DUAL MODULES AND GROUP ACTIONS ON EXTRA-SPECIAL GROUPS

I.M. ISAACS

1. Introduction. When constructing examples or counter-examples in the theory of solvable groups, it is often the case that what is needed is some group which acts in an interesting way on an extra-special p-group. Specifically, what we have in mind is the following.

Let G be a finite group and let V be an irreducible $F G$-module where $F=G F(p)$. It is easy to construct an extra-special p-group E acted on by G such that $E=A B$ where A and B are G-invariant elementary abelian normal subgroups with $A \cap B=Z=\mathbf{Z}(E)$. This can be done so that A / Z is $F G$-isomorphic to V and B / Z is $F G$-isomorphic to the "dual" or contragredient $F G$-module V^{*}. Furthermore, G acts trivially on Z.

Now comes the more subtle part. Suppose $G \triangleleft \Gamma$ where $|\Gamma: G|=2$ and where the conjugation action of Γ on the set of isomorphism classes of $F G$-modules interchanges the classes of V and V^{*}. (We allow the possibility that $V \simeq V^{*}$ and this isomorphism class is Γ-invariant.) The question is whether or not the action of G on E can be extended to a Γ-action in which the elements of $\Gamma-G$ interchange A and B.

The answer is "yes".

ThEOREM A. Let $G \triangleleft \Gamma$ with $|\Gamma: G|=2$ and let V be an irreducible $F G$-module where $F=G F(p)$. Assume that V is conjugate to V^{*} in Γ. Then Γ acts on an extra-special p-group E and the following hold.
a) $E=A B$ where $A, B \triangleleft E$ are elementary abelian and $A \cap B=\mathbf{Z}(E)$.
b) G centralizes $Z=\mathbf{Z}(E)$ and acts on A / Z and B / Z as it does on V and V^{*} respectively.
c) The elements of $\Gamma-G$ interchange A and B and either all of them centralize or else all of them invert Z. Furthermore, the choice of the

[^0]action of $\Gamma-G$ on Z may be specified in advance except in the case where an absolutely irreducible constituent of V is Γ-conjugate to its contragredient module.

Some explanation of the last sentence is probably appropriate here. Let \bar{F} be an algebraic closure of F. Then $V \otimes_{F} \bar{F}$ is a direct sum of pairwise nonisomorphic irreducible $\bar{F} G$-modules which constitute a Galois conjugacy class over F. Suppose W is one of these. Now $V^{*} \otimes_{F} \bar{F}$ is the contragredient module for $V \otimes_{F} \bar{F}$ and therefore W^{*} is isomorphic to a constituent of it. Since V is Γ-conjugate to V^{*}, it follows that W is Γ-conjugate to some irreducible constituent of $V^{*} \otimes_{F} \bar{F}$, but this constituent is not necessarily W^{*}. The theorem asserts that in the case where W is not Γ-conjugate to W^{*} (and $p \neq 2$), we can find two actions of Γ on E. In one of these, $G-\Gamma$ (and hence all of Γ) centralizes Z, and in the other $\Gamma-G$ inverts Z. (Note that since G centralizes Z, it is a triviality that all the elements of $\Gamma-G$ act in the same way on Z.)
As an example of the setting of the theorem, consider Dade's construction [2] of an M-group having a non- M normal subgroup. What was needed there was an action of Γ, a dihedral group of order 14, on an extra special group of order 2^{7} such that the involutions of Γ interchanged two elementary abelian subgroups of order 2^{4}. Dade's situation was exactly as in our theorem. (There is an error in [2] which Dade corrected in [3]. The error occured at precisely the interesting part of Theorem A: the extension of the G-action to Γ.)

