DUAL MODULES AND GROUP ACTIONS ON EXTRA-SPECIAL GROUPS

I.M. ISAACS

1. Introduction. When constructing examples or counter-examples in the theory of solvable groups, it is often the case that what is needed is some group which acts in an interesting way on an extra-special p-group. Specifically, what we have in mind is the following.

Let G be a finite group and let V be an irreducible FG-module where F = GF(p). It is easy to construct an extra-special p-group E acted on by G such that E = AB where A and B are G-invariant elementary abelian normal subgroups with $A \cap B = Z = \mathbf{Z}(E)$. This can be done so that A/Z is FG-isomorphic to V and B/Z is FG-isomorphic to the "dual" or contragredient FG-module V^* . Furthermore, G acts trivially on Z.

Now comes the more subtle part. Suppose $G \triangleleft \Gamma$ where $|\Gamma : G| = 2$ and where the conjugation action of Γ on the set of isomorphism classes of *FG*-modules interchanges the classes of *V* and *V*^{*}. (We allow the possibility that $V \simeq V^*$ and this isomorphism class is Γ -invariant.) The question is whether or not the action of *G* on *E* can be extended to a Γ -action in which the elements of $\Gamma - G$ interchange *A* and *B*.

The answer is "yes".

THEOREM A. Let $G \triangleleft \Gamma$ with $|\Gamma : G| = 2$ and let V be an irreducible FG-module where F = GF(p). Assume that V is conjugate to V^{*} in Γ . Then Γ acts on an extra-special p-group E and the following hold.

a) E = AB where $A, B \triangleleft E$ are elementary abelian and $A \cap B = \mathbf{Z}(E)$.

b) G centralizes $Z = \mathbf{Z}(E)$ and acts on A/Z and B/Z as it does on V and V^{*} respectively.

c) The elements of $\Gamma - G$ interchange A and B and either all of them centralize or else all of them invert Z. Furthermore, the choice of the

Research partially supported by a grant from the National Science Foundations. Received by the editors on June 10, 1984, and in revised form on June 24, 1986.

I.M. ISAACS

action of $\Gamma - G$ on Z may be specified in advance except in the case where an absolutely irreducible constituent of V is Γ -conjugate to its contragredient module.

Some explanation of the last sentence is probably appropriate here. Let \overline{F} be an algebraic closure of F. Then $V \otimes_F \overline{F}$ is a direct sum of pairwise nonisomorphic irreducible $\overline{F}G$ -modules which constitute a Galois conjugacy class over F. Suppose W is one of these. Now $V^* \otimes_F \overline{F}$ is the contragredient module for $V \otimes_F \overline{F}$ and therefore W^* is isomorphic to a constituent of it. Since V is Γ -conjugate to V^* , it follows that Wis Γ -conjugate to some irreducible constituent of $V^* \otimes_F \overline{F}$, but this constituent is not necessarily W^* . The theorem asserts that in the case where W is not Γ -conjugate to W^* (and $p \neq 2$), we can find two actions of Γ on E. In one of these, $G - \Gamma$ (and hence all of Γ) centralizes Z, and in the other $\Gamma - G$ inverts Z. (Note that since G centralizes Z, it is a triviality that all the elements of $\Gamma - G$ act in the same way on Z.)

As an example of the setting of the theorem, consider Dade's construction [2] of an *M*-group having a non-*M* normal subgroup. What was needed there was an action of Γ , a dihedral group of order 14, on an extra special group of order 2^7 such that the involutions of Γ interchanged two elementary abelian subgroups of order 2^4 . Dade's situation was exactly as in our theorem. (There is an error in [2] which Dade corrected in [3]. The error occured at precisely the interesting part of Theorem A: the extension of the *G*-action to Γ .)

The author would like to thank the referee for the suggestion that readers of this paper might appreciate information concerning other papers which deal with actions of groups on extra-special groups and on symplectic modules. Specifically, the referee mentioned papers [1], [6] and [7] (and in this context, I cannot resist including [5]). It should be stressed, however, that none of these papers bears directly on the present work which is concerned with synthesis rather than analysis and which is almost entirely self-contained.

