE-group Gst- Let C continue to 
denote the category defined at the beginning of §2. A representation 
T of a group G in C will be called an e-representation if T(e) = —I. 
First let us determine the irreducible e-representations of Gsj over C. 
These are just the irreducible representations of GSit which do not 
"come from" representations of G/(e). Except when Gsj — Z 2 , C o r 
K, these are just the irreducible representations of C-dimension > 1. 

It is well-known that each of Z), Q has a unique irreducible 2-
dimensional e-representation over C, and that each of C,K has two 
1-dimensional 6-representations over C. By taking tensor products 
(note that the tensor product of an e-representation for G and an e-
representation for H gives, in a natural way, an e-representation for 
GxH), we can therefore construct an irreducible 22-dimensional e-
representation module V for GSit in case Gst has the canonical form Dl 

or Dl~lQ (i.e., when r = s + 1 = 2z), and two different 2*-dimensional 
e-representation modules V, V for Gsj in case Gst has the canonical 
forms DiK, Dl~lQK or DlC (i.e., when r = s + t = 2i + l). By count­
ing the number of linear characters, it follows easily that the irreducible 
representations of Gst over C are either 1-dimensional, or isomorphic 
to V or V. In particular, we can deduce 

COROLLARY 3.1. The matrices for the irreducible representations of 
Gs,t over C can be written down with entries from {0, ± 1 , ±z}. 

PROOF. This fact is well-known for D, Q, K and C, so it also follows 
for Gsj since matrices with entries from {0, ± l , ± i } are closed under 
tensor products. D 

Recall tha t a complex irreducible representation V is said to have type 
I if V is equivalent to a real representation, type II if V is not equivalent 
to a real representation but the character \v is real-valued, and type 
III if xv is not real-valued. Letting s(V) = l ^ l - 1 ^2qeGXv{92) be the 
Frobenius-Schur index of V, it is well-known that s(V) = 1 if V has 
type I, s(V) = —1 if V has type II, and s(V) = 0 if V has type III (see 
[40: §13.2]). 

It will be clear in a moment that , for the group GSf> the e-
representations V and V constructed above have the same type, which 
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we may then call the type of G8j for short. For instance, D and K have 
type I, Q has type II, and C has type III. Since the Frobenius-Schur in­
dex is multiplicative over tensor products of irreducible representations, 
we see immediately that 

(3.2) D{ has type I, Di~lQ has type II. 

(3.3) DjK has type I, Dj~lQK has type II, and DlC has type III. 

In view of the Diagonal Law (2.6) (4), the type of Gs,t depends only 
on t — 5, since additional factors of D in the canonical form of Gsj do 
not change the type. (Note that t — s is the signature of the quadratic 
form s(—l)±t(l).) By inspection of the canonical forms of G8io and 
GQJ in (2.11), it follows that: 

THEOREM 3.4. 

{ type I if t - s = 0,1, 2 (mod 8), 
type II ift — s = 4,5,6 (mod8), 
type III ift-s = 3,7 (mod 8). 

In the special case when t = 0, this result was first proved by 
Eckmann [10, p.364] who used a trick on binomial coefficients to 
compute explicitly the Frobenius-Schur index of V. 

Let us now derive an equation which relates the type of G = Gst to 
the number 1(G) of elements of order < 2 in G. Since V affords an 
e-representation, the summation YlqçG Xvid2) n a s 1(G) terms equal to 
dim V and \G\ — 1(G) terms equal to —dimF. Therefore, 

|G| • s(V) = 1(G) • dim V - (\G\ - J(G))dim V 

= (21(G)-\G\)dimV, 

and so 
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In particular, I{G) is larger than, less than, or equal to \G\/2 according 
as G has type I, II or III (cf. [49]). Note that this new formula for 
I{G) also provides another derivation of the earlier table (2.12). 

Next, we turn our attention to the real representations of Gst. Using 
the same method as in the complex case, we can also construct a real 
orthogonal e-representation of the smallest dimension for GSjt- For 
the four basic groups K,C,D and Q, this smallest dimension is 1,2,2 
and 4 respectively. By taking tensor products again, we can construct 
explicitly a real orthogonal e-representation U for Gst such that 

(3.5) If GSst has type I, then diniR U = d ime V\ 

(3.6) / / Gst has type II or type III, then dimR. U = 2 d ime V. 

(Here, it is important to notice that , in the canonical form of GSjt, there 
is at most one factor not of type I.) By extending scalars from R t o C , 
it follows easily that U has already the least dimension among all real 
(orthogonal) e-representations of Gs^\ in particular, U is irreducible. 
Using the knowledge of the irreducible complex representations of 
GSf, it follows further that Gst has at most one other irreducible 
real (orthogonal) e-representation, U', and that if U' exists, we have 
dimR U = dim^L/' . (In fact, U' exists if and only if Gs,t has the 
canonical form DlK or Dl~1QK. The proof of this fact will be left to 
the reader.) 

Note that the real orthogonal e-representations of dimension 1,2,2 
and 4 for K, C, D and Q can all be written down using matrices with 
entries from {0, ± 1 } . For K = (e,6i), we have two choices, sending òi 
to 1 or —1. (This explains, incidentally, why we have U and U' in case 
the canonical form of G involves a factor of K.) For C — (e,a\), we 
represent a\ by a 90° plane rotation. For D = (e, 61,62), we represent 
bi,b2 by the two flips (x,y) 1-» (—x,y) and (x,y) »—> (x,—y). For 
Q = (e ,a i ,a2) , we represent a\,a2 by left multiplications of i and j on 
the real quaternions. Since U is constructed by taking tensor products 
of these representations, it follows (as in (3.1)) that the e-representation 
U (and U') for Gsj can be written down using matrices with entries 
from {0 ,±1} . 

