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A NOTE ON POSITIVE QUADRATURE RULES

H.J. SCHMID

ABSTRACT. A classical problem in constructive function
theory is the characterization of positive quadrature rules
by linear combinations of orthogonal polynomials the roots
of which determine the nodes of the formula. A complete
characterization has been derived by F. Peherstorfer in 1984.
In this note a variant to his approach will be discussed.
It is the one-dimensional restriction of a characterization
of interpolatory cubature formulae which might be of some
general interest.

1. Introduction. We denote P the ring of real polynomials in one
variable and by P|a,b] the restriction of P to [a,b] C R. The linear
space spanned by {1,z,z2,...,z™} will be denoted by P,,.

Let
I:Pla,b]>R:f—-I(f), I(1) =1,

be a strictly positive linear functional, i.e., I is linear and f > 0 implies
I(f) > 0 for all f € Pla,b], f # 0. Thus I represents those functionals
usually studied in numerical integration.

We denote by p; the orthogonal polynomials of degree i with respect
to I, normalized such that the highest coefficient is 1, i.e.,

i1
Di = ld' + Zajidj
j=0
such that I(fp;) = 0 for all f € P,_;. These polynomials satisfy the
recursion formula

(1) po=1, p1 =id —To, pit1 = (id —Ti)p; — Aipi—1,i =1,2,.. .,

where

. I(idp?) I6?)
IFo=1(id), Ao=1,T; = —=, Ay = —~, i=1,2,....
0= 1(id), Ao 3 T02)
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396 POSITIVE QUADRATURE RULES

In addition we use the notation

Gi:I(p?)———AoAl...A,’>O, 1=0,1,....

The linear functional
(2)
k

Q:P—oR:f-Q(f)=) cif(zi) ¢ >0, zi€[a,fl, zi # ;,

i=1

is called a positive quadrature rule of type (m, k) for I with nodes in
[a, 8], if I(f) = Q(f) for all f € P,, and I(id™*!) 7 Q(id™*!) hold.
Many applications require that the nodes z; belong to [a, b].

By the strict positivity of I we obtain the classical lower bound
k > [m/2] + 1 for a quadrature rule (2) of degree m. Hence we can
consider formulae of type (2k — s,k), s = 1,2,...,k+ 1. Fors =1
we obtain Gaussian formulae, for s = 2 formulae of Radau-type. The
Lobatto-type case has been studied by L. Féjer [1] and was treated
completely by C.A. Micchelli and T.J. Rivlin [2]. The general case,
finally, has been characterized completely by F. Peherstorfer [4]. For
the historical development and further approaches we refer to [3, 7 and
8].

We present the one-dimensional case of a characterization of interpo-
latory cubature formulae. The one-dimensional case is easy to derive
and allows control of the distribution of the nodes.

2. Characterization. Let (2) be a quadrature rule of type
(2k — s,k). Then the polynomial ¢ = (id — x,)(id — z2) ... (id — zx)
vanishes at the nodes of q. Since the coefficients ¢; are uniquely
determined by the nodes, the roots of ¢ determine the formula, or,
more briefly, ¢ generates the quadrature rule. Due to the degree of
exactness ¢ must be orthogonal to P _; with respect to I, hence

s—1

(3) g=pe+ Y YVeiPhoir % ER, 1 #0.

i=1

To obtain the prescribed degree of exactness we must require v; # 0.
We shall study under which conditions on the +;’s the polynomial ¢ in
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(3) generates a positive quadrature rule of type (2k — s,k) for I with
nodes in |a, 3], thus characterizing all formulae of this type.

Let ¢ be an arbitrary polynomial of degree k, we denote by
O : P = Py f = II,(f)

the linear projection from P to P_, with respect to g, defined by the
unique representation of f as f =rq +[[ (f), 7 € P, [1,(f) € Pi_1.
For the strictly positive linear functional I on Pa,b] we define an
associated linear functional depending on ¢ by

I,:P > R: f — L(f) = I(IL,(f)).

These definitions allow the following characterization of positive quadra-
ture rules.

THEOREM. Let I be a strictly positive linear functional on Pla,b).
For a given s,1 < s < k+1, let q be of the form (3). Then q generates
a positive quadrature rule of type (2k — s,k) for I if and only if I, is
strictly positive on Por_.

PROOF. (=). Let (2) be a positive quadrature rule of type (2k — s, k)
for I which is generated by q. Every nonnegative polynomial f € Py;_;
can be written as f = p? + p2, p1,p2 € Pr_1. So a nonnegative
f € Pyr_1, f#0, cannot vanish all nodes of (2), and we find

k
I(f) = I, (f)) = I(f —rq) = Y_ cif(x:) >0,

=1
Where r € P is chosen such that f —rq € Py_,. Hence I, is strictly
positive on Pgs_1.