2. The construction of E(V). Let V be a finite dimensional vector space over an arbitrary field K. We construct a group E(V) which, in the case where K = GF(p), will turn out to be an extra-special p-group of order $p|V|^2$. This construction is certainly not new.

Let A be the direct sum of the additive groups of V and k and write A multiplicatively. Let $V^* = \operatorname{Hom}_K(V, K)$ be the dual space of V and let Λ be a copy of the additive group of V^* , written multiplicatively. Now for $(v, k) \in A$ and $\lambda \in \Lambda$, write

(*)
$$(v,k)^{\lambda} = (v,v\lambda + k).$$

It is trivial to check that this defines an automorphism of A. Since $v(\lambda\mu) = v\lambda + v\mu$, we have an action of Λ on A and we define $E(V) = A \rtimes \Lambda$, the semi-direct product.

Let us write $Z = (0, K) \subseteq A$. It is routine to check that $Z = \mathbf{Z}(E(V))$ and also that Z = (E(V))'. If we write $B = Z\Lambda$, then $A \simeq V^+ \oplus K^+ \simeq B$. Also, AB = E(V) and $A \cap B = Z$. In particular, in the situation of Theorem A, if we take K = F, then E = E(V) is extra-special and part (a) of the theorem holds.

Now suppose V is a KG-module for some group G and make V^* into a KG-module via the contragredient action so that $(vg)(\lambda g) = v\lambda$ for all $v \in V$ and $\lambda \in V^*$. We can now let G act on A and Λ by defining

$$(v,k)^g = (vg,k)$$
 and $\lambda^g = \lambda g$.

We need to check that (*) is preserved by these actions. Specifically, we need

$$(vg,k)^{(\lambda g)} = (v,v\lambda+k)^g$$

and this is clear by direct computation.

It follows that G acts on E(V) and in this action, G centralizes Z and normalizes A and B. Also, the induced actions of G on A/Z and B/Z agree (via the natural isomorphisms) with the original actions of G on V and V^{*}. In particular, part (b) of Theorem A is proved.

3. Conditions for Γ -action on E(V). Assume $G \triangleleft \Gamma$ with $|\Gamma : G| = 2$ as in Theorem A. Let V be a KG-module and let G act on E(V) as in the previous section. Fix some element $c \in \Gamma - G$ and write $s = c^2 \in G$.

LEMMA 3.1. Suppose we can find additive group isomorphisms

$$\alpha: V \to V^* \quad \beta: V^* \to V \quad \gamma: K \to K$$

such that

- i) $v\alpha\beta = vs$ and $\lambda\beta\alpha = \lambda s$ for all $v \in V$ and $\lambda \in V^*$.
- ii) $vx\alpha = v\alpha x^c$ and $\lambda x\beta = \lambda \beta x^c$ for all $v \in V$, $\lambda \in V^*$ and $x \in G$.
- iii) $k\gamma^2 = k$ for all $k \in K$.
- iv) $(v\lambda)\gamma = -(\lambda\beta)(v\alpha)$ for all $v \in V$, $\lambda \in V^*$.

Then the action of G on E(V) can be extended to an action of Γ for which

$$(**) \qquad (v,0)^c = v\alpha \in \Lambda$$
$$\lambda^c = (\lambda\beta,0) \in A$$
$$(0,k)^c = (0,k\gamma).$$

In particular, the elements of $\Gamma - G$ interchange A and B.

PROOF. We use equations (**) to define an action of c on E(V). To see that this does define an automorphism, recall that multiplication in E(V) satisfies

$$(v,k)\lambda = \lambda(v,k+v\lambda)$$

by (*) and it suffices to show that

$$(v,0)^c(0,k)^c\lambda^c = \lambda^c(v,0)^c(0,k+v\lambda)^c.$$

Writing

$$v\alpha = \mu$$
 and $\lambda\beta = w$,

what we need becomes

$$\mu(0,k\gamma)(w,0) = (w,0)\mu(0,k\gamma + (v\lambda)\gamma).$$

By (*),

$$(w,0)\mu = \mu(w,w\mu)$$

and the desired equation follows by (iv).

To show that we really have an action of Γ on E(V) we need to establish that c^2 acts like s and that xc acts like cx^c for all $x \in G$. These follow by routine computations using (i), (ii) and (iii).