The author would like to thank the referee for the suggestion that readers of this paper might appreciate information concerning other papers which deal with actions of groups on extra-special groups and on symplectic modules. Specifically, the referee mentioned papers [1], [6] and [7] (and in this context, I cannot resist including [5]). It should be stressed, however, that none of these papers bears directly on the present work which is concerned with synthesis rather than analysis and which is almost entirely self-contained.
2. The construction of $E(V)$. Let V be a finite dimensional vector space over an arbitrary field K. We construct a group $E(V)$ which, in the case where $K=G F(p)$, will turn out to be an extra-special p-group of order $p|V|^{2}$. This construction is certainly not new.

Let A be the direct sum of the additive groups of V and k and write A multiplicatively. Let $V^{*}=\operatorname{Hom}_{K}(V, K)$ be the dual space of V and let Λ be a copy of the additive group of V^{*}, written multiplicatively. Now for $(v, k) \in A$ and $\lambda \in \Lambda$, write

$$
\begin{equation*}
(v, k)^{\lambda}=(v, v \lambda+k) \tag{*}
\end{equation*}
$$

It is trivial to check that this defines an automorphism of A. Since $v(\lambda \mu)=v \lambda+v \mu$, we have an action of Λ on A and we define $E(V)=A \rtimes \Lambda$, the semi-direct product.
Let us write $Z=(0, K) \subseteq A$. It is routine to check that $Z=\mathbf{Z}(E(V))$ and also that $Z=(E(V))^{\prime}$. If we write $B=Z \Lambda$, then $A \simeq V^{+} \oplus K^{+} \simeq$ B. Also, $A B=E(V)$ and $A \cap B=Z$. In particular, in the situation of Theorem A, if we take $K=F$, then $E=E(V)$ is extra-special and part (a) of the theorem holds.
Now suppose V is a $K G$-module for some group G and make V^{*} into a $K G$-module via the contragredient action so that $(v g)(\lambda g)=v \lambda$ for all $v \in V$ and $\lambda \in V^{*}$. We can now let G act on A and Λ by defining

$$
(v, k)^{g}=(v g, k) \text { and } \lambda^{g}=\lambda g
$$

We need to check that $(*)$ is preserved by these actions. Specifically, we need

$$
(v g, k)^{(\lambda g)}=(v, v \lambda+k)^{g}
$$

and this is clear by direct computation.
It follows that G acts on $E(V)$ and in this action, G centralizes Z and normalizes A and B. Also, the induced actions of G on A / Z and B / Z agree (via the natural isomorphisms) with the original actions of G on V and V^{*}. In particular, part (b) of Theorem A is proved.
3. Conditions for Γ-action on $E(V)$. Assume $G \triangleleft \Gamma$ with $|\Gamma: G|=2$ as in Theorem A. Let V be a $K G$-module and let G act on $E(V)$ as in the previous section. Fix some element $c \in \Gamma-G$ and write $s=c^{2} \in G$.

Lemma 3.1. Suppose we can find additive group isomorphisms

$$
\alpha: V \rightarrow V^{*} \quad \beta: V^{*} \rightarrow V \quad \gamma: K \rightarrow K
$$

such that
i) $v \alpha \beta=v s$ and $\lambda \beta \alpha=\lambda s$ for all $v \in V$ and $\lambda \in V^{*}$.
ii) $v x \alpha=v \alpha x^{c}$ and $\lambda x \beta=\lambda \beta x^{c}$ for all $v \in V, \lambda \in V^{*}$ and $x \in G$.
iii) $k \gamma^{2}=k$ for all $k \in K$.
iv) $(v \lambda) \gamma=-(\lambda \beta)(v \alpha)$ for all $v \in V, \lambda \in V^{*}$.

Then the action of G on $E(V)$ can be extended to an action of Γ for which
(**)

$$
\begin{aligned}
(v, 0)^{c} & =v \alpha \in \Lambda \\
\lambda^{c} & =(\lambda \beta, 0) \in A \\
(0, k)^{c} & =(0, k \gamma) .
\end{aligned}
$$

In particular, the elements of $\Gamma-G$ interchange A and B.

