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JACKSON TYPE THEOREMS IN APPROXIMATION
BY RECIPROCALS OF POLYNOMIALS

A.L. LEVIN! AND E.B. SAFF?

ABSTRACT. It was previously shown by the authors that
Jackson type theorems hold for the case of approximating a
continuous real-valued function f on a real interval by the
rectprocals of complex polynomials. In this paper we extend
these results to the general case when f is complex-valued.

1. Statement of results. Let C*[—m, 7| denote the set of 27-
periodic continuous complex-valued functions and let C[—1, 1] denote
the set of continuous complex-valued functions on [-1,1]. For any
f € C*[-m, 7] (resp. f € C[-1,1]) we denote by Eg,(f) (resp. by
Eon(f)) the error in best uniform approximation of f on [—x, ] (resp.
on [-1,1]) by reciprocals of trigonometric (resp. algebraic) polynomials
of degree < n with complex coefficients.

Our goal is to prove the following Jackson type theorems.

THEOREM 1. There erists a constant M such that for any f €
C*[_"v 7r],
E3.(f) < Mw(fin™h), n=1,23,...,

where w(f;6) denotes the modulus of continuity of f on [—m, 7).

THEOREM 2. There exists a constant M such that, for any f €
C[_le]’
Eon(f) < Mw(f;n™h), n=1,2,3,...,

where w(f;6) denotes the modulus of continuity of f on [-1,1].
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For the case of real-valued f, these theorems (with slightly different
notation) were proved in our paper [1]. Although the idea of the proof
remains the same, the passage to a complex-valued f is not straight-
forward (in contrast with polynomial approximation). It requires a
preliminary construction (see Lemma 1 below) that is trivial in the
case of real f but rather complicated in general.

2. Proofs. We first formulate two lemmas. In these results, || - ||
denotes the sup norm on [—m, 7] and w is the modulus of continuity on
[—m, 7).

LEMMA 1. For any f € C*[—=, 7], for any positive integer n, and for
any A > 0, there ezists a function g € C*[—n, 7| such that

(V) [If = gll £ 44w(f;n1),
2) lg(z)] > 3Aw(f;n™Y), —-w<z<m, and
(3) w(g;n~!) < (1 + 8m)w(f;n1).

Also, if f is even, then g may be chosen even as well.

LEMMA 2. There ezist absolute constants Ag > 0, A; > 0 such that,
for any g € C*[—m, 7] that satisfies (2) with A = Ao and (3), one can
find a trigonometric polynomial P, of degree < n such that

llg = 1/Pall < Aww(fin™t).

Also, if g is even, then P, may be chosen even as well.

Theorem 1 is an immediate consequence of these lemmas. Indeed,
applying Lemma 1 with A = Ag and Lemma 2 we obtain that

Ego(f) < 1If = gl + 1lg = 1/Pall < Mw(f;n7h),

where M := 4A¢ + A;. Theorem 2 follows from Theorem 1 by a
standard argument (notice the last assertions of the lemmas).

PROOF OF LEMMA 1. Set
(4) Ky :={z € [-mn]:|f(z)] 2 Aw(fin™")},
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(5) Ky :={z € [-m,7] : |f(2)| < Aw(f;in™")}.

We assume first that +m € K;. In this case we can represent K, as a
union U(ay, bi) of disjoint open intervals in (-, 7) with

(6) |f(ax)| = |£ (k)| = Aw(f;n™?).
Further, we write K> as a union K} U K7/, where
(1) K= U{(ak,bk) Nf(@)] > 1eAw(finY), all z € (ak,bk)},

(8)
K = U{(ak,bk) (@) < YoAw(f;n™") for some z € (ak,bk)}.

Then, for the length Ay := by — ai of any interval (ak,bi) in K}, we
have the estimate

O w(fidn) 217 - min (7] 2 3Aw(fin),

by (6) and (8).

For every interval (ax,br) in K3, write (cf. (6)) f(ak) =
Aw(fin™') exp(iax), f(bk) = Aw(f;n™")exp(ifk), with |8y —ak| < 7
and let Li(z) be the linear function that satisfies

Li(ak) = ek,  Li(bk) = Bk
Then, for any h > 0,
(10)  |Li(z + h) — Li(z)] < Alh, where Ay := by, — ay.
k
Now define the function g on [—m, 7] by

(11) g(z) := f(z), z € KUK,

(12) 9(z) := Aw(f;n Yexp(iLk(z)), =z € (ak,bx) C K.
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From the construction of g it follows that g € C*[—, 7] and satisfies

(13) If = gll < 24w(f;n~),
(14) 9(2)| > S Aw(fin), —r<zs<m

To estimate the modulus of continuity of g we make use of the well-
known inequality

w(fih) _  w(f;h)
1 <
(15) i) < peUTR),
Let z,z + h(h > 0) be any two points in [—7,7].
Casel. z, z+h € K;UK). Then (cf. (11)) |g(z+h)—g(z)| < w(f;h).

