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A N O T E ON P O S I T I V E Q U A D R A T U R E RULES 

H.J. SCHMID 

ABSTRACT. A classical problem in constructive function 
theory is the characterization of positive quadrature rules 
by linear combinations of orthogonal polynomials the roots 
of which determine the nodes of the formula. A complete 
characterization has been derived by F. Peherstorfer in 1984. 
In this note a variant to his approach will be discussed. 
It is the one-dimensional restriction of a characterization 
of interpolatory cubature formulae which might be of some 
general interest. 

1. In t roduct ion . We denote P the ring of real polynomials in one 
variable and by P[a,6] the restriction of P to [a, b] Ç R. The linear 
space spanned by { l , x , x 2 , . . . , x m } will be denoted by P m . 

Let 
J : P [ a , 6 ] - R : / - / ( / ) , 1(1) = h 

be a strictly positive linear functional, i.e., / is linear and / > 0 implies 
1(f) > 0 f° r all / £ P[a ,6 ] , / -=r 0. Thus / represents those functionals 
usually studied in numerical integration. 

We denote by pi the orthogonal polynomials of degree i with respect 
to / , normalized such that the highest coefficient is 1, i.e., 

i - i 

pi = id1 + yajidj 

such that I(fpi) = 0 for all / G P ; - i - These polynomials satisfy the 
recursion formula 

(1) po = 1, Pi = id-T0, pi+i = (id-Ti)pi - AiPi-i,i = 1,2,... , 

where 

r 0 = I(id), Ao = 1, I\ = i ™ , A, = - j ^ L , i = 1,2,... . Ijidpì) A _ /(p?) 
IÌPÌ) ' ' HPUY 
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396 POSITIVE QUADRATURE RULES 

In addition we use the notation 

Gr = I(pf) = A 0 Ai . . . A ? > 0 , i = 0 , 1 , . . . . 

The linear functional 
(2) 

k 

Q : P — R : / — Q(f) = ^ Q / ( X , ) , a > 0, xt G [a,/?], x, ^ x „ 
2 = 1 

is called a positive quadrature rule of type (ra, k) for / with nodes in 
[a,/3], if / ( / ) = Q(/ ) for all / e P m and I(idm+l) # Q(id™+1) hold. 
Many applications require that the nodes Xj belong to [a, 6]. 

By the strict positivity of / we obtain the classical lower bound 
k > [m/2] + 1 for a quadrature rule (2) of degree m. Hence we can 
consider formulae of type (2k — s,k), s = l ,2, . . . , fe + l. For 5 = 1 
we obtain Gaussian formulae, for s = 2 formulae of Radau-type. The 
Lobatto-type case has been studied by L. Féjer [1] and was treated 
completely by C.A. Micchelli and T.J. Rivlin [2]. The general case, 
finally, has been characterized completely by F. Peherstorfer [4]. For 
the historical development and further approaches we refer to [3, 7 and 
8]. 

We present the one-dimensional case of a characterization of interpo­
l a t o r cubature formulae. The one-dimensional case is easy to derive 
and allows control of the distribution of the nodes. 

2. Characterization. Let (2) be a quadrature rule of type 
(2k — s,k). Then the polynomial q = (id — x\)(id — X2)... (id — Xk) 
vanishes at the nodes of q. Since the coefficients C{ are uniquely 
determined by the nodes, the roots of q determine the formula, or, 
more briefly, q generates the quadrature rule. Due to the degree of 
exactness q must be orthogonal to Pk-s with respect to / , hence 

s-l 

(3) q = Pk + y}2i"is-iPk-i, li € R, 71 # 0 . 
i = l 

To obtain the prescribed degree of exactness we must require 71 ^ 0. 
We shall study under which conditions on the 7;'s the polynomial q in 
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(3) generates a positive quadrature rule of type (2k — s, k) for / with 
nodes in [a,/?], thus characterizing all formulae of this type. 

Let q be an arbitrary polynomial of degree /c, we denote by 

Uq : P -+ P f e_! : / - i y / ) 

the linear projection from P to Pfc-i with respect to q, defined by the 
unique representation of / as / = rq + Y\q(f), r G P , Y\q(f) G P/k-i-
For the strictly positive linear functional / on P[a, 6] we define an 
associated linear functional depending on q by 

/ , : P - R : / - / , ( / ) = / ( I M / ) ) . 