Proof. We use equations (**) to define an action of c on $E(V)$. To see that this does define an automorphism, recall that multiplication in $E(V)$ satisfies

$$
(v, k) \lambda=\lambda(v, k+v \lambda)
$$

by (*) and it suffices to show that

$$
(v, 0)^{c}(0, k)^{c} \lambda^{c}=\lambda^{c}(v, 0)^{c}(0, k+v \lambda)^{c} .
$$

Writing

$$
v \alpha=\mu \text { and } \lambda \beta=w
$$

what we need becomes

$$
\mu(0, k \gamma)(w, 0)=(w, 0) \mu(0, k \gamma+(v \lambda) \gamma)
$$

By (*),

$$
(w, 0) \mu=\mu(w, w \mu)
$$

and the desired equation follows by (iv).
To show that we really have an action of Γ on $E(V)$ we need to establish that c^{2} acts like s and that $x c$ acts like $c x^{c}$ for all $x \in G$. These follow by routine computations using (i), (ii) and (iii).

We shall impose the additional condition that the maps α and β of Lemma 3.1 be K-linear. It follows by 3.1 (iv) that γ will also be K linear and so must be multiplication by some element $\varepsilon \in K$. By 3.1 (iii) we have $\varepsilon^{2}=1$ and so $\varepsilon= \pm 1$.

In view of Lemma 3.1, we see that in order to complete the proof of Theorem A, it suffices to show the following.

ThEOREM 3.2. Let $\mid G \triangleleft \Gamma$ with $|\Gamma: G|=2$. Fix $c \in \Gamma-G$ and let $s=c^{2} \in G$. Let K be a finite field and V an irreducible $K G$-module. Assume that V and V^{*} are conjugate in Γ. Then there exists $\varepsilon= \pm 1$ and vector space isomorphisms

$$
\alpha: V \rightarrow V^{*} \text { and } \beta: V^{*} \rightarrow V
$$

such that
a) $v \alpha \beta=v s$ and $\lambda \beta \alpha=\lambda s$ for all $v \in V$ and $\lambda \in V^{*}$.
b) $v x \alpha=v \alpha x^{c}$ and $\lambda x \beta=\lambda \beta x^{c}$ for all $v \in V, \lambda \in V^{*}$ and $x \in G$.
c) $(\lambda \beta)(v \alpha)=(v \lambda) \varepsilon$ for all $v \in V$ and $\lambda \in V^{*}$.

Furthermore, $\varepsilon= \pm 1$ can be prespecified except in the case where an absolutely irreducible constituent of V is Γ-conjugate to its dual. In that case, ε is uniquely determined.
4. Preliminaries. We begin work toward Theorem 3.2 with some elementary linear algebra. Fix a field K and let V be a finite dimensional vector space over K with dual space $V^{*}=\operatorname{Hom}_{K}(V, K)$.

Lemma 4.1. Let $\Theta: V \rightarrow V^{*}$ be an arbitrary K-isomorphism. Then
a) There exists a unique K-isomorphism $\varphi: V^{*} \rightarrow V$ such that

$$
\begin{equation*}
(\lambda \varphi)(v \Theta)=v \lambda \tag{A}
\end{equation*}
$$

for all $\lambda \in V^{*}$ and $v \in V$.
b) If $\alpha: V \rightarrow V$ is any linear transformation, there exists a unique transformation $\alpha^{\tau}: V \rightarrow V$ such that

$$
\begin{equation*}
(w)(v \alpha \Theta)=\left(w \alpha^{\tau}\right)(v \Theta) \tag{B}
\end{equation*}
$$

for all $v, w \in V$.
c) The map τ is a K-linear antiautomorphism of the ring $R=$ $\operatorname{Hom}_{K}(V, V)$.

Proof. Fix a basis for V and its corresponding dual basis for V^{*}. We may now identify V with the space of row vectors over K and V^{*} with the column vectors. With this identification, the computation of $v \lambda$ for $v \in V$ and $\lambda \in V^{*}$ is simply matrix mulitplication. Also, if $[\Theta]$ denotes the matrix of Θ, then $v \Theta=(V[\Theta])^{t}$. If $\varphi: V^{*} \rightarrow V$ is any linear transformation, and its matrix is $[\varphi]$, then $\lambda \varphi=\lambda^{t}[\varphi]$.