(<=). If 1, is strictly positive on Pax_1, then g is the k-th orthogonal
Polynomial with respect to Iy, since I;(gq) = 0 for all g € Px_;. So
q generates the Gaussian formula of degree 2k — 1 for I,. Since g is
orthogonal to Py_, with respect to I, we find for all f € Po;_, the

relation
I,(f) = I(I(f)) = I(f — rq) = I(f),
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where r € Py _, is chosen such that f —rq € P;_;. Hence the Gaussian
formula for I, is a positive quadrature rule of type (2k — s, k) for I.0

The Theorem is the one-dimensional case of a characterization of
interpolatory cubature formulae, see [6, Theorem 3.4.1]. The proof via
projections is due to G. Renner [5]. In contrast to the multivariate case
the proof can be reduced to elementary facts of Gaussian quadrature
which are not available in the general case.

Let g be of the form (3) and let I, be strictly positive on Po_;. We
denote by ¢;,i = 0,1,...,k, the orthogonal polynomials with respect
to I,. The recursion for the g¢;’s is of the form

(4) git1=0Gd-T7)g —Algi—1, T7€R, A; >0,i=0,1,..., k-1,
Since I, = I on Py;_, we obtain

(5) g =pi, 1=0,1,... .k~ [s/2],

furthermore, q;, = q.

Thus quadrature rules of type (2k—s, k) for I are generated by q = g,
the k-th orthogonal polynomial with respect to I;. It can be computed
recursively via (5) and (4) for arbitrarily chosen A} >0, I'; € R, i =
k —[s/2],k — [s/2) + 1,...,k — 1. This is F. Peherstorfer’s elegant
characterization. The distribution of the roots of ¢ can be controlled
by Sturm’s Theorem applied to {q;}i=0.1....x- This is a characterization
of the strict positivity of I, by the recursion (4). In order to get a
characterization by the coefficients of ¢ - similar to the approach by G.
Sottas and G. Wanner [7] - we shall present a direct application of the
Theorem.

3. Application. The strict positivity of I; on Pyr_; will be
expressed in terms of the ~;’s in (3), while the distribution of the
roots of g will be controlled by the Sturm-sequence of the orthogonal
polynomials with respect to I,.

Let us assume that q is of the form (3) for a given 5,1 < s < k + 1.
The strict positivity of I, on Pax_; is characterized by Iq(p2) > 0 for
all p € Py_1,p # 0. Assuming

k-1 k-1
p=) Api MER, Y A >0,
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the strict positivity of I, is equivalent to

k—1k-1

L") =)D Aididy(pip;) > 0

i=0 j=1

for the described set of A;’s. Hence 1, is strictly positive on Pyy_; if
and only if

T = (I1,(pipj))i.j=0.1.... k-1
is positive definite. So we have to compute the entries ¢;; of the k x k
matrix T' (depending on the 7,’s) and study the positive definiteness of
T. For the computation we use the following

LEMMA. Let Pi;Pj,0 < i,5 <k —1 be given. Then t;; = I,(pip;) =
I(pipj — r;q), where rij s arbitrarily chosen in Py._4 such that

(6) 9ij = pipj —Tijq € Pap_s.

PROOF. Since I,(f) = I(f) for all f € Py;_, we get, for g;; satisfying
(6), the relation

I(9i;) = I(pip; — ri;q) = I,(pip; — 7i;q) = L,(pip;) = tij-

Let G be a k x k matrix with entries as defined in (6). If 0 < i+ j <
2k — s we can choose r;; = 0, hence 9ij = pipj- So the first row and
column of G are known. If row i — 1 of G has already been determined,
we define, in addition,

s—1
Gi-1.k = —Z’Ys~jyi—1.k—j € Pays-
j=1
This polynomial satisfies (6) since it can be written as g;_1x =
Pi—1Pk — qTi-1k, Where

s—1

Ti-1.k = Pi-1 — E VYs—jTi—1.k—j-
Jj=1
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To compute the element of the i-th row of G we insert the recursion
(1) for p; and pj+; obtaining
piPj = Pi—1Pj+1 + (L = Ti1)pic1pj + Ajpi—1pj—1 — Aic1pi—2pj-
This implies
9ij; = gi—1 501 + (L5 =Tic1)gio1j +Ajgi1j-1 — Aim1gi-2,;
=Pin —Tijq, ] =0,1,...,k~ ].,

where r;; = ri_1j41 + (05 — Tici)ricay + Ajricijon — Aisarioa .
Since the recursions for g;; are linear we directly obtain the following
recursions for the entries of T

t,‘j=Gi5i]’, 0<i14+j<2k-s,
s—1
(7) ti—l.k = "‘Z'Ys-jti—l.k—jv i=k- s+ l,k - s+ 2,...,’6 - 1,
Jj=1

ticik =ticij H (0 —Tic)tic; + Ajticrjo1 — Aisatioaj,

,j=k—-s+2,k—s+3,...,k—- 1

Hence T can be written as

D 0
T‘(o s)’

where D = diag{Gy,G1,... ,Gr-s+1} and

Gk—s+2 0 0 ... 00 —71Gk—s+l
0 Gr—s+3 0 0 = *
0 0 Gk-—s+4 * % *
§= 5 f f CREE :
0 0 * s * * *
O * * oo * * *
~MGh-s41 * * oLk % *

T is positive definite if and only if the (s — 2) x (s — 2) submatrix S is
positive definite. Let us denote the elements of S by ;. The first row
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and column of S are known. The remaining entries are computed from
the recursion (7) as

oij =0i—1j+1+ (L =Ticy)oici; + Ajoi—ij-1 — Aim10i-2,5,

8
®) Ok-s41;=0,2,7=k—-s+3,k—s+4,...,k-1.