Case 2. z, x4+ h € (ak,br) C KY. Since lexp(it) — exp(is)| < |t — s,
we obtain, from (12) and (10):

for h > h' > 0.

lg(z + R) — g(z)| < Aw(f; n—l)Alkh

e L)
< 4w@h (by (15), since Ax > h)
= 4nw(f; h).

Case 3. x € (ax,bx) C Kj, ¢+ h € K, UK}. Write

l9(z + h) — g(2)] < lg(bx) — g(z)| + |g(z + ) — g(bk)|
= |g9(bx) — 9(z)| + [f(z + h) — f(b&)|
< lg(br) — 9(z)| + w(f5 h).

Since |bx — x| < Ak, we obtain as in Case 2, that

w(f; Ax)

l900) — g(@)] < 2x 2L, g
k
w(f;|bx — x|)
< 4WW -|bx — =, (by (15))

= 4mw(f; bk — z|) < 47w (f;h).



JACKSON TYPE THEOREMS 247

Hence

(16) lg(z +h) — g(z)| < (1 +4m)w(f;h).

Cased4. z € KjUK), z+h € K. Just as in Case 3, it can be shown
that inequality (16) holds.

Case 5..z € (ak,br) C KY, z+ h € (a;,b) C Kj, with k # [. In this
case we write (assume by < q;)

lg(z + k) — g(x)| < 1g(bk) — g(x)| + |g(ar) — g(bk)| + lg(z + k) — g(ar)],
and proceeding as in Case 3 we conclude that

lg(z + h) — g(x)| < (1 4 87)w(f;h).

Putting all the cases together we obtain

(17) w(g;h) < (14 8m)w(f;h), h>0.

The inequalities (13), (14) and (17) prove Lemma 1 for the case
+7 € K;. If +7 € Ko, that is if |f(+7)| < Aw(f;n~!), we replace
fby f:= f+2Aw(f;n"") and apply the above argument to construct
the function g that satisfies (13), (14), and (17) with f instead of f.
Since w(f;h) = w(f;h) and ||f — f|] < 2Aw(f;n"!), the same function
g will satisfy the requirements (1), (2), and (3) of Lemma 1.

Finally, if f is even, then each of the sets K, K3, and K is symmetric
with respect to the origin. From this and from the definition (11), (12)
of g it follows easily that g is also even. O

REMARK . If f is real, the function g can be constructed in a much
simpler way, namely we can set g(z) := f(x) + iAw(f;n"1).

PROOF OF LEMMA 2. The proof is essentially contained in our paper
[1]. For the reader’s convenience we reproduce it briefly.



248 A.L. LEVIN AND E.B. SAFF

Let K,(t) be the Jackson kernel (cf. Lorentz 2, p. 55]). Then, for
any g € C*[—m,x],

1) [ lola ) - 9@ Kl < cogin, 5=12
where c is an absolute constant. Define

(19) Ag :=4c(1 + 8m)

and let g be the function from Lemma 1 with A = Ay. Further, define
the trigonometric polynomial P, of degree < n by

(20) Pa(z) := /_ i e 1+ Kt

Then

1= Pa(@)g(z)| = | / x;;; 5 9z + 1) = 9() e yar

-1
< o e, by (), (18)

< 2L _ L oy @), (19))
Hence,
(21) |Pa(z)g(x)| >1/2, —-w<z<m.
Now,

lg(z) — 1/ Pa(z)|
m g(:c+t g(x)
< /_,r g(z)g(z +t) ‘

32/_”|g(z+t) o(z) l]

‘ K

t)\ Ka(t)dt (by (21))

" ™ lg(z +t) — g(x)?
< 2/_"|g(:c+t) —g(:c)lKn(t)dt+2/_r RO

< 2cw(gin") + de(w(gsn™))2/Aow(f;n7t)  (by (2),(18))
< (2c+ 1)1+ 8m)w(f;n™t) = Aw(f;n™!)  (by (2), (3), and (19)).
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Finally, if ¢ € C*[—7, 7] is even, then (cf. (20)) P, is an even
trigonometric polynomial. O
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