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EXTENSIONS OF THE HEISENBERG GROUP 
A N D COAXIAL COUPLING 

OF TRANSVERSE EIGENMODES 

WALTER SCHEMPP 

1. Optical fiber communication. Lightwave electronics, including 
optical communication via silica fibers and optoelectronic devices, has 
become one of the most promising fields of applied physics and electrical 
engineering since the laser first appeared. 

The advantages of optical fiber communication are among others: 

- extremely low loss of the optical signals over a wide range of 
wavelengths (less than ldB/km, corresponding to a 25% loss per km) 

- immense bandwith (1 and 100 GHz, respectively, for multimode and 
single-mode fibers over 1 km) that makes it possible to use extremely 
short pulses. 

Characteristic of the progress in lightwave communication technology 
is the enormous reduction of the transmission loss of optical fibers 
accomplished in the last decade as illustrated by the diagram below. 

One of the most important factors that helped make optical fiber 
communication a reality is the invention of the light-emitting diode 
(LED) and the semiconductor injection laser. The coupling between 
lasers and optical fibers causes some power loss which is described by 
the coupling coefficients of the various modes. The main purpose of the 
present paper is to calculate the coupling coefficients of the quantized 
transverse eigenmodes excited in coaxial circular and rectangular laser 
resonators and optical waveguides in terms of Krawtchouk polynomials 
evaluated at Gaussian beam parameters. The method we will present 
is based on non-commutative harmonic analysis, specifically, on the 
representation theory of various (three-step nilpotent and solvable) 
group extensions of the real Heisenberg two-step nilpotent Lie group 
i(R). 
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2. Extensions of the Heisenberg nilpotent Lie group. The real 
Heisenberg nilpotent Lie group A(R) is the universal covering group 
of the reduced Heisenberg group and can be realized by the unipotent 
matrices 

1 x zs 

0 1 y ) = ( X , Î / , 2 ) € R 3 . 

,0 0 1 

The Lie group >1(R) has a representation theory that is at once 
simple and rich in structure. Its topologically irreducible, continuous, 
unitary, linear representations are classified by the Stone-von Neumann 
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theorem of basic quantum mechanics [10]: Any such representation of 
i ( R ) having ex : z ~> e27riXz(X G R,A ^ 0) as central character is 
unitarily isomorphic to the representation (U\,L2(R)) which acts on 
the wavefunction ip G <S(R) <^> L2(R) according to the prescription 

Ux(x, y, z)il>(t) = e2niX{z+yt)iP(t + x) {te R); 

cf. the monograph [7] for details. 

Let G denote the maximal unipotent subgroup of Sp( l ,R) = 
SL(2, R) which fixes pointwise the closed subgroup 

{ ( 0 , î / , 0 ) e i ( R ) | < / € R } 

of Ä(R). Form the external semi-direct product 

B(R) = G* i ( R ) 

with the convention that the open end of the symbol K always points 
to the normal subgroup. Then B(R) represents the smallest real three-
step nilpotent Lie group (cf. Ratcliff [5]). The Kirillov correspondence 
[7] shows that, for all pairs (a,A) G R x R x , the unitary linear 
representation 

U{amX)(v,x,yJz) = e2^a-^t2-^xt-ix2)vUx(x,yiz^ 

of B(R) acting in L2(R) for all elements (v, x, y, z) G £ (R) is topologi­
cally irreducible. Obviously U{a%X) restricts to U\ and admits therefore 
the central character e\. 

Finally, let us identify the one-dimensional torus group T with the 
maximal compact subgroup SO(2, R) of Sp(l , R) and let the elements 
of SO(2,R) act as automorphisms of i ( R ) by rotating the first two 
coordinates of (x, y, z) G Ä(R) and leaving the central coordinate fixed. 
Then 

D(R) = T x i ( R ) 

forms a real, connected, non-exponential, solvable Lie group which 
is called the diamond group (cf. [8]). In order to classify all the 
topologically irreducible, continuous, unitary, linear representations of 
£>(R) which restrict to J7A(A G R, A ^ 0) let 
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denote the Hermite operator acting on the Sobolev space {ip G 
L2(K)\t2ip G L2(R)}. Then H\ is an essentially self-adjoint linear 
operator in L2(R) and forms the infinitesimal generator of SO(2,R) 
in Sp( l ,R) . The closure of H\ has a pure point spectrum formed 
by the simple eigenvalues {—27r(signA)(2?? + l) |n G N} and the as­
sociated eigenfunctions are given by the scaled Hermite functions 
t*Hn(y/\\\t), neN. 