The next result was first obtained by Kawada and Iwahori [25] in the 
context of Clifford modules. We offer here a group-theoretic rendition 
of it, generalizing the work of Eckmann [10]. 
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THEOREM 3.7. Let n — 2mno be a given positive integer, where no 
is odd. Then the necessary and sufficient condition for Gs,t to have a 
real (orthogonal) e-representation of dimension n is as follows (where 
r = s + t): 

\ t — s (mod 8) 

NASC 

0 

\m>l 
1 

m > ^ 

2 

m>l 
3 

m>r-±l\ 

\ t — s (mod 8) 

NASC 

4 

\m>r-F 
5 

™>r-¥ 
6 

m>rf 
7 

™>r-¥ 

PROOF. The chart follows by combining the following information: 

(1) The real (orthogonal) e-representations of G8j are exactly those 
obtained by taking direct sums of U and Uf. 

(2) The type of G8,t is determined by the signature t — s (mod 8) as 
in (3.4). 

(3) The dimensions of U and U' are determined by the type of Gs,t 
as in (3.5) and (3.6). 

(4) dime V is 2 r /2 if r is even, and is 2^ r _ 1^ 2 if r is odd. 

For instance, when t — s = 6(mod8), G8j. has type II; since r = s +1 
is even in this case, dimR U = 2dimc V = 2 • 2 r /2 = 2<r+2)/2. Thus, 
GSit has a real (orthogonal) e-representation of dimension n = 2mno if 
and only if m > (r + 2)/2. The other cases are similar. D 

Putting together the columns with the same bounds on m, and 
replacing r by s + t, the necessary and sufficient conditions in the above 
theorem can be reformulated as follows: 

t — s (mod 8) 

NASC 

4,6 

\s<2m-2-t 

3,5,7 

5 < 2m - 1 - t 

0,2 

s < 2ra — t 

1 

s < 2m + 1 - t\ 

where the upper bounds for s in the four cases are arranged as four 
consecutive integers. 

Finally, for purposes of applications, it is also desirable to have a 
"single" expression for the lower bounds of m in (3.7) in terms of 
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the parameters t and a := t — s. (The integer a may be called the 
"signature" of the group Gsj see (4.11).) Let us define an arithmetic 
function p : Z —• Z as follows: For k = 8*7 + e where q G Z and 
0 < e < 7, define 

(3.9) p(fc) = 4 

( Aq if e = 0 
4<? + 1 if e = 1 
4(7 + 2 if e = 2,3 

I 4(?-h 3 if e = 4,5,6, 7. 

Then, a straightforward calculation with the lower bounds on m in 
(3.7) shows 

THEOREM 3.7'. The smallest possible dimension for a real (orthog­
onal) e-representation of the group Gst is 2*+<^_<T), where a := t — s, 
and <p : Z —> Z is as defined above. 

(For instance, when — a — 8g + 5, the critical value of m in (3.7) is 
(r + l ) / 2 = (s + t + l)/2 = {2t-a + l)/2 = (2t + 8<7 + 6)/2 = * + 4<7 + 3.) 

The function ip in (3.9) (not to be confused with Euler's totient 
function) is well-known to topologists in the case when the argument 
k is > 0. In the topology literature, (p is usually defined by 

(*) <p(k) = Card{i G Z : 1 < i < k, i = 1,2,4,8 (mod 8)} for k > 0. 

One of the most significant facts about ip in topology is that the reduced 
if O-group (or the J-group) of the real projective space P fc is a cyclic 
group of order 2^^ (with generator given by the class of the Hopf line 
bundle on Pk). By (3.7r), this order is precisely the smallest possible 
dimension of a real (orthogonal) ^-representation of the group G^o- But 
now our work above has shown how to extend the domain of definition 
of the function p from non-negative integers to all integers (cf. (3.9)). 
Of course, it is also possible to describe ip for negative arguments in the 
style of (*): a straightforward check from (3.9) shows that , for k < 0, 

(**) ip(k) = - C a r d j i G Z : k < i < - 1 , i = 0 ,1 , 3, 7 (mod 8)}. 

Here, the "markers" 0,1,3,7 are one less than 1,2,4,8, the first four 
powers of 2 used in (*). We do not know of any topological or K-
theoretic interpretation for ip(k) when k < 0, but is may be of interest 
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to find one. (Can one perhaps eventually make some sense out of the 
statement that the reduced i^O-group of a projective space of negative 
dimension is a cyclic group of fractional order ?) 

Next, we shall try to tackle the following problem which general­
izes the classical problem on the Hurwitz equations (1.4): Let F — C 
or R and let n > 1 and t > 0 be given. What is the largest inte­
ger s such that there exist skew symmetric matrices A i , . . . ,A . s and 
symmetric matrices B i , . . . , B * in the orthogonal group On(F) such 
that { A i , . . . , AÄ, B i , . . . , Bt} pairwise anticommute? This amounts 
to finding the largest s (if it exists) such that G8j has an orthogonal 
e-represention over F of dimension n. In the representation theory of 
finite groups, it is well-known that any complex orthogonal represen­
tation (i.e., a representation by matrices in On(C) = {M e M n (C) : 
MlM = In}) is always equivalent to a real represention. Thus, our 
problem has the same solution over the real field and the complex field. 
For this reason, we shall assume F = R in the following. 

In order to solve our problem, we fix the two integers n, t and write 
n = 2mrio where no is odd, and m — t = 4a + b where a is an integer 
(possibly negative!) and b e {0,1,2,3}. Then, in the necessary and 
sufficient condition of (3.8), we have 

2m - t = 2(t + 4a + b) - t = t + 8a + 2b. 

We can now easily determine from (3.8) whether s exists and if so, 
what is its largest possible value. The outcome is summarized in the 
following result. 

THEOREM 3.10. For n and t as above, the largest s for which there 
exist skew symmetric matrices A i , . . . , A Ä and symmetric matrices 
B i , . . . , B * in On(R) {or 0 n (C)) such that A\,... ,AS, B i , . . . , B * 
pairwise anticommute is as follows: 

h 1 n 
£ + 8a 

1 = 2m - t 

1 
t + 8a + 1 

= 2m-l-t 

2 
t + 8a + 3 

= 2m-l-t 

3 1 
t + 8a + 7 

= 2m + l - t 

Here, we must use the following interpretation: If the value of s 
given in the chart is negative, then s does not exist (i.e., the matrices 
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{ A i , . . . , A.s, B i , . . . , B j } do not exist). For the maximal s (in case 
s exists), a system of such matrices { A i , . . . , AtS, B i , . . . , B*} can be 
found with entries from {0, =bl}; in particular, they are defined over 
any field. 