508

We shall impose the additional condition that the maps α and β of Lemma 3.1 be K-linear. It follows by 3.1 (iv) that γ will also be Klinear and so must be multiplication by some element $\varepsilon \in K$. By 3.1 (iii) we have $\varepsilon^2 = 1$ and so $\varepsilon = \pm 1$.

In view of Lemma 3.1, we see that in order to complete the proof of Theorem A, it suffices to show the following.

THEOREM 3.2. Let $|G \triangleleft \Gamma$ with $|\Gamma : G| = 2$. Fix $c \in \Gamma - G$ and let $s = c^2 \in G$. Let K be a finite field and V an irreducible KG-module. Assume that V and V^{*} are conjugate in Γ . Then there exists $\varepsilon = \pm 1$ and vector space isomorphisms

$$\alpha: V \to V^*$$
 and $\beta: V^* \to V$

such that

- a) $v\alpha\beta = vs$ and $\lambda\beta\alpha = \lambda s$ for all $v \in V$ and $\lambda \in V^*$.
- b) $vx\alpha = v\alpha x^c$ and $\lambda x\beta = \lambda \beta x^c$ for all $v \in V, \lambda \in V^*$ and $x \in G$.
- c) $(\lambda\beta)(v\alpha) = (v\lambda)\varepsilon$ for all $v \in V$ and $\lambda \in V^*$.

Furthermore, $\varepsilon = \pm 1$ can be prespecified except in the case where an absolutely irreducible constituent of V is Γ -conjugate to its dual. In that case, ε is uniquely determined.

4. Preliminaries. We begin work toward Theorem 3.2 with some elementary linear algebra. Fix a field K and let V be a finite dimensional vector space over K with dual space $V^* = \text{Hom}_K(V, K)$.

LEMMA 4.1. Let $\Theta: V \to V^*$ be an arbitrary K-isomorphism. Then a) There exists a unique K-isomorphism $\varphi: V^* \to V$ such that

(A)
$$(\lambda \varphi)(v\Theta) = v\lambda$$

for all $\lambda \in V^*$ and $v \in V$.

b) If $\alpha: V \to V$ is any linear transformation, there exists a unique transformation $\alpha^{\tau}: V \to V$ such that

(B)
$$(w)(v\alpha\Theta) = (w\alpha^{\tau})(v\Theta)$$

for all $v, w \in V$.

c) The map τ is a K-linear antiautomorphism of the ring $R = Hom_K(V, V)$.

PROOF. Fix a basis for V and its corresponding dual basis for V^* . We may now identify V with the space of row vectors over K and V^* with the column vectors. With this identification, the computation of $v\lambda$ for $v \in V$ and $\lambda \in V^*$ is simply matrix multiplication. Also, if $[\Theta]$ denotes the matrix of Θ , then $v\Theta = (V[\Theta])^t$. If $\varphi : V^* \to V$ is any linear transformation, and its matrix is $[\varphi]$, then $\lambda \varphi = \lambda^t [\varphi]$.

Equation (A) now reads

$$(\lambda^t[\varphi])(v[\Theta])^t = v\lambda$$

or equivalently

$$\lambda^t[\varphi][\Theta]^t v^t = v\lambda = \lambda^t v^t.$$

We see that the unique φ which works is determined by the matrix $[\varphi] = ([\Theta]^t)^{-1}$ and part (a) is proved.

If α and α^{τ} are any two elements of $R = \text{Hom}_{k}(V, V)$, equation (B) translates into matrix language as

$$w(v[\alpha][\Theta])^t = w[\alpha^{\tau}](v[\Theta])^t$$

and this is equivalent to

$$w[\Theta]^t[\alpha]^t v^t = w[\alpha^\tau][\Theta]^t v^t.$$

We see then that α^{τ} is uniquely determined by the matrix equation

$$[\alpha^{\tau}] = [\Theta]^t [\alpha]^t ([\Theta]^t)^{-1}.$$

Part (b) is now proved and (c) follows since the map τ , when viewed on the matrix level, is the composition of the transpose map with conjugation by $([\Theta]^t)^{-1}$ and so is a K-linear antiautomorphism of R as desired.