Let T = {eni0\0 G R} denote the double covering of the torus group 
T = {e2nr9\6 G R} ad define a unitary linear representation 5A of T x R 
by 

Sx(e
nW,z) = eien' 

and the characters of T x R by 

xl(e"9, z) = e2™«2"+1>ö+Aj>idL2R) (n G Z). 

Then 
SxoUx®x7x (neZ) 

is a family of topologically irreducible, continuous, unitary, linear 
representations of D(H) having U\ as their restrictions to A(K). 
Conversely, each representation of £)(R) having these properties is 
unitarily isomorphic to exactly one of the representations 5A O U\ 0 
X^(n G Z); see, for instance, Lion [2]. 

In the following sections we will use the Lie groups vl(R),ß(R), 
and D(R) to study the transverse eigenmodes of optical systems in 
terms of classical orthogonal polynomials and to calculate the coupling 
coefficients in terms of the Krawtchouk polynomials. 

3. Transverse eigenmodes. If ip and <p are wavefunctions belong­
ing to the Schwartz space <S(R), then 

H(tP,<p;x,y)= [ i/>(t + x)Jp(t)e2*iyt dt 
Jn 

is the cross-ambiguity function associated with z/> and if. See [6] where 
a symmetrized version of H(ip,ip;. ,.) is employed. It follows that 
#(</>,V?;. ,.) G«S(R0R) and 

H(ip,(p;x,y) = (Ui(x,y,0)ip\ip) 
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for all (x, y) G R e R . Thus the cross-ambiguity function H(v, <p; -,.) is 
given by the coefficient function of the linear Schrödinger representation 
Ui of i ( R ) with respect to ip and <p modulo the center of i ( R ) . From 
this we conclude the orthogonality relations 

IL H(y,ç;x,y)H(y,,ï,;x,y)dxdy=(y\v)(ç'\Y) 
ReR 

which holds for all wavefunctions t\ip' and <p,p' in <S(R); cf. Moore-
Wolf [3]. 

A wavefunction ip € S(R) is called a transverse eigenmode of a 
circular optical waveguide if the auto-ambiguity function 

is radial on R e R . The following theorem furnishes a characterization 
of these eigenmodes. 

THEOREM 1. Let (Hn)n>0 denote the sequence of Hermite functions. 
The waveform ip € 5(R) is a transverse eigenmode of a circular optical 
waveguide if and only if 

1> = çnHn (C«eC) 

for an integer n > 0. 

PROOF. The topological^ irreducible, continuous, unitary, linear 
representation Sx o Ux <g> \\{n e Z ) o f t h e d i a m o n d solvable Lie group 
D(R) acts on L2(R) according to the prescription 

= e»(WA+2ir(2«+i))^A^cos27rö + ysin27rö,-xsin27rfl + 2/cos27rfl,c). 

It follows that ìp e 5 (R) , IMI = 1, i s an eigenmode of a circular optical 
waveguide if and only if there is a number n € N such that the unitary 
linear representation 
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acts trivially on ip. From this the theorem follows. G 

REMARK. The geometric optics reason behind the fact that the 
elements eni0 G T occur as arguments of the representation \i • S\ 
in the preceding proof and not the underlying elements e27ri0 G T is 
the phase shift (which actually turns out to be a phase retardation) of 
\K suffered by the beam at each of the two caustics of the graded-index 
optical fiber [8]. 

COROLLARY 1. Let (£„ )n>o denote the sequence of Laguerre func­
tions of order a > — 1. Then Schwinger's formula 

H(Hm,Hn;x,y) = J^-A^(x + ij,)r~"4m~n)(*(*2 + y2)) 
V m! 

(m > n > 0) holds for ( x , Î / ) G R ® R . 

COROLLARY 2. The wavefunction ip e S ( R ® R ) , ^ ^ 0, is a 
transverse eigenmode of a rectangular optical waveguide if and only 
if 

ii.in 

Hn ® Hm (C„ .ill *- ^) 

for integers n > 0, m > 0. 