In this theorem, we stress again that a may be a negative integer. 
For instance, if n = 27 and t = 8, then m = 7 = t-\-4a + b with a = — 1 
and 6 = 3. The largest possible value of s is s = t + 8a + 7 = 7 so 
that we can find a system { A i , . . . , A7, B i , . . . ,Bg} in 0 2 T ( R ) (with 
entries from {0, i l } ) . 

In a completely analogous manner, we can prove the following parallel 
result. 

THEOREM 3.12. Let s and n = 2m72o be given, where no is odd. 
Let m - s = 4a' + 6' where a' e Z and b' e {0 ,1 ,2 ,3} . Then the 
largest t for which there exist skew symmetric matrices A\,..., As 

and symmetric matrices B i , . . . , B * in O n ( R ) (or O n (C) ) such that 
{ A i , . . . , As, B i , . . . , B t } pairwise anticommute is as follows: 

b'\ 0 

s + 8a' 4-1 
1 = 2m + 1 - s 

1 

s + 8a' + 2 
= 2m — s 

2 

s + 8a' + 3 
= 2m — 1 — s 

3 

s + 8a' + 5 
= 2m — 1 — sì 

Here, again, a negative value of t means that no { A i , . . . , A t S , 
B i , . . . , B * } can exist For the maximal t (in case t exists), a system 
of such matrices { A i , . . . , A.s, B i , . . . , B*} can be found with entries 
from {0,±1}. 

The two theorems above have been reported before in Wolfe's work 
on amicable orthogonal designs [51], [16, pp. 220-227], and have been 
further generalized in the work on (s, t)-families by D. Shapiro [41, 
42]. Note that if we add 1 to the values of s in (3.11) and to the 
values of t in (3.13), we'll get, respectively, the pt(n) and as(n) in 
the cited references. (If a value of 5 in (3.11) is negative, we set 
Pt(n) = 0, and similarly for <7.s(n). This convention was, unfortunately, 
not explicitly mentioned in [51] and [16].) Here, pt and as are the 
generalized Radon functions, the usual Radon function being po with 
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po(24a+fe.odd) = 8a + 2b where b e {0,1,2, 3}. The functions pu as are 
related to the function if in (3.7') through the following triangle, where 
n is any positive integer of the form 2m • (odd), and s,t > 0: 

t + (p(s — t) < m 

•>-• ' • > 

s < ptXn) " 1 t < 0»(ft) — 1 

This generalizes the classical relation (p(s) < m 44> s < po{n) — 1 
which is well-known to topologists. 

Let us now make some comments about our approach to Theorems 
(3.10) and (3.12). Our formulation of these results distinguishing four 
cases depending on the classes of m — £(mod4) and m — s(mod4) as 
in [41, 42] is simpler than that in [51, 16] (which distinguishes 16 
cases) and is easier to remember since it conforms completely with the 
classical formulation. The following properties of pt and as noted by 
Wolfe: 

(3 14) { M 2 n ) = Pt-i(n) + 1, pt(n) = /9t+8(16n), 
\ <Ta(2n) = crs-i(n) + 1, <?s(n) = <7s+8(16n), 

are now immediate from the form of the maximal values of s and t as 
computed in (3.11) and (3.13), and do not require tedious case-by-case 
verifications as in [51, Proposition 2.3]. Last but not least, our complete 
decomposition of the groups GÄ,$ in terms of K, C, D and Q led to a 
quicker and more intrinsic proof of the fact that the systems of matrices 
{ A i , . . . , AÄ, B i , . . . , Bf} can be found with entries from {0, ±1}. This 
fascinating combinatorial fact has been observed by Wolfe [51] in the 
general (s, i)-setting and by K.Y. Lam [26], Gabel [14], and Geramita-
Pullman [15] in the classical Hurwitz-Radon setting with t = 0. 

From (3.8), we see that, for a fixed n = 2mno (and varying s,£), 
the largest possible r = s + t for which Gsj has a real (orthogonal) 
e-representation on R n is 2m 4-1. The following consequence of (3.10) 
shows that this maximal value of r is always realizable, and also gives 
all pairs (s, t) which realize this value. 

COROLLARY 3.15. (Cf. [42, (2.6)]) Letn = 2mn0 be given, where n0 is 
odd. Let 5, t be non-negative integers with s+t — 2ra+l. Then Gs,t has a 
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real (orthogonal) e-representation cmR n if and only if t = m + l ( m o d 4 ) , 
if and only if the "signature" t — s is = l (mod8) . 

PROOF. The two congruence conditions are clearly equivalent since 

(t - s) - 1 = t - (2m + 1 - t) - 1 = 2(t - m - 1). 

Suppose the said e-representation exists. Then, by (3.8), we must be 
in the case t — s = l (mod8) because this is the only case which does 
not contradict s = 2m + 1 — t. Conversely, if t — s = l (mod8) , the last 
column of (3.8) implies that Gs,t has the desired real e-representation 
on R n . D 

To conclude this section, we shall now apply the decomposition 
theory in §2 to compute the sizes of the maximal abelian and maximal 
elementary abelian subgroups of Gs,*. These results are probably not 
new; on the other hand, they do not seem to be easily available in the 
literature. In the case of extra-special p-groups G for p an odd prime, 
Pham Anh Minh [30] has recently shown that the maximal elementary 
abelian subgroups of G are also maximal abelian (and they all have size 
pn+l when \G\ = p 2 n + 1 ) . For 2-groups, however, the situation turned 
out to be different, as the example of the quaternion group Q shows. In 
the following, we shall prove that , for G = Gst, a maximal elementary 
abelian subgroup E of G is maximal abelian if G has type I, and E lies 
as a subgroup of index 2 in a maximal abelian subgroup A of G if and 
only if G has type II or type III. The indices [G : E] and [G : A] turn 
out to be exactly the dimensions of the irreducible e-representations of 
Gs.ti respectively over R and over C. 