We shall also need the following easy result on finite fields.

LEMMA 4.2. Let Δ be a finite field and let $\tau \in \text{Aut}(\Delta)$ have order 2. Suppose $\gamma \in \Delta^{\times}$ with $\gamma^{\tau} = \gamma^{-1}$. Then there exists $\delta \in \Delta^{\times}$ such that

$$\delta^{-1}\delta^{\tau} = \gamma.$$

PROOF. Let $|Fix(\tau)| = q$ so that $|\Delta| = q^2$ and $\delta^{\tau} = \delta^q$ for all $\delta \in \Delta$. We have

$$\gamma^{-1} = \gamma^\tau = \gamma^q$$

and so $\gamma^{q+1} = 1$. However, Δ^{\times} is a cyclic group of order (q+1)(q-1)and it follows that $\gamma = \delta^{q-1}$ for some $\delta \in \Delta^{\times}$. Now

$$\delta^{-1}\delta^{\tau} = \delta^{-1}\delta^{q} = \gamma$$

as required.

We need one more preliminary result.

LEMMA 4.3. Let V be an irreducible KG-module where G is a finite group and K is a finite field. Let $\Delta = \text{Hom}_{KG}(V, V)$ (and note that Δ is a finite field).

a) Viewing V as a ΔG -module, it is isomorphic to an absolutely irreducible constituent of $V \otimes_K \Delta$.

b) The dual KG-module V^* can be made into a ΔG module by defining $\lambda \delta \in V^*$ according to the formula

$$(v)\lambda\delta = (v\delta)\lambda$$

for $v \in V$, where $\lambda \in V^*$ and $\delta \in \Delta$

c) The ΔG -module V^* is ΔG -isomorphic to the Δ -dual of the ΔG -module V.

PROOF. We have $\operatorname{Hom}_{\Delta G}(V, V) = \Delta$ and this implies that V is an absolutely irreducible ΔG -module by Theorem 9.2 of [4]. As such, it is a constituent of $V \otimes_K \Delta$ by Lemma 9.18 of [4]. This completes the proof of (a).

I.M. ISAACS

It is clear (since Δ is commutative) that the action of Δ on V^* defined in (b) makes V^* into a Δ -space and we need only check that the Δ action commutes with the *G*-action. For $x \in G$, $\lambda \in V^*$, $\delta \in \Delta$ and $v \in V$ we have

$$(v)(\lambda x\delta) = (v\delta)(\lambda x) = (v\delta x^{-1})\lambda = (vx^{-1}\delta)\lambda = (vx^{-1})(\lambda\delta) = (v)(\lambda\delta x)$$

as desired.

To prove (c), let \tilde{V} be the Δ -dual of V, viewed as a ΔG -module and let $T : \Delta \to K$ be any nonzero K-linear map. For each $\alpha \in \tilde{V}$, the composition $\alpha T : V \to K$ is K-linear and thus $\alpha \mapsto \alpha T$ defines a map $\tilde{V} \to V^*$. We claim that this is a ΔG -module isomorphism.

This map is clearly additive. To see that it is Δ -linear, let $v \in V$ and $\delta \in \Delta$ and compute

$$(v)(\alpha\delta)T = (v\delta)(\alpha T) = v((\alpha T)\delta).$$

Also, if $x \in G$, then

$$(v)(\alpha x)T = (vx^{-1})(\alpha T) = (v)(\alpha T)x$$

and so our map $\alpha \mapsto \alpha T$ is a ΔG -module homomorphism. Since any nonzero $\alpha \in \tilde{V}$ maps onto Δ , we have $\alpha T \neq 0$ and the map is one-to-one. We see that it maps onto V^* by a dimension argument.

5. Proving the theorem.

PROOF OF THEOREM 3.2. We are assuming that the KG-modules V and V^* are conjugate in Γ . This means that there exists a K-isomorphism $\Theta: V \to V^*$ such that

(1)
$$(vx)\Theta = v\Theta x^c \text{ for } x \in G.$$

(Recall that c is some fixed element of $\Gamma - G$). Fix Θ and let $\varphi : V^* \to V$ be as in Lemma 4.1 (a). Our object is to produce certain maps $\alpha : V \to V^*$ and $\beta : V^* \to V$ and we shall do this with suitable modifications of Θ and φ .