Equation (A) now reads

$$
\left(\lambda^{t}[\varphi]\right)(v[\Theta])^{t}=v \lambda
$$

or equivalently

$$
\lambda^{t}[\varphi][\Theta]^{t} v^{t}=v \lambda=\lambda^{t} v^{t}
$$

We see that the unique φ which works is determined by the matrix $[\varphi]=\left([\Theta]^{t}\right)^{-1}$ and part (a) is proved.

If α and α^{τ} are any two elements of $R=\operatorname{Hom}_{k}(V, V)$, equation (B) translates into matrix language as

$$
w(v[\alpha][\Theta])^{t}=w\left[\alpha^{\tau}\right](v[\Theta])^{t}
$$

and this is equivalent to

$$
w[\Theta]^{t}[\alpha]^{t} v^{t}=w\left[\alpha^{\tau}\right][\Theta]^{t} v^{t}
$$

We see then that α^{τ} is uniquely determined by the matrix equation

$$
\left[\alpha^{\tau}\right]=[\Theta]^{t}[\alpha]^{t}\left([\Theta]^{t}\right)^{-1}
$$

Part (b) is now proved and (c) follows since the map τ, when viewed on the matrix level, is the composition of the transpose map with conjugation by $\left([\Theta]^{t}\right)^{-1}$ and so is a K-linear antiautomorphism of R as desired.

We shall also need the following easy result on finite fields.

LEmma 4.2. Let Δ be a finite field and let $\tau \in \operatorname{Aut}(\Delta)$ have order 2. Suppose $\gamma \in \Delta^{\times}$with $\gamma^{\tau}=\gamma^{-1}$. Then there exists $\delta \in \Delta^{\times}$such that

$$
\delta^{-1} \delta^{\tau}=\gamma
$$

Proof. Let $|\operatorname{Fix}(\tau)|=q$ so that $|\Delta|=q^{2}$ and $\delta^{\tau}=\delta^{q}$ for all $\delta \in \Delta$. We have

$$
\gamma^{-1}=\gamma^{\tau}=\gamma^{q}
$$

and so $\gamma^{q+1}=1$. However, Δ^{\times}is a cyclic group of order $(q+1)(q-1)$ and it follows that $\gamma=\delta^{q-1}$ for some $\delta \in \Delta^{\times}$. Now

$$
\delta^{-1} \delta^{\tau}=\delta^{-1} \delta^{q}=\gamma
$$

as required.

We need one more preliminary result.

Lemma 4.3. Let V be an irreducible $K G$-module where G is a finite group and K is a finite field. Let $\Delta=\operatorname{Hom}_{K G}(V, V)$ (and note that Δ is a finite field).
a) Viewing V as a ΔG-module, it is isomorphic to an absolutely irreducible constituent of $V \otimes_{K} \Delta$.
b) The dual $K G$-module V^{*} can be made into a ΔG module by defining $\lambda \delta \in V^{*}$ according to the formula

$$
(v) \lambda \delta=(v \delta) \lambda
$$

for $v \in V$, where $\lambda \in V^{*}$ and $\delta \in \Delta$
c) The ΔG-module V^{*} is ΔG-isomorphic to the Δ-dual of the ΔG module V.

Proof. We have $\operatorname{Hom}_{\Delta G}(V, V)=\Delta$ and this implies that V is an absolutely irreducible ΔG-module by Theorem 9.2 of [4]. As such, it is a constituent of $V \otimes_{K} \Delta$ by Lemma 9.18 of [4]. This completes the proof of (a).