4. Coaxial coupling coefficients. If the wave functions ip',ipf and 
tp,ip belonging to the Schwartz space <S(R) represent two transverse 
eigenmodes of two coaxial optical devices like laser resonators or di­
electric waveguides, their coupling coefficient is defined according to 
the prescription 

C(^ ,,(p ,,^,(^) = / / H{ipf,ip';x,y).H{ip,(p;x,y)dxdy. 
JJR®R 

The integral has to be evaluated at the coupling plane R ® R transverse 
to the common beam axis of the optical devices. In the present 
section we will calculate the coaxial coupling coefficients explicitly in 
the circular as well as in the rectangular case (cf. Kogelnik [1]). 
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Figure I. Transverse Eigenmodes of a Rectangular Laser. Computer Plot. 
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Figure II. Transverse Eigenmodes of a Rectangular Laser. Experiment 
Plot. 
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Lasers emit a very narrow cone of monochromatic radiation referred 
to as a laser beam. Denote its wavelength by A. The transverse 
electromagnetic eigenmode output of a laser is a beam with a Gaussian 
wavefront. Define the Gaussian beam parameters by 

, 2 2 

and 

q~ \w'2 + w2 + 2 \r' r))' 
where 

* - * 
denotes the wave number, w',w the beam radii and r',r the radii 
of curvature of the phase fronts at the coupling plane of the optical 
devices. Then the symplectic reference planes of the two beams are 
transferred to the coupling plane R ® R by the symplectic mappings 
with matrices 

(7Z M , ( ^ M€Sp(l.R) 

associated with the beam radii w' and u\ respectively, and by the 
symplectic mappings with matrices 

(A Ï).(A Ï)««1--» 
associated with the radii of curvature r' and r, respectively, of the phase 
fronts. 

Next recall the definition of the Krawtchouk polynomials A'„(x;p, N). 
For all integers n > 0 these hypergeometric polynomials are given by 

Kn{x;p,N) = 2Fl(-n,-x;-N;p-1), 

where i V > 0 , 0 < x < 7 V , p E]0, l[. In terms of shifted factorials, 
Kn(x;p,N) admits the expression 
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The Krawtchouk polynomials are orthogonal on { 0 , 1 , . . . , N} with 
respect to the binomial distribution. Thus their orthogonality relations 
take the form 

£ h\i(x;piN)Km(x;p,N)(^px(l-p)N-' = 0 (n # m) 

for n < N,m < N and p e]0, l[. 

THEOREM 2. Let m > n > 0, m' > n' > 0 be integers. Keep to the 
preceding notations. 

a) In the circular case set m = p,m — n = l,mf = p'\mf — n' = /'. 
TTien 

Cp.i.p/.i' = 0 for I = /', 

i.e., there is no coupling between transverse eigenmodes of different 
angular moments. Moreover, in terms of Krawtchouk polynomials, 

<Wi = (-VV+1, (p+p,+/) ! (î-gyïi-gy. 

b) /n </ie rectangular case we have 

° ' " • • " • ' " • " U }0r \ n + n' = lmod2, 

i.e., there is no coupling between even and odd transverse eigenmodes. 
In other words, the parity is preserved under the coupling of eigenmodes. 
In the case 

rri = 2/ / , m = 2/z, ri = 2v', n = 2v 
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we get, in terms of the Krawtchouk polynomials, 

_ / _ 1\**+"+/*'+«/' 2 (2// + 2//)!(2*/ + 2t/)! 
m.n.m'.n' - [ - -) ttVg ( / i + ^ / j j ^ + l//)!>/2^!2^!2i/!2i/'! 

/ a y ' + " / a S / ' ^ " ' 

V (/(g - a - a') 2 / 

A similar result holds in the case 

ra' = 2// + l, ra = 2// + l, n = 2v + 1, n = 2i/ + l. 

PROOF. In terms of the representations ({/(„.A))(„ A)GRXRX °^ t n e 

nilpotent Lie group B(R) we get, for the ambiguity functions at the 
coupling plane, 

<tw,v'(;u^)i4 (^^'(-^,„,0)1^). 

By virtue of Corollary 1 and Corollary 2 of Theorem 1 the result follows 
by taking Laplace transforms; see Oberhettinger-Badii [4]. G 

5. Concluding remarks. An extention of the group theoretical 
method used in this paper, more specifically the spectral theory of 
reductive dual pairs, can be applied to establish via the oscillator rep­
resentation [9] of the metaplectic group Mp(n ,R) a singular value 
decomposition of the classical Radon transform in R". As a conse­
quence, the inversion formulae of computerized tomography and Han-
kel's formula which expresses the Laguerre functions in terms of Bessel 
functions are popping up. For more details, see the forthcoming paper 
M-
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