We begin with an elementary lemma. 

LEMMA 3.16. Let H be any subgroup of G — Gst containing the 
commutator subgroup G'. If\H\ = 2 m + \ then [G : CG(H)) < 2 m . 

PROOF. Let h\,..., hm e H be such that their images in G/G' form 
a Z2-basis of H/G''. Since \G'\ < 2, each hi has at most two conjugates 
in G. Therefore, [G : Co (hi)] < 2 for each i. Taking the intersection of 
the CG(hi)% we get [G : CG(H)\ < 2 m . D 
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THEOREM 3.17. Let A be a maximal abelian subgroup of G = G8j 
and write r = s + t as 2% or 2i + 1. Then [G : A] = T ; in other words, 
[G : A] is exactly the dimension of an irreducible e-representation of G 
over C. The isomorphism type of A is given by the following chart: 

Id 
A\ 

Dj 

\ Kl or K{-XC 

D{~XQ 

Kj~lC 

DlK 

Kj'+l or KlC 

Di~lQK 

KlC 

DlC 

K{C 

PROOF. Let [G : A] = 2k. Clearly, A must contain Z(G) Ç G\ so 
A is normal in G. By Ito's Theorem in group representation theory 
[7, p. 365], we have 2l \ [G : A], so i < k. On the other hand, since 
\A\ = 2 r" f c + 1 , the Lemma above yields [G : CG(A)} < 2r~k. Since 
CG(A) = i4, this amounts to A: < r — k. Therefore, 2k < r and so 
k < i. This completes the proof that [G : A] = 2 \ To determine the 
isomorphism type of A, note that A has exponent < 4 and yl2 Ç (e) has 
order < 2, so A is isomorphic to either J f f©- - - eÄ 'o rÄ '0 - - -©Ä'©C 
If G has type I (viz., G = Dl or DlK), clearly both of these possiblities 
can occur, for Kl and Kl~xC are both abelian (and hence maximal 
abelian) subgroups of Dz, and K1,Jrl and KlC are both abelian (and 
hence maximal abelian) subgroups of DlK. Now assume that G has 
type II or type III. If A were of exponent 2, there would exist a one-
dimensional real representation T : A —>{±l}cR* with T(e) = — 1. 
Inducing T up to G, we would get a real e-representation of dimension 
[G : A] = 2 \ This would imply that G has type I, a contradiction. 
Thus, A must have exponent 4 and hence A = K®-"(BK®C.n 

THEOREM 3.18. Let E be a maximal elementary abelian subgroup of 
G and write r = s + t as 2i or 2i + 1. Then [G : E] is given by the 
following chart: 

G 

[G : E) 

Dj 

T 

D*-lQ 
2 t + i 

DjK 

T 

Dj-lQK 
2<+i 

DjC 
2i+i 

In other words, [G : E] is exactly the dimension of an irreducible real 
e-represention ofG. {In the notation o/(3.7'), [G : E) = 2 t+<^*>.) 



772 T.Y. LAM AND T. SMITH 

PROOF. Let A be any maximal abelian subgroup of G containing E. 
First let us assume that G has type II or type III. By the preceding 
theorem, A has the isomorphism type K®- • - © / ^ © C . Since E is also a 
maximal elementary abelian subgroup of A, we clearly have \E\ = \A\/2 
and so [G : E] = 2[G : /I] = 2 i + 1 . Next, we assume that G has type 
I. In this case we must prove that E — A, i.e., E is already maximal 
abelian. To do this, it is enough to treat the case G — Dl. For, if 
G — DlK, the group E must contain the factor K and so E = EQK, 
where EQ is a maximal elementary abelian subgroup of Dl. If we know 
that [D* : E0] = 2% then [DlK : E0K] = T as well. 

Consider now the case G = Dl, and assume that E ^ A. Then |i£| = 
\A\/2 = 1/2 • 2l+l = 2 \ By Lemma 3.16, we have [G : CG(E)] < 2l~x 

and, by Theorem 3.17, [G : A] = 2?; hence CG(E) ^ A. In particular, 
CG(E) cannot be abelian, so there exist two non-commuting elements 
x,y £ CG(E). The group H generated by x and y is of order 8, so 
we have either H = D or H = Q. Consider the group L := CG(H). 
Clearly, L D E, L fi H = Z{H) = (e), and by Lemma 3.16 again, 
[G : L] < 4. From this, we see easily that G — LxH and hence 
Z(L) = Z(G) = (e). Furthermore, Lf Ç G' = (e), so L is extra-special. 
By Proposition 1.8 (1) and Theorem 2.10 (for r even), it follows that 
either L ^ D1'1 or L ^ D ? - 2 Q . If L ^ £>i_2<2, then, by our results in 
the type II case, the size of a maximal elementary abelian subgroup of 
L is 2 Î _ 1 . We have now a contradiction since E Ç L and |i£| = 2 \ Now 
assume L = Dl~l. In this case we must have H = D; for if H = Q, 
the group G = LxH = Dl~xQ would have type II instead. Fix a non-
central element x of order 2 in the dihedral group H. Then x £ E since 
EH H Ç LDH = (e), and £ commutes elementwise with L D E. Thus, 
( £ , #) is a bigger elementary abelian subgroup than E. This is again a 
contradiction, so we must have E = A. ü 

REMARK 3.19. From Theorem 3.17, it follows that an irreducible 
e-representation of G = Gst over C can be obtained by inducing to 
G any 1-dimensional e-representation A —• { ± l , ± i } Ç C*, where A is 
any maximal abelian subgroup of G. Similarly, from Theorem 3.18, it 
follows that an irreducible e-representation of G over R can be obtained 
by inducing to G any 1-dimensional e-representation £?—>{±1}CR* , 
where E is any maximal elementary abelian subgroup of G. 
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REMARK 3.20. In the case when G = GÄ}o» Yuzvinsky [53] has 
constructed certain explicit examples of maximal elementary abelian 
subgroups E Ç G in terms of the generators a^'s. These subgroups E 
were used in [53] to construct new monomial pairings satisfying the 
norm identities of Hurwitz [20, 21]. However, the proofs of Theorems 
1 and 2 in [53] both require corrections, while the truth of Theorem 3 
there remains in doubt (cf. [45]). 