It is clear (since Δ is commutative) that the action of Δ on V^{*} defined in (b) makes V^{*} into a Δ-space and we need only check that the Δ action commutes with the G-action. For $x \in G, \lambda \in V^{*}, \delta \in \Delta$ and $v \in V$ we have

$$
(v)(\lambda x \delta)=(v \delta)(\lambda x)=\left(v \delta x^{-1}\right) \lambda=\left(v x^{-1} \delta\right) \lambda=\left(v x^{-1}\right)(\lambda \delta)=(v)(\lambda \delta x)
$$

as desired.
To prove (c), let \tilde{V} be the Δ-dual of V, viewed as a ΔG-module and let $T: \Delta \rightarrow K$ be any nonzero K-linear map. For each $\alpha \in \tilde{V}$, the composition $\alpha T: V \rightarrow K$ is K-linear and thus $\alpha \mapsto \alpha T$ defines a map $\tilde{V} \rightarrow V^{*}$. We claim that this is a ΔG-module isomorphism.
This map is clearly additive. To see that it is Δ-linear, let $v \in V$ and $\delta \in \Delta$ and compute

$$
(v)(\alpha \delta) T=(v \delta)(\alpha T)=v((\alpha T) \delta)
$$

Also, if $x \in G$, then

$$
(v)(\alpha x) T=\left(v x^{-1}\right)(\alpha T)=(v)(\alpha T) x
$$

and so our $\operatorname{map} \alpha \mapsto \alpha T$ is a ΔG-module homomorphism. Since any nonzero $\alpha \in \tilde{V}$ maps onto Δ, we have $\alpha T \neq 0$ and the map is one-tōone. We see that it maps onto V^{*} by a dimension argument.

5. Proving the theorem.

Proof of Theorem 3.2. We are assuming that the $K G$-modules V and V^{*} are conjugate in Γ. This means that there exists a K isomorphism $\Theta: V \rightarrow V^{*}$ such that

$$
\begin{equation*}
(v x) \Theta=v \Theta x^{c} \text { for } x \in G \tag{1}
\end{equation*}
$$

(Recall that c is some fixed element of $\Gamma-G$). Fix Θ and let $\varphi: V^{*} \rightarrow V$ be as in Lemma 4.1 (a). Our object is to produce certain maps $\alpha: V \rightarrow V^{*}$ and $\beta: V^{*} \rightarrow V$ and we shall do this with suitable modifications of Θ and φ.
Our first goal is to prove the analog of (1) for the map φ. We claim

$$
\begin{equation*}
(\lambda x) \varphi=\lambda \varphi x^{c} \text { for } x \in G \tag{2}
\end{equation*}
$$

To see this, let $v \in V$ and compute

$$
((\lambda x) \varphi)(v \Theta)=v(\lambda x)=\left(v x^{-1}\right) \lambda=(\lambda \varphi)\left(v x^{-1} \Theta\right)
$$

using (A) of Lemma 4.1. By (1), this yields

$$
((\lambda x) \varphi)(v \Theta)=(\lambda \varphi)\left(v \Theta\left(x^{-1}\right)^{c}\right)=\left(\lambda \varphi x^{c}\right)(v \Theta)
$$

and since $v \Theta$ runs over all of $V^{*},(2)$ follows.
Now, as in Lemma 4.1, write $R=\operatorname{Hom}_{K}(V, V)$ and let τ be the antiautomorphism of R given by 4.1 (b,c). Let $\Delta=\operatorname{Hom}_{K G}(V, V) \subseteq R$ so that Δ is a finite field.
Suppose we fix $\varepsilon= \pm 1$ and $\delta \in \Delta^{\times}$. Let

$$
\begin{align*}
& \alpha=\delta \Theta: V \rightarrow V^{*} \\
& \beta=\varphi\left(\delta^{\tau}\right)^{-1} \varepsilon: V^{*} \rightarrow V . \tag{3}
\end{align*}
$$