The elements of 0; 4,2 = k —s+ 3,k — s +4,...,k — 2, are computed
successively from

Ok—s+2.k Y2

Ok—s+3.k 3

9) . =-S| .
Ok—1.k Ys—1

The symmetry of S is useful for the calculation. For s = 2 we obtain
T = diag{Go,G1,-.-,Gr-1}
which is obviously positive definite. For s = 3 we obtain
S+ (Gr-1 — mGi-2),

finally, for s = 4 we get

S = Gr_2 —7Gi-3 ) )
- _'71Gk—3Gk—1 - Gk-272 + Gk~3‘71‘73— (Fk-l - Fk-2)Gk——3‘71

The computation becomes loathsome with increasing s. The positive
definiteness of S restricts the v;s such that the corresponding ¢ gen-
erates a positive quadrature rule for I with real nodes. This is the
one-dimensional case of the characterization given in [6] being equiva-
lent to the conditions derived in [7].

To control the distribution of the nodes we use the polynomials g;
which are orthogonal with respect to I,. Let us assume

1—1
Gi=pi+Y 8p;, 6 €R, i=01,... k-1
=0
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Then I,(gip;) =0 for j =0,1,...,7 — 1 is equivalent to
Or—s42
bi—1

S| 1 | =0 i=k—[s/2)+1, k—[s/2]+2,....k— 1.
0

0
Since I, is strictly positive on Par_1, g has k pairwise distinct real roots

and the g;’s form a Sturm-sequence. By Sturm’s Theorem q has its real
roots in [a, 3] if and only if

(10) qa(8) > 0, (~=1)*g(a) 2 0, ¢;(8) > 0, (~1)'a:(B) >0,
i=0,1,... k-1

4. Examples. Let us characterize the first simple cases of positive
quadrature rules of type (2k — s, k) with nodes in [a,b]. For s = 2,3,4
we have computed above the (s — 2) x (s — 2) matrices S using (8) and
(9). The positive definiteness of these matrices and (10) lead to the
following results.

Rules of type (2k — 2,k) are generated by ¢ = pr + v1pr—1, Where
q(b) > 0, (=1)*g(a) > 0. Rules of type (2k — 3,k) are generated by
q = pr + Y2Pk—1 + N1 Pr—2, Where

v <Ak_1,  g(b) >0, (=1)*g(a) > 0.

Rules of type (2k — 4, k) are generated by q = px + Y3pk—1 + YVoPk—2 +
Y1Pk—3, where

A7 _o(Ak—1 —¥2) + Ap—om173 + (Tkoy — Th—2)Ak—am — 72 >0
and
a(b) >0, (=1)fg(a)>0, @gr_1(b)>0, (=1)*"lgr_i(a) >0,

with
71
Qr—1 = Ppr-1+ Dk—2-
Ar_2
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These are the cases which are easy to derive. The amount of compu-
tational work increases rapidly with s. Further computation in this
general set-up should be done using a computer-algebra system.

If a special form of the generating polynomial g is of interest our
approach seems to be easier to apply. We shall illustrate this by the
following example.

The polynomial
(11) q =Pk + NPrk-s+1, 11 7 0,

generates a positive quadrature rule of type (2k — s,k) if |’)1|.iS
sufficiently small. Exact bounds can be determined easily in special
cases, e.g., if I is chosen such that

Ai=ANT,=T i=k-s+2k—s+3,....k—1.

The Chebyshev-polynomials of the first and second kind (A; is 1/2 or
1/4, respectively) satisfy (1) with [; = 0, A, = A3 = --- = 1/4. So
they belong to a functional of the appropriate class of s < k. For such a
functional I and a polynomial ¢ of type (11) the recursion (8) is reduced
to

0ij = Oi1j+1 + Aloi—1j-1 — 0i_2),
Oik =0, Op_541;=0, i,j=hk—-s+3,k—s+4,....k—1.

For 4 < s < k the matrix S is up to a positive factor of the form

A0 ... 0 -m
0 A2 -7 0
-n 0 ... 0 A2

hence it is positive definite if and only if 72 < A*~!. The orthogonal
polynomials with respect to I, are of the form

Gt = Prci + rPhospirn 8= 0.1 [s/2) ~ 1,

?

so the condition (10) can be checked quite easily. If we Sfelect the
Chebyshev-polynomials of the first and second kind, respectively, the
roots of g are in (—1,1) if 72 < A%~ L.
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