4. Relations to quadratic forms over F2. The decomposition 
theory of the groups G — Gsj developed in §2 turns out to have a very 
natural interpretation in terms of the quadratic form theory over the 
field F s = {0,1}. In this (mainly expository) section, we shall try to 
make this connection explicit. Basic references for the material in this 
section are the papers of Quillen [35] and Wall [49]. 

For any two elements x, y e G = GSìt, define B(x,y) e F 2 = {0,1} 
by the equation [x,y] — x~ly~lxy = eB(x>y). It is easy to see that 
B(x,y) depends only on the images of x and y in the commutator 
quotient group W := G/Gf. Thus, B gives a pairing BQ :WxW —> F2. 
Here and in the following, we shall view W as an F2-vector space (of 
dimension r = s + t). Using the fact that G' Ç Z(G), a straightforward 
calculation shows that BQ is an alternating F2-bilinear form on W. 

For x £ G8ìti define q(x) G F 2 = {0,1} by the equation x2 — eq("x\ 
Again, q(x) depends only on the image of x in VF, so q defines a function 
qo : W -> F 2 . Since 

(xy)2 = X'yx-y = x- xyeB{x'y) • y = e
q^x)eq{y)eB{x^\ 

it follows that qo is an F2-quadratic form on W with BQ as its associ­
ated symmetric bilinear form. Using the images of a\,..., a<s, 6 1 , . . . , bt 

as a basis of W) we can express qo by the upper triangular matrix with 
ones above the diagonal, and with s ones and t zeros on the diagonal. 
In other words, qo can be coordinatized in the form 

(4.1) ^ = ^ l r - ^ r ) = ^ + 11 , + ^ + ^2 XiXi' 
l < i < j < r 

In particular, the four basic groups K, C, D and Q have the associated 
quadratic forms 0 • x2, #2, xy and x2 + xy + y2 respectively. 
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The following proposition shows that the isometry class of the 
quadratic form qc determines the group G. This is a special case of 
a result of C.T.C. Wall [49, Proposition 10]. Since the proof is fairly 
short, we include it here for the sake of completeness. (See also the 
beginning remarks in §4 of [35].) 

PROPOSITION 4.2. Gs^ is isormorphic to Gs
f,t' if and °nly if Qs,t is 

isometric to qs>,t'• 

PROOF. The "only i f part is clear. For the "if part, let ip be 
an isometry from Gsj/G'st to Gs',t

f/G's, t,. Choose c i , . . . , c s and 
rfi,...,df G Gs\t'

 s u c n that (p(aiG'st) = CiG's, t, and <p(bjG'st) = 
djGf

H, t, for all z , j . The fact that ip is an isometry implies that 
{ciidj,e} satisfy the defining relations (1.1) between {a^fy, e}. There­
fore, $(a,i) = Q, $(bj) = dj and 3>(e) = e gives a well-defined homo-
morphism $ : Gsj —• Gs>j> lifting tp. If ker$ / {1}, it would contain 
a nonidentity central element of Gsj- However, $(e) = e / 1 and 
$(eka\ • • • as b\ • • • bt) = ekc\ • • • cs d\- • dt ^ 1 (unless A: = s = t = 0). 
Thus, ker<I> must be {1}, and since 5 + t = sf + t', $ : Gsj —* Gv,*' is 
an isomorphism. D 

Let us now recall some basic notions associated with quadratic forms 
over a field F of characteristic 2. Let (W,q) be a quadratic space over 
F with the associated alternating bilinear form B. We can associate 
with (W,q, B) the following two radicals: 

(4.3) rad f î W = {w e W : B(w, W) = 0}, 

(4.4) radg W = {w e W : B{w, W) = q(w) = 0}. 

The quotient space W/mdßW inherits from B a non-degenerate al­
ternating form, so it has a symplectic basis and is even-dimensional. 
Following Chevalley [3, p.12], we call dirci/r VF/rad^V^ the rank of q, 
and dim F radß W/ra,dq W the defect of q. In the case when q has 
defect 0, the Arf invariant of #, denoted by A(ç), is defined as follows. 
Since q | r a d # W = 0, q induces a quadratic form q on W/T3,Ó.BW. Let 
{êi, / j , . . . , ê n , fn} be a symplectic basis for VF/radß VF. Then 

(4.5) A(g) G F/{a;2 + x : x £ F} 



CLIFFORD-LITTLEWOOD-ECKMANN GROUPS 775 

is defined to be X^5(^j)^(/j)- It can be shown that the class of this 
value in F/{x2 + x : x G F} is independent of the choice of the 
symplectic basis (see [24, pp.31-32], [44, p.340]), and that if q' is 
another quadratic form of defect 0, then A(q J_ qf) = A(q) + A(qf). If 
q has positive defect, the Arf invariant of q is undefined. 

We shall only be interested here in the case when F — F2. In this 
special case, q is an F2-linear functional on radß W (since x2 = x for 
any x E F2), so the defect of q is either 1 or 0. And, in case q has 
defect 0, the value of A(q) is either 1 or 0 since F2/{x2 + x : x G F 2 } 
is just F2. The classification of quadratic forms over F2 (with possibly 
non-zero £?-radicals) is fairly well-known and is, for instance, nicely 
explained in [49, Theorem 11]: If q has defect 1, then the isometry 
type of q is determined by its dimension and its rank; if q has defect 0, 
then the isometry type of q is determined by its dimension, rank and 
the Arf invariant A(g) 6 F 2 . 