We will show that for suitable choices of ε and δ, these maps satisfy the conclusion of the theorem.
To check condition (c), compute

$$
(\lambda \beta)(v \alpha)=\left(\lambda \varphi\left(\delta^{\tau}\right)^{-1}\right)(v \delta \Theta) \varepsilon=\left(\lambda \varphi\left(\delta^{\tau}\right)^{-1} \delta^{\tau}\right)(v \Theta) \varepsilon=(\lambda \varphi)(v \Theta) \varepsilon=v \lambda \varepsilon
$$

as required. (We have used equation (B) of 4.1.) Thus (c) holds with δ and ε arbitrary.
Next, we check (b) with α and β defined by (3). We have

$$
v x \alpha=v x \delta \Theta=v \delta x \Theta=v \delta \Theta x^{c}
$$

by (1) and thus $v x \alpha=v \alpha x^{c}$ as required. To prove the second part of (b), we will need to know.

$$
\begin{equation*}
\tau \text { maps } \Delta \text { to } \Delta \text {. } \tag{4}
\end{equation*}
$$

Assuming this for the moment, we compute

$$
\lambda x \beta=\lambda x \varphi\left(\delta^{\tau}\right)^{-1} \varepsilon=\lambda \varphi\left(\delta^{\tau}\right)^{-1} \varepsilon x^{c}=\lambda \beta x^{c}
$$

where we have used (2) and (4).
To establish (4), let us write $\bar{x} \in R$ to denote the linear transformation of V induced by $x \in G$. Then Δ is the centralizer in R of $\bar{G}=\{\bar{x} \mid x \in G\}$ and it will suffice to show that τ maps \bar{G} to itself. In fact, we claim that

$$
\begin{equation*}
(\bar{x})^{\tau}=\overline{\left(x^{c}\right)^{-1}} \tag{5}
\end{equation*}
$$

To see this, compute for $v, w \in V$ that

$$
w(v x \Theta)=w\left(v \Theta x^{c}\right)=w\left(\left(x^{c}\right)^{-1}\right)(v \Theta)
$$

Comparison of this with the defining property (B) of τ in 4.2 proves (5). We have now shown that (b) holds for arbitrary δ and ε in (3).

Before we can prove (a), we need to obtain some information about the map $\Theta \varphi: V \rightarrow V$. For $x \in G$ and $v \in V$ we compute

$$
v x \Theta \varphi s^{-1}=v \Theta \varphi s^{-1} x
$$

for all $v \in V$ and $x \in G$. In other words, setting $\gamma=\Theta \varphi \bar{s}^{-1}$, we have

$$
\begin{equation*}
\gamma=\Theta \varphi \bar{s}^{-1} \in \Delta \tag{6}
\end{equation*}
$$

Now let us check to see if we can make (a) hold. By (3) we have

$$
v \alpha \beta=v \delta \Theta \varphi\left(\delta^{\tau}\right)^{-1} \varepsilon=v \delta \gamma \bar{s}\left(\delta^{\tau}\right)^{-1} \varepsilon=(v s) \delta \gamma\left(\delta^{\tau}\right)^{-1} \varepsilon
$$

and so we need

$$
\begin{equation*}
\delta\left(\delta^{\tau}\right)^{-1} \gamma \varepsilon=1 \tag{7}
\end{equation*}
$$

for the first part of (a). For the second part of (a) we compute

$$
\lambda \beta \alpha=\lambda \varphi\left(\delta^{\tau}\right)^{-1} \varepsilon \delta \Theta=\lambda \varphi\left(\delta^{\tau}\right)^{-1} \varepsilon \delta \gamma s \varphi^{-1}
$$

and if (7) holds, this yields

$$
\lambda \beta \alpha=\lambda \varphi s \varphi^{-1}=\lambda s^{c^{-1}} \varphi \varphi^{-1}=\lambda s
$$

using (2) and the fact that c centralizes s.