These definitions allow the following characterization of positive quadra­
ture rules. 

THEOREM. Let I be a strictly positive linear functional on P[a,6]. 
For a given s, 1 < s < k -4-1, let q be of the form (3). Then q generates 
a positive quadrature rule of type (2k — s, k) for I if and only if Iq is 
strictly positive on P2k-i-

PROOF. (=*•). Let (2) be a positive quadrature rule of type (2k - 5, k) 
for / which is generated by q. Every nonnegative polynomial / G P2ÌI-1 
can be written as / = pi + p\, P\,P2 £ Pfc-i- So a nonnegative 
/ G P2fc-i, / # 0, cannot vanish all nodes of (2), and we find 

k 

/,(/) - J(n,(/)) = J(/ - ri) = X>/(x') > °-

where r G Pfc_i is chosen such that f -rq e Pfc-i- Hence 7q is strictly 
positive on P2fc-i-

(<=). If Iq is strictly positive on P2fc-i, then q is the fc-th orthogonal 
polynomial with respect to Iq, since Iq(gq) = 0 for all g G P ^ - i . So 
g generates the Gaussian formula of degree 2k — 1 for Iq. Since q is 
orthogonal to Pfc_s with respect to / , we find for all / G Y2k-s the 
relation 

Iq(f) = I(nq(f)) = I(f-rq) = /(/), 
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where r £ PA_.S is chosen such that / — rq G Pfc_i. Hence the Gaussian 
formula for Iq is a positive quadrature rule of type (2k — s, A:) for In 

The Theorem is the one-dimensional case of a characterization of 
interpolatory cubature formulae, see [6, Theorem 3.4.1]. The proof via 
projections is due to G. Renner [5]. In contrast to the multivariate case 
the proof can be reduced to elementary facts of Gaussian quadrature 
which are not available in the general case. 

Let q be of the form (3) and let Iq be strictly positive on P2fc-i- We 
denote by ç7, z = 0 , 1 , . . . , fc, the orthogonal polynomials with respect 
to Iq. The recursion for the q^s is of the form 

(4) fc+i = ( i d - r n f c - A t V . i , r * € R , Ai > 0 , i = 0 , l , . . . , f c - l , 

Since Iq = I on I*2k-s we obtain 

(5) qi = pt, z = 0 , l , . . . , k - [s/2], 

furthermore, q^ = q. 

Thus quadrature rules of type (2k — s, k) for / are generated by q = q^, 
the k-th orthogonal polynomial with respect to Iq. It can be computed 
recursively via (5) and (4) for arbitrarily chosen A* > 0, r* E R, i — 
k - [s/2),k - [s/2] + l , . . . ,fc - 1. This is F. Peherstorfer's elegant 
characterization. The distribution of the roots of q can be controlled 
by Sturm's Theorem applied to {<fc}i=o,i fc- This is a characterization 
of the strict positivity of Iq by the recursion (4). In order to get a 
characterization by the coefficients of q - similar to the approach by G. 
Sottas and G. Wanner [7] - we shall present a direct application of the 
Theorem. 

3. Application. The strict positivity of Iq on P2k-i will be 
expressed in terms of the 7J'S in (3), while the distribution of the 
roots of q will be controlled by the Sturm-sequence of the orthogonal 
polynomials with respect to Iq. 

Let us assume that q is of the form (3) for a given 5,1 < s < fc + 1. 
The strict positivity of Iq on P2*-i is characterized by Iq{p2) > 0 for 
all p e Pfc_i,p ^ 0. Assuming 

fc-i fc-i 

?:=o i=o 
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the strict positivity of Iq is equivalent to 

A - l A - l 

* = 0 j = l 

for the described set of A?'s. Hence Iq is strictly positive on P2A-1 if 
and only if 

T = {Iq{PiPj))i.j=0.1 A-l 

is positive definite. So we have to compute the entries t^ of the k x k 
matrix T (depending on the 7;'s) and study the positive definiteness of 
T. For the computation we use the following 

LEMMA. Let Pi,Pj,0 < i,j < k - 1 be given. Then tij - Iq(piPj) = 
HPiPj — rijO)j where r^ is arbitrarily chosen in PA— s such that 

(6) 9ij = PiPj - rtJq e P2k-s-

PROOF. Since Iq(f) = 1(f) for all / G P 2 A - . S we get, for gtJ satisfying 
(6), the relation 

J(9ij) = HPiPj - rijq) = Iq(piPj - rijq) = Iq(piPj) = Uj. 