Now, returning to the CLE-groups, our classification of the GÄ,t's in 
§2 leads quickly to the determination of all the isometry invariants of 
the associated forms qHit, as follows. 

THEOREM 4.6. Let G = G8ìu and r = s + t £ {2i,2i + 1}. Then 
the associated quadratic form qc has rank 2z, and its defect and Arf 
invariant are determined as in the following chart: 

(1) (Type I) 

(2) (Type II) 

(3) (Type III) 

t — s (mod 8) Defect Arf Invariant 

0, 1, 2 

4, 5, 6 

3,7 

1 ° 
0 

1 1 

0 

1 

undefined 

PROOF. For W = G/G', the two radicals for the quadratic space 
(W, q, B) (q = qc B- BG) are clearly 

(4.7) rads W = Z(G)/G', 

(4.8) rad, W = {x e Z(G) : x2 = 1}/G'. 

From (2.3), it follows that rads W has dimension 0 or 1 according as 
r = 2i or 2i + 1. In either case, the rank of q is 2i. In Cases (1) 
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and (2), the canonical form of G is D\ Dl~lK, D{Q or Di~1QK, 
and therefore Z(G) is either (e) or = K. From (4.8), it follows that 
radB W = radq W, so q has defect 0. In Case (3), Z(G) = C, so 
dim rad# W — 1, dimradg W — 0 and therefore q has defect 1. 

Finally, to compute the Arf invariant of q, note that if we have an 
isomorphism G1XG2 = G3 where GVs are CLE-groups, then qc3 is 
isometric to the orthogonal sum qcl -L qG2i

 a n d therefore A(qc3) = 
A(QGI) + ^ ( ^ G 2 ) if CG! a n ( i 9G 2 both have defect 0. This leads 
immediately to the calculation of A(qSìt)

 m Case (1) and Case (2) since 
qD = xy has Arf invariant 0 and qç = x2 + xy + y2 has Arf invariant 
1. D 

REMARK 4.9. Let H denote the "hyperbolic plane" xy. Then 
the five canonical forms D\ Dl-lQ, D{K, D%~XQK and DlC have, 
respectively, the associated quadratic forms 

i H , (i - 1) • H _L (x2 +xy + y2), i • H ± 0 • z2 , 

(z - 1) • H _L (x2 + xy + y2) ±0-z2 and i • H J_ z2 . 

These represent precisely all the possible isometry classes of forms over 
F2 of rank 2z and dimension 2i or 2i + 1. The special group isomor­
phisms in Corollary 2.8 used for the derivation of the five canonical 
forms all have natural quadratic form analogues over F2; we shall 
leave to the reader the pleasant task of writing down the various form 
isometries predicted by Corollary 2.8 and finding direct proofs for these 
isometries. 

It is worth noting that the Arf invariants A(qsj) can also be expressed 
by the following rather symmetrical tables: 

\ 6 " 

0 

2 

4 

6 

0 1 2 3 

0 1 1 0 

0 0 1 1 

1 0 0 1 

1 1 0 0 

\ S 

1 

3 

5 

7 

0 

0 
* 

1 
* 

1 2 3 
* 1 * 

0 * 1 

* 0 * 

1 * 0 

(r = s + t = even) (r = s H- t = odd) 
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where the values r are tabulated mod 8 and the values of s are tabulated 
mod4. ("*" means "undefined".) 

In the special case of the groups G,s,o, Wall has given a different 
calculation of the Arf invariants A(qs$) in [49]. In this Wall paper, an 
explicit symplectic basis is constructed for GS$/Z{GS$), from which 
A(gSio) can be computed without difficulty. A moment's reflection 
shows that Wall's construction of the symplectic basis works also in 
the (s,£)-setting. In fact, if we relabel a i , . . . ,atS, &i,... , 6* G GSìt as 
x\,... ,x r , where r = s + t £ {2z, 2z + 1}, then 

( e\ = x\, e2 = x\X2Xz, , a = x\ • •-x2i-2^2i-i, 
I / l = #2 , Î2 = X\X2X±, , fi= Xi--- X2i-2X2i, 

will give a symplectic basis in Gsj/Z(Gsj). The calculation of 
Yl<l(ej)Q(fj) (f°r Q — Qs,t) is a little messy because of the "transition" 
from the a«'s to the òj's, but after the necessary case considerations are 
made, one gets the following formulas for A(qs t) in the defect 0 cases: 
(4.11) 

A(n \ = / [(o- - I)2 - l]/8 ifa:=t-s= even, 
Kqa>t} \ (a2 - l ) /8 ifa:=t-s= odd £ 3, 7(mod8). 

It is easy to check that this is indeed consistent with the values of 
A(qs,t) given in (4.6). Also, since the form qs,t is defined over Z (cf. 
(4.1)), the computation of &(q8it)

 c a n presumably be done also by 
Wadswort h 's formulas in [48], at least in the case r = even (when the 
£?-radical is zero). 

In closing, we observe that the results in Theorems 3.17 and 3.18 
concerning the sizes of the maximal abelian subgroups and the maximal 
elementary abelian subgroups in G = G8ìt are also capable of quadratic 
form theoretic interpretations. In fact, as observed by Quillen [35, 
p.204], the maximal abelian subgroups A Ç G correspond to maximal 
totally jB^-isotropic subspaces A/G' Ç GjG\ while the maximal 
elementary abelian subgroups E Ç G correspond to maximal totally 
^-isotropic subspaces E/Gf Ç G/G'. Thus, Theorems 3.17 and 3.18 
may be interpreted as giving the dimensions of the maximal totally 
Z?G-is°tropic and the maximal totally ^-isotropic subspaces of the 
quadratic space ( G / C , qc)- In the case when this space has a zero BQ-
radical, it is also known generally that the maximal totally ^G-isotropic 
subspaces are conjugate under the action of the orthogonal group O(qo) 
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(see [3, p. 17]). For a different computation of the dimension of a 
maximal totally ÇG-isotropic subspace of {G/G' ,qc), see [35, Corollary 
2.7]. Note that this dimension has a cohomological meaning, since 
Quillen has shown in general that, for any finite p-group (2, the maximal 
rank of an elementary abelian p-subgroup of G is exactly the Krull 
dimension of the commutative modp cohomology ring of G (see [36]). 
In the case when G is an extra-special p-group, this cohomology ring 
was studied in [35] for p = 2, and in [46] and [30] for p odd. The 
Schur multiplicator group of an extra-special p-group was computed 
by Blackburn and Evens [2]. 