Our first goal is to prove the analog of (1) for the map φ . We claim

(2)
$$(\lambda x)\varphi = \lambda \varphi x^c \text{ for } x \in G$$

To see this, let $v \in V$ and compute

$$((\lambda x)\varphi)(v\Theta) = v(\lambda x) = (vx^{-1})\lambda = (\lambda\varphi)(vx^{-1}\Theta)$$

using (A) of Lemma 4.1. By (1), this yields

$$((\lambda x)\varphi)(v\Theta) = (\lambda\varphi)(v\Theta(x^{-1})^c) = (\lambda\varphi x^c)(v\Theta)$$

and since $v\Theta$ runs over all of V^* , (2) follows.

Now, as in Lemma 4.1, write $R = \operatorname{Hom}_{K}(V, V)$ and let τ be the antiautomorphism of R given by 4.1 (b,c). Let $\Delta = \operatorname{Hom}_{KG}(V, V) \subseteq R$ so that Δ is a finite field.

Suppose we fix $\varepsilon = \pm 1$ and $\delta \in \Delta^{\times}$. Let

(3)
$$\begin{aligned} \alpha &= \delta \Theta : V \to V^* \\ \beta &= \varphi(\delta^{\tau})^{-1} \varepsilon : V^* \to V. \end{aligned}$$

We will show that for suitable choices of ε and δ , these maps satisfy the conclusion of the theorem.

To check condition (c), compute

$$(\lambda\beta)(v\alpha) = (\lambda\varphi(\delta^{\tau})^{-1})(v\delta\Theta)\varepsilon = (\lambda\varphi(\delta^{\tau})^{-1}\delta^{\tau})(v\Theta)\varepsilon = (\lambda\varphi)(v\Theta)\varepsilon = v\lambda\varepsilon$$

as required. (We have used equation (B) of 4.1.) Thus (c) holds with δ and ε arbitrary.

Next, we check (b) with α and β defined by (3). We have

$$vx\alpha = vx\delta\Theta = v\delta x\Theta = v\delta\Theta x^c$$

by (1) and thus $vx\alpha = v\alpha x^c$ as required. To prove the second part of (b), we will need to know.

(4)
$$\tau \operatorname{maps} \Delta \operatorname{to} \Delta$$
.

Assuming this for the moment, we compute

$$\lambda x \beta = \lambda x \varphi(\delta^{\tau})^{-1} \varepsilon = \lambda \varphi(\delta^{\tau})^{-1} \varepsilon x^{c} = \lambda \beta x^{c}$$

where we have used (2) and (4).

To establish (4), let us write $\overline{x} \in R$ to denote the linear transformation of V induced by $x \in G$. Then Δ is the centralizer in R of $\overline{G} = \{\overline{x} | x \in G\}$ and it will suffice to show that τ maps \overline{G} to itself. In fact, we claim that

(5)
$$(\overline{x})^{\tau} = \overline{(x^c)^{-1}}.$$

To see this, compute for $v, w \in V$ that

$$w(vx\Theta) = w(v\Theta x^c) = w((x^c)^{-1})(v\Theta).$$

Comparison of this with the defining property (B) of τ in 4.2 proves (5). We have now shown that (b) holds for arbitrary δ and ε in (3).

Before we can prove (a), we need to obtain some information about the map $\Theta \varphi : V \to V$. For $x \in G$ and $v \in V$ we compute

$$vx\Theta\varphi s^{-1} = v\Theta\varphi s^{-1}x$$

for all $v \in V$ and $x \in G$. In other words, setting $\gamma = \Theta \varphi \overline{s}^{-1}$, we have