Let G be a A: x A: matrix with entries as defined in (6). If 0 < i -f j < 
2k — s we can choose r ^ = 0, hence gij — PiPj. So the first row and 
column of G are known. If row i - 1 of G has already been determined, 
we define, in addition, 

s-\ 

9i-l.k = -Y^ls-j9i-\M-j £ P2AT-*-
j=\ 

This polynomial satisfies (6) since it can be written as gi-\,k = 

Pi-iPk ~ qri-iM, where 

s— 1 

fi-i.k =Pi-i -^Is-jri-iM-j-
j=i 
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To compute the element of the i-th row of G we insert the recursion 
(1) for pi and pj+\ obtaining 

PiPj = pi-ipj+i + (Tj - Fi-i)pi-ipj + AjPi-iPj-i - Ki-xPi-2Vj. 

This implies 

9ij = 9i-ij+i + (r^ - Fi-i)gi-ij + Aj0i_i , j_i - Ai_i^j_2,j 

= PtPj - TijQ, j = 0 , 1 , . . . , fc - 1, 

where r ^ = r 7 - i j + i -f (Fj - I V i ) ^ - ^ + A ^ - i ^ - i - A i _ i r i _ 2 , J . 
Since the recursions for ^ j are linear we directly obtain the following 
recursions for the entries of T: 

tij = Gibij, 0 < i -h j < 2k — s, 

s - l 

(7) *»—i.fc = - ^ 7 * - i * i - i , f c - j ? i = k - s + l , k - s + 2, . . . , f c - 1, 

^-i,fc = £i- i , j+i + (Tj — r?:—l )^i—i,j + Ajti-ij-i — Ai_i t j_2, j , 

h j = k — s -f 2, A: — s + 3 , . . . , k — 1. 

Hence T can be writ ten as 

' - ( o s ) ' 

where D = d i a g { G 0 , G i , . . . ,Gk-s+i} and 

5 = 

/ Gk-s+2 
0 
0 

0 
0 

\— \\Gk-s+i 

0 
Gk-s+3 

0 

0 
* 
* 

0 
0 

Gk-s+4 • • 

* 
* 
* 

0 
0 
* 

* 
* 
* 

0 
* 
* 

* 
* 
* 

-liGk. 
* 
* 

* 
* 
* 

s + l \ 

/ 

T is positive definite if and only if the (s - 2) x (s - 2) submatr ix S is 
positive definite. Let us denote the elements of S by <T7J. The first row 
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and column of S are known. The remaining entries are computed from 
the recursion (7) as 

(8) 
(Tij — (Ti_ij + i + (Tj - Ti-i)ai-ij + AjCTi-ij-i - Ai_iCT7;_2.j, 

afc_s+i,j = 0 , i, j = k - s + 3, A; - 5-1-4,... , A; - 1. 

The elements of a^k^i = fc — s + 3, A; - s + 4 , . . . , fc - 2, are computed 
successively from 

(9) 

/(Tjfc_Ä+2Jk\ 

[ ^fc-S+3.A: I 

= -s 

/ 72 \ 
73 J 

The symmetry of 5 is useful for the calculation. For s = 2we obtain 

r = diag{Go,G1 , . . . ,G f e-1} 

which is obviously positive definite. For s = 3 we obtain 

S + ( G , _ i - 7 i G f c _ 2 ) , 

finally, for s = 4 we get 

g_(Gk-2 -JlGk-3 
\ -iiGksGk-i - Gk-2l2 + Gfc-37173- ( r^ - i - rfc-2)Gfc_37; , ) 

The computation becomes loathsome with increasing s. The positive 
definiteness of S restricts the jiS such that the corresponding q gen­
erates a positive quadrature rule for / with real nodes. This is the 
one-dimensional case of the characterization given in [6] being equiva­
lent to the conditions derived in [7]. 