To complete the proof of the theorem, we need to show that $\delta \in \Delta^{\times}$ and $\varepsilon= \pm 1$ can be chosen so that (7) holds and that $\varepsilon= \pm 1$ is uniquely determined if and only if an absolutely irreducible constituent of V is Γ-conjugate to its dual.
Since Δ is commutative, it follows by (4) that the antiautomorphism τ defines an automorphism of Δ. We claim that

$$
\begin{equation*}
\delta^{\tau^{2}}=\delta \text { for } \delta \in \Delta \tag{8}
\end{equation*}
$$

To see this let $v, w \in V$ and compute

$$
(w)(v \delta \Theta)=\left(w \delta^{\tau}\right)(v \Theta)=(v \Theta \varphi)\left(w \delta^{\tau} \Theta\right)=\left(v \Theta \varphi \delta^{\tau^{2}}\right)(w \Theta)
$$

using (A) and (B) of 4.1. By (6) it follows that $\Theta \varphi$ centralizes Δ and so we have

$$
(w)(v \delta \Theta)=\left(v \delta^{\tau^{2}} \Theta \varphi\right)(w \Theta)=(w)\left(v \delta^{\tau^{2}} \Theta\right)
$$

and (8) follows.
We wish to use Lemma 4.2 to solve (7) and so we need to establish

$$
\begin{equation*}
\gamma^{\tau}=\gamma^{-1} \tag{9}
\end{equation*}
$$

where γ, of course, is as in (6). Let $v, w \in V$ and compute

$$
(w)(v \Theta)=(v \Theta \varphi)(w \Theta)=(w \Theta \varphi)(v \Theta \varphi \Theta)=\left(w \Theta \varphi(\Theta \varphi)^{\tau}\right)(v \Theta)
$$

It follows that $\Theta \varphi(\Theta \varphi)^{\tau}=1$ and $(\Theta \varphi)^{\tau}=(\Theta \varphi)^{-1}$. Therefore

$$
\gamma^{\tau}=\left(\Theta \varphi \bar{s}^{-1}\right)^{\tau}=\left(\bar{s}^{-1}\right)^{\tau}(\Theta \varphi)^{\tau}=\bar{s}(\Theta \varphi)^{-1}=\gamma^{-1}
$$

where we have used (5).
Now that (9) is established, it follows by Lemma 4.2 that if the automorphism induced on Δ by τ has order 2 , then for either choice of $\varepsilon= \pm 1$, we can find $\delta \in \Delta^{\times}$with

$$
\delta^{-1} \delta^{\tau}=\varepsilon \gamma
$$

and (7) is satisfied. The remaining possibility (by (8)) is that τ induces the trivial automorphism on Δ. In that case, we have $\delta\left(\delta^{\tau}\right)^{-1}=1$ and
also $\gamma= \pm 1$ by (9). It follows that (7) will be satisfied for any choice of $\delta \in \Delta^{\times}$provided $\varepsilon=\gamma$. If $\varepsilon \neq \gamma$, there is no solution.

Now (7) is necessary as well as sufficient for the existence of the maps α and β of the theorem. This is because any pair of maps α and β which satisfy 3.2 (b,c) are in fact given by (3) for some choice of $\delta \in \Delta^{\times}$. To see this, observe that $\alpha \Theta^{-1} \in \Delta$ by (b) and (1) and so $\alpha=\delta \Theta$ for some δ. For $v \in V$ and $\lambda \in V^{*}$, condition (c) yields

$$
(\lambda \varphi \varepsilon)(v \Theta)=v \lambda \varepsilon=(\lambda \beta)(v \delta \Theta)=\left(\lambda \beta \delta^{\tau}\right)(v \Theta)
$$

and so $\varphi \varepsilon=\beta \delta^{\tau}$. Therefore, (3) is satisfied, as claimed.
What remains to be shown is that the case where τ is the identity on Δ happens if and only if an absolutely irreducible constituent of V is Γ-conjugate to its dual. By Lemma 4.3, it suffices to show that the ΔG-modules V and V^{*} are conjugate in Γ if τ is trivial on Δ. Note that the conjugacy of V and V^{*} is equivalent to the existence of a Δ-space isomorphism $\psi: V \rightarrow V^{*}$ such that