5. Clifford algebra periodicity. In this section, we shall show how 
the results in §2 can be used to calculate quickly the graded Clifford 
algebra C(<pm,n) of the form <pm,n = m(—l) _L n(l) over a field F 
of characteristic not 2. In the following, we shall abbreviate C(^m ,n) 
by C m , n . Our calculations of these will be in terms of the four basic 

Clifford algebras X := C1 '0 ^ F ( x / Z ï ) , Y := C2 '0 ^ ( ^ j F 1 ) ' Z := 

C0 '1 ^ F(y/i) and W := C0 '2 ^ 0 f \ with notations as in [27, p.127]. 

All graded algebras in this section are understood to be Z2-graded 
algebras. For two such algebras A and B over F , we can form the usual 
tensor product A®F B and the graded tensor product A®pB (see [27, 
p.77]). Both are graded algebras; however, in general, they are not 
isomorphic even as ungraded algebras. For two quadratic forms q and 
q' over F , one has a graded algebra isomorphism 

C(q JL q') ~ C(q)êFC(q') [27, p.105]; 

in particular, C m + P ' n + 9 ^ C m ' n 0 F C p ' 9 . The latter isomorphism is the 
key to the computation of CTn,n in [27, pp.126-129]. It is, therefore, 
somewhat suprising that the alternative computation of C m , n below 
does not depend on this isomorphism, and in fact, does not depend on 
using the graded tensor product (g) at all. To emphasize this point, we 
shall now drop the notation ® altogether: all the &s below shall denote 
the ordinary tensor product of graded algebras (over F). 

Let G = Gm,n, with its usual generators e, a\,..., am and ò i , . . . , bn. 
We write F G for the group algebra of G over F , and let F G de­
note FG/(e + 1). We shall view this as a graded algebra by assign­
ing degree 0 to e and elements of F , and degree 1 to the elements 
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a i , . . . , am, b\,..., bn. It is easy to see that F G is isomorphic to the 
graded Clifford algebra C r n 'n . 

Note that the definition of FG as a graded algebra depends on 
the specific choice of the generators of G. For instance, although 
Go,2 — Gi,i as groups (both being isomorphic to the dihedral group 
D), FGo,2 and FGi,i may not be isomorphic as graded algebras. In 

fact, the even part of FG^2 = C0 '2 = (^y1) i s F ( x / = r ï ) (as an 

ungraded algebra), but, according to the following lemma, the even 

part of T(hJ = C1 '1 9* {LzT11) is F x F . If - 1 g F 2 , these are not 

isomorphic. 

LEMMA 5.1. We have a graded algebra isomorphism i^-p-/ — 

M2(F). (For any graded algebra A,M.n(A) denotes the matrix algebra 
Mn(yl) equipped with the check-board grading, see [27, p.81].) 

PROOF. By definition, / ^ ^ \ ^ (F • 1 0 F • k) 0 (F • i 0 F • j) with 

i2 = - 1 , j 2 = 1 and k = i j . Clearly, z H-+ ( ^ *) , j i-> ( J j ) gives 

the desired graded algebra isomorphism. D 

Now consider the group G.s,£xGm,n- We shall regard this group as 
generated by the given generators of GSit and those of Gm,n. With 
this choice of generators, F(G,s,£xGm,n) acquires the structure of a 
graded algebra. Since the two subalgebras FGSit and FGm,n commute 
elementwise, we see that, as graded algebras, 

F(G.,,,xGm,n) s FGSìt ® FGmìn * C^ ® Gm 'n . 

Using the computation of G, stxGm?n in Theorem 2.5, we shall now 
deduce 

THEOREM 5.2. CÄ,*®Cm,n zs isomorphic to the algebras listed in the 
last column in the six cases below (where r := s -h t): 
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s r ( m o d 4 ) C8^®C 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

odd 

even 

odd 

even 

odd 

even 

0 

2 

2 

0 

1 

3 

/^.s + n , i+m 

/~is-\-m<t-\-n 

Cs,t g j ^ n , ™ 

In Cases (1),(2),(3),(4), we have graded algebra isomorphisms. In 
Cases (5),(6), we have only ungraded algebra isomorphisms. 

PROOF. Since r is even in the first four cases, the group isomorphisms 
constructed in the proof of Theorem 2.5 preserve the degrees of the gen­
erators of Gs%txGm%n and those of Gs+nj+m (respectively Gs+rn,t+n)-
Thus, the induced algebra isomorphisms are graded algebra isomor­
phisms. In the cases (5) and (6), however, r is odd, so we only get 
ungraded algebra isomorphisms. • 

C O R O L L A R Y 5.3. (1) ( D I A G O N A L L A W ) c m + 1 ' n + 1 ^ M 2 ( C m ' n ) . 

(2) C n < n ^ M 2 ~ ( F ) . 

PROOF. By Case (3) of Theorem 5.2, C m + l n + 1 ^ C 1 ' 1 ® C m n 

as graded algebras. By Lemma 5.1, we therefore have £7m+1>n+1 = 

M 2 ( F ) ® C m ' n . This gives (1) since M P ( F ) 0 A ^ MP(A) for any 

graded algebra A. (2) follows from (1) since Mp(Mq(A)) = Mpq(A). n 

(Here, and in the following, all isomorphisms are graded algebra 
isomorphisms.) 

THEOREM 5.4. (1) C 4 0 ^ C 0 ' 4 . 