(6)
$$\gamma = \Theta \varphi \overline{s}^{-1} \in \Delta.$$

Now let us check to see if we can make (a) hold. By (3) we have

$$v\alpha\beta = v\delta\Theta\varphi(\delta^{\tau})^{-1}\varepsilon = v\delta\gamma\overline{s}(\delta^{\tau})^{-1}\varepsilon = (vs)\delta\gamma(\delta^{\tau})^{-1}\varepsilon$$

and so we need

(7)
$$\delta(\delta^{\tau})^{-1}\gamma\varepsilon = 1$$

for the first part of (a). For the second part of (a) we compute

$$\lambda\beta\alpha = \lambda\varphi(\delta^{\tau})^{-1}\varepsilon\delta\Theta = \lambda\varphi(\delta^{\tau})^{-1}\varepsilon\delta\gamma s\varphi^{-1}$$

and if (7) holds, this yields

$$\lambda\beta\alpha = \lambda\varphi s\varphi^{-1} = \lambda s^{c^{-1}}\varphi\varphi^{-1} = \lambda s$$

using (2) and the fact that c centralizes s.

514

To complete the proof of the theorem, we need to show that $\delta \in \Delta^{\times}$ and $\varepsilon = \pm 1$ can be chosen so that (7) holds and that $\varepsilon = \pm 1$ is uniquely determined if and only if an absolutely irreducible constituent of V is Γ -conjugate to its dual.

Since Δ is commutative, it follows by (4) that the antiautomorphism τ defines an automorphism of Δ . We claim that

(8)
$$\delta^{\tau^2} = \delta \text{ for } \delta \in \Delta.$$

To see this let $v, w \in V$ and compute

$$(w)(v\delta\Theta) = (w\delta^{\tau})(v\Theta) = (v\Theta\varphi)(w\delta^{\tau}\Theta) = (v\Theta\varphi\delta^{\tau^2})(w\Theta)$$

using (A) and (B) of 4.1. By (6) it follows that $\Theta \varphi$ centralizes Δ and so we have

$$(w)(v\delta\Theta) = (v\delta^{\tau^2}\Theta\varphi)(w\Theta) = (w)(v\delta^{\tau^2}\Theta)$$

and (8) follows.

We wish to use Lemma 4.2 to solve (7) and so we need to establish

(9)
$$\gamma^{\tau} = \gamma^{-1}$$

where γ , of course, is as in (6). Let $v, w \in V$ and compute

$$(w)(v\Theta) = (v\Theta\varphi)(w\Theta) = (w\Theta\varphi)(v\Theta\varphi\Theta) = (w\Theta\varphi(\Theta\varphi)^{\tau})(v\Theta).$$

It follows that $\Theta \varphi(\Theta \varphi)^{\tau} = 1$ and $(\Theta \varphi)^{\tau} = (\Theta \varphi)^{-1}$. Therefore

$$\gamma^{\tau} = (\Theta \varphi \overline{s}^{-1})^{\tau} = (\overline{s}^{-1})^{\tau} (\Theta \varphi)^{\tau} = \overline{s} (\Theta \varphi)^{-1} = \gamma^{-1}$$

where we have used (5).

Now that (9) is established, it follows by Lemma 4.2 that if the automorphism induced on Δ by τ has order 2, then for either choice of $\varepsilon = \pm 1$, we can find $\delta \in \Delta^{\times}$ with

$$\delta^{-1}\delta^{\tau} = \varepsilon\gamma$$

and (7) is satisfied. The remaining possibility (by (8)) is that τ induces the trivial automorphism on Δ . In that case, we have $\delta(\delta^{\tau})^{-1} = 1$ and

also $\gamma = \pm 1$ by (9). It follows that (7) will be satisfied for any choice of $\delta \in \Delta^{\times}$ provided $\varepsilon = \gamma$. If $\varepsilon \neq \gamma$, there is no solution.

Now (7) is necessary as well as sufficient for the existence of the maps α and β of the theorem. This is because any pair of maps α and β which satisfy 3.2 (b,c) are in fact given by (3) for some choice of $\delta \in \Delta^{\times}$. To see this, observe that $\alpha \Theta^{-1} \in \Delta$ by (b) and (1) and so $\alpha = \delta \Theta$ for some δ . For $v \in V$ and $\lambda \in V^*$, condition (c) yields

$$(\lambda \varphi \varepsilon)(v\Theta) = v\lambda \varepsilon = (\lambda \beta)(v\delta\Theta) = (\lambda \beta \delta^{\tau})(v\Theta)$$

and so $\varphi \varepsilon = \beta \delta^{\tau}$. Therefore, (3) is satisfied, as claimed.