To control the distribution of the nodes we use the polynomials qi 
which are orthogonal with respect to Iq. Let us assume 

i - i 

Qi = Pi + Yl èipJ' Si e R ' * = °> !> •••>*"" 1# 

j=0 
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Then Iq(qiPj) = 0 for j = 0 ,1 , . . . , i — 1 is equivalent to 

/6k.H+2\ 

= 0, i = k-[s/2]+l, ifc-[*/2] + 2 , . . . , f c - l . 
6j-i 

1 
0 

V o / 
Since Iq is strictly positive on P2AT-1, Q has fe pairwise distinct real roots 
and the g?'s form a Sturm-sequence. By Sturm's Theorem q has its real 
roots in [a, ß] if and only if 

(10) 
q(ß) > 0, (-l)kq(a) > 0, qr(ß) > 0, (-1) W ) > 0, 

i = 0 , l , . . . , f c - 1 . 

4. Examples. Let us characterize the first simple cases of positive 
quadrature rules of type (2k — s, k) with nodes in [a, 6]. 'For s = 2,3,4 
we have computed above the (5 — 2) x (s — 2) matrices S using (8) and 
(9). The positive definiteness of these matrices and (10) lead to the 
following results. 

Rules of type (2k — 2, A:) are generated by q = pk + ^iPk-i, where 
q(b) > 0, (-l)kq(a) > 0. Rules of type (2k - 3,k) are generated by 
Q = Pk + l2Pk-\ + 7iPfc-2, where 

71 <A i b_1 , 9(6) > 0 , (-l)*</(a) > 0. 

Rules of type (2A: — 4, A*) are generated by q = p^ + 73^^-1 + l2Pk-2 + 
7iPA:_3, where 

AA-2(Afc-i - 72) 4- Afc-27i73 + (rfc_i - rV2)Afc_27i - 7? > 0 

and 

q(b) > 0, ( - l )* 9 (a) > 0, qk^(b) > 0, ( - l ^ V - i M > 0, 

with 

9A-1 =Pk-l + 7i 
A*_ A:-2 

-Pk-2-
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These are the cases which are easy to derive. The amount of compu­
tational work increases rapidly with s. Further computation in this 
general set-up should be done using a computer-algebra system. 

If a special form of the generating polynomial q is of interest our 
approach seems to be easier to apply. We shall illustrate this by the 
following example. 

The polynomial 

( n ) Q = Pk + 7iPA-,+i, 7i # 0. 

generates a positive quadrature rule of type (2k - s,k) if |7i| is 
sufficiently small. Exact bounds can be determined easily in special 
cases, e.g., if / is chosen such that 

A? = A, iv; = r , i = k - s + 2, A: - s + 3 , . . . , k - 1. 

The Chebyshev-polynomials of the first and second kind (Ai is 1/2 or 
1/4, respectively) satisfy (1) with T, = 0, A2 = A3 = • • • = 1/4. So 
they belong to a functional of the appropriate class of s < k. For such a 
functional / and a polynomial q of type (11) the recursion (8) is reduced 
to 

oik - 0, 0-A._A+i,j = 0, ij = k - s + 3,k - s + 4 , . . . , k - 1. 

For 4 < s < k the matrix S is up to a positive factor of the form 

/ A 0 . . . 0 - 7 i \ 
| 0 A2 . . . - 7 i 0 

S=\ . . . , 

\ - 7 ! 0 . . . 0 A*"2 / 

hence it is positive definite if and only if 72 < A s _ 1 . The orthogonal 
polynomials with respect to Iq are of the form 

qk-i = Pk-i H- j£Pk-»+i+u i = 0 , 1 , . . . , [s/2] - 1, 

so the condition (10) can be checked quite easily. If we select the 
Chebyshev-polynomials of the first and second kind, respectively, the 
roots of q are in (-1,1) if 72 < A s _ 1 . 
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