$$
\begin{equation*}
(v x) \psi=(v \psi) x^{c} \tag{10}
\end{equation*}
$$

for $v \in V$ and $x \in G$.
In view of (1), we see that (10) is equivalent to the assertion that $\psi \Theta^{-1} \in \Delta$ and so we need to show that τ is trivial on Δ if and only if some map of the form $\psi=\delta \Theta: V \rightarrow V^{*}$ is Δ-linear for some choice of $\delta \in \Delta$. Since Δ is commutative, our condition reduces to the Δ linearity of Θ. Now for $v, w \in V$ and $\delta \in \Delta$, we have

$$
w(v \delta \Theta)=\left(w \delta^{\tau}\right)(v \Theta)=(w)\left(v \Theta \delta^{\tau}\right)
$$

where the last equality is by the definition of the Δ-action on V^{*}. We now have

$$
v \delta \Theta=v \Theta \delta^{\tau}
$$

and so Θ is Δ-linear if and only if τ is trivial on Δ. \square
6. Concluding remarks. In the situation of Theorem A, let $\Delta=\operatorname{Hom}_{F G}(V, V)$. If $|\Delta: F|$ is odd, then necessarily the absolutely irreducible constituents of V are Γ-conjugate to their duals and we
cannot hope to specify whether $\Gamma-G$ is to centralize or invert $Z=$ $\mathbf{Z}(E)$. (Except, of course, when $p=2$ where it makes no difference.) In particular, this occurs if V is absolutely irreducible or if $\operatorname{dim}_{F}(V)$ is odd.

For example, suppose G is cyclic of order 4 . Let $p \equiv 1 \bmod 4$ and let V be a faithful $F G$-module of dimension 1 (where $F=G F(p)$). If we take $\Gamma=D_{8}$ or Q_{8}, then V is Γ-conjugate to V^{*} and so Γ will act on E, extra-special of order p^{3} and exponent p. In this situation, $\Gamma-G$ necessarily inverts Z if $\Gamma=D_{8}$ and centralizes Z if $\Gamma=Q_{8}$.
On the other hand, suppose $p \equiv 3 \bmod 4$. In this case there is a unique faithful $F G$-module V and it has dimension 2 . We have $V \simeq V^{*}$ and there are four possibilities for Γ. In addition to D_{8} and Q_{8}, there are two abelian groups: Z_{8} and $Z_{4} \times Z_{2}$. In this case, $|E|=p^{5}$ and again $D_{8}-G$ inverts and $Q_{8}-G$ centralizes. Each of the abelian possibilities, however, can act in more than one way and $\Gamma-G$ can be made to invert or centralize, as desired.
Note that at first glance, it seems unlikely that if $\Gamma-G$ contains an element c of order 2 that c can centralize $Z=E^{\prime}$ since if $e \in E$, then

$$
\left[e, e^{c}\right]^{c}=\left[e^{c}, e\right]=\left[e, e^{c}\right]^{-1}
$$

and this seems to imply an inverting action. Of course, what must happen in this case is that $\left[e, e^{c}\right]=1$ for all $e \in E$.

REFERENCES

1. T.R. Berger, Hall-Higman type theorems V, Pacific J. of Math. 73 (1977) 1-62.
2. E.C. Dade, Normal subgroups of M-groups need not be M-groups, Math. Z. 133 (1973) 313-317.
3. E.C. Dade, Characters of groups with normal extra special subgroups, Math. Z. 152 (1976), 1-31.
4. I.M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.
5. - Characters of solvable and symplectic groups, Amer. J. of Math. 95 (1973) 594-635.
6. H.N. Ward, Representations of symplectic groups, J. of Algebra 20 (1972) 182-195.
7. D.L. Winter, The automorphism group of an extra-special p-group, Rocky Mtn. J. of Math. 2 (1972) 159-168.

Mathematics Department, University of Wisconsin, Madison, Wi 53706

[^0]: Research partially supported by a grant from the National Science Foundations. Received by the editors on June 10, 1984, and in revised form on June 24, 1986.