What remains to be shown is that the case where τ is the identity on Δ happens if and only if an absolutely irreducible constituent of Vis Γ -conjugate to its dual. By Lemma 4.3, it suffices to show that the ΔG -modules V and V^* are conjugate in Γ if τ is trivial on Δ . Note that the conjugacy of V and V^* is equivalent to the existence of a Δ -space isomorphism $\psi: V \to V^*$ such that

(10)
$$(vx)\psi = (v\psi)x^c$$

for $v \in V$ and $x \in G$.

In view of (1), we see that (10) is equivalent to the assertion that $\psi \Theta^{-1} \in \Delta$ and so we need to show that τ is trivial on Δ if and only if some map of the form $\psi = \delta \Theta : V \to V^*$ is Δ -linear for some choice of $\delta \in \Delta$. Since Δ is commutative, our condition reduces to the Δ -linearity of Θ . Now for $v, w \in V$ and $\delta \in \Delta$, we have

$$w(v\delta\Theta) = (w\delta^{\tau})(v\Theta) = (w)(v\Theta\delta^{\tau})$$

where the last equality is by the definition of the Δ -action on V^* . We now have

$$v\delta\Theta = v\Theta\delta^{\tau}$$

and so Θ is Δ -linear if and only if τ is trivial on Δ .

6. Concluding remarks. In the situation of Theorem A, let $\Delta = \text{Hom}_{FG}(V, V)$. If $|\Delta : F|$ is odd, then necessarily the absolutely irreducible constituents of V are Γ -conjugate to their duals and we

cannot hope to specify whether $\Gamma - G$ is to centralize or invert $Z = \mathbf{Z}(E)$. (Except, of course, when p = 2 where it makes no difference.) In particular, this occurs if V is absolutely irreducible or if $\dim_F(V)$ is odd.

For example, suppose G is cyclic of order 4. Let $p \equiv 1 \mod 4$ and let V be a faithful FG-module of dimension 1 (where F = GF(p)). If we take $\Gamma = D_8$ or Q_8 , then V is Γ -conjugate to V^{*} and so Γ will act on E, extra-special of order p^3 and exponent p. In this situation, $\Gamma - G$ necessarily inverts Z if $\Gamma = D_8$ and centralizes Z if $\Gamma = Q_8$.

On the other hand, suppose $p \equiv 3 \mod 4$. In this case there is a unique faithful FG-module V and it has dimension 2. We have $V \simeq V^*$ and there are four possibilities for Γ . In addition to D_8 and Q_8 , there are two abelian groups: Z_8 and $Z_4 \times Z_2$. In this case, $|E| = p^5$ and again $D_8 - G$ inverts and $Q_8 - G$ centralizes. Each of the abelian possibilities, however, can act in more than one way and $\Gamma - G$ can be made to invert or centralize, as desired.

Note that at first glance, it seems unlikely that if $\Gamma - G$ contains an element c of order 2 that c can centralize Z = E' since if $e \in E$, then

$$[e, e^c]^c = [e^c, e] = [e, e^c]^{-1}$$

and this seems to imply an inverting action. Of course, what must happen in this case is that $[e, e^c] = 1$ for all $e \in E$.

REFERENCES

1. T.R. Berger, Hall-Higman type theorems V, Pacific J. of Math. 73 (1977) 1-62.

2. E.C. Dade, Normal subgroups of M-groups need not be M-groups, Math. Z. 133 (1973) 313-317.

3. E.C. Dade, Characters of groups with normal extra special subgroups, Math. Z. 152 (1976), 1-31.

4. I.M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.

5. ———, Characters of solvable and symplectic groups, Amer. J. of Math. 95 (1973) 594-635.

6. H.N. Ward, Representations of symplectic groups, J. of Algebra 20 (1972) 182-195.

7. D.L. Winter, The automorphism group of an extra-special p-group, Rocky Mtn. J. of Math. 2 (1972) 159-168.

MATHEMATICS DEPARTMENT, UNIVERSITY OF WISCONSIN, MADISON, WI 53706