(2) (Periodicity mod 8) C m + 8 ' n ^ M i 6 ( C m ' n ) 9* Cm-n+8. 
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PROOF. (1) Let G4,0 = (e ,a i , . . . , a 4 ) and G0,4 = (e,&i,... ,64). 
We have an explicit group isomorphism (p : Go,4 —*• G$$ by (p(e) = 
e, (p(bi) = zdi, where z := a\a2dzQ>^ Since ip preserves degrees, we get 
a graded algebra isomorphism FG0,4 = FG4,0, and so C°A = G4'0. For 
(2), first note that 

C 8 ,0 ^ C 4 ,0 0 C 4 ,0 

s G4'0 0 G M 

= M1 6(F) 

(by Theorem 5.2 (4)) 

(by (1) above) 

(again by Theorem 5.2 (4)) 

(by Corollary 5.3 (2)). 

Therefore, by Theorem 5.2 (4) once more, G m + 8 ' n 9* G8'0 0 Gm 'n = 
Mi 6 (F) 0 C m ' n ^ Mi 6 (C m ' n ) , and similarly for C m ' n + 8 . D 

In view of the Diagonal Law 5.3 (1) and the Periodicity Law 5.4 (2), 
the computation of Gm , n is reduced to the cases Gn,° and C0 , n for 
n < 7. We shall now compute these in terms of X, Y, Z and W (defined 
at the beginning of this section), as follows (cf. [27, p. 128]): 

n 

Cn'° 
C 0 , n 

0 1 
F X 

F Z 

2 
Y 

W 

3 
Y®Z 

X®W 

n 

Cn'° 
C 0 , n 

4 5 6 7 

Y®W M2{X®W) M4(W) M8(Z) 

Y®W M2(Y®Z) M4(F) M8(X) 1 

In fact, by Theorem 5.2 (4), Cp+2 '° ^ G2'0 0 G°'*> ^ F 0 G°'p. This 
computes C3 '0 and G4'0. Similarly, G°^+2 S G0'2 0 G?'0 Ç* W ® C^°; 
this computes G0,3 and G0,4. Finally, for p < 4, we have 

Gp+4 '° ^ G4'0 0 Gp'° 

^ G M 0 Cp'° 

^ M 2 P ( G ° ' 4 ~ P ) 

(by Theorem 5.2 (4)) 

(by Theorem 5.4 (1) 

(again by Theorem 5.2 (4)) 

(by Corollary 5.3 (1)). 
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For p = 1,2,3, this computes C5<°, C 6 ' ° ,C 7 ' 0 , and the graded al­
gebras C ° - 5 , C 0 ' 6 , C ° ' 7 are computed similarly, by using C ° ' p + 4 ^ 
M 2 p(C 4 - p - ° ) . D 

The computations of the C m , n , s as ungraded algebras now follow 
from the above as in [27, pp.128-129]. 

To conclude this final section, we shall now say a few words about 
the possible generalizations of the groups G3j and the Clifford algebras 
Csj. As early as 1934, Littlewood [28] had already observed that one 
can extend the definition of the G.,,t's to get an analogous class of finite 
p-groups for any prime p. This class is slightly larger than the class 
of extra-special p-groups, and is susceptible to the treatment given in 
the present paper. A further generalization can be made by replacing 
the role of the prime p by that of an arbitrary integer n > 2. The 
groups G which arise out of this generalization will have generators c;'s 
(1 < i < r) with the relations c™ = ujk^ and C{Cj = LUCJCÌ whenever 
i < j , where UJ is a (fixed) central element such that uon = 1. If F is 
any field which contains a primitive n root of unity LJQ, we can then 
define as before a finite dimensional F- algebra F G := FG/(LÜ — LÜQ). TO 
see the connection between these algebras and the C , s < ,s, let us look 
at the case when n is even, say n = 2m, and assume that the first 
s of the fc(i)'s are equal to m, and the reamining t of the fc(z)'s are 
zero, where s + t = r. Renaming c\,..., cr as a\,..., as, b\,..., bt, the 
algebra FG then has generators ä\,..., ä.s and ò i , . . . , bt with relations 
of = OJQ1 = —1, bj = 1 and ä{äj = LUQÏÏjäi (for any i < j ) , . . . , 

etc. This is precisely the "generalized Clifford algebra" studied by 
Yamazaki [52], Morris [31, 32] and Popovici-Ghéorghe [34]. (For 
n — 2 and with u?o = —1 / 1, we get back the classical Clifford 
algebras Cs,t.) The generalized groups G and their representations 
can be investigated by using techniques similar to those used in this 
paper, so that one can prove again the existence òf a periodicity law 
modulo 8 and ascertain the explicit structure of the groups G as well as 
that of the generalized Clifford algebras FG, in particular recapturing 
and clarifying the results of Morris in [31, 32]. The details of this will 
be reported in [45]. Finally, we might add that commutation relations 
of the kind ä{äj — uo^äjäi (where ÜÜQ is a primitive nth root of unity) 
are also of significance to physicists. Indeed, a considerable number of 
papers written on generalized Clifford algebras seem to have physical 
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motivations. Since a collection of some of these papers has appeared 
in the book by Ramakrishnan [38], we shall refer the reader to this 
work for a list of the relevant papers, and also for an exposition of how 
o;o-commutation relations and generalized Clifford algebras are used in 
physics. 

Note added June, 1987. After the completion of this paper, 
we were informed by Professors A. Hahn and A.O. Morris that a 
closely related work by H.W. Braden ('W-dimensional spinors: Their 
properties in terms of finite groups") has appeared in J. Math. Physics 
26 (1985), 613-620. In this work, Braden also described completely the 
decomposition theory of the groups G8,t

 a n d discussed their real and 
complex representations. Braden obtained his explicit decompositions 
of G — Gs,t by working with the quadratic form qSit on G/G', so his 
methods were close in spirit to those of Wall [49]. We feel, however, 
that our methods are more elementary, and that they led to a quicker 
proof and a better view of the periodicity of the groups Gst. Since, 
also, various other results and viewpoints in our paper are not covered 
by those of Braden, we believe it is still best to publish this work in its 
original form. 
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