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DUAL MODULES A N D GROUP ACTIONS 
ON EXTRA-SPECIAL GROUPS 

I.M. ISAACS 

1. Introduction. When constructing examples or counter-examples 
in the theory of solvable groups, it is often the case that what is needed 
is some group which acts in an interesting way on an extra-special 
p-group. Specifically, what we have in mind is the following. 

Let G be a finite group and let V be an irreducible FG-module where 
F = GF(p). It is easy to construct an extra-special p-group E acted 
on by G such that E = AB where A and B are G-invariant elementary 
abelian normal subgroups with A DB = Z = Z(F). This can be done 
so that A/Z is FG-isomorphic to V and B/Z is FG-isomorphic to the 
"dual" or contragredient FG-module V*. Furthermore, G acts trivially 
on Z. 

Now comes the more subtle part. Suppose G < T where \T : G\ = 2 
and where the conjugation action of F on the set of isomorphism classes 
of FG-modules interchanges the classes of V and V*. (We allow the 
possibility that V ~ V* and this isomorphism class is T-invariant.) The 
question is whether or not the action of G on F can be extended to a 
T-action in which the elements of T — G interchange A and B. 

The answer is "yes". 

THEOREM A. Let G < T with \T : G\ = 2 and let V be an irreducible 
FG-module where F = GF(p). Assume that V is conjugate to V* in 
T. Then V acts on an extra-special p-group E and the following hold. 

a) E = AB where A,B<E are elementary abelian and AnB = Z(F). 

b) G centralizes Z = Z(F) and acts on A/Z and B/Z as it does on 
V and V* respectively. 

c) The elements ofT — G interchange A and B and either all of them 
centralize or else all of them invert Z. Furthermore, the choice of the 
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action ofT — G on Z may be specified in advance except in the case 
where an absolutely irreducible constituent of V is T-conjugate to its 
contragredient module. 

Some explanation of the last sentence is probably appropriate here. 
Let F be an algebraic closure of F. Then V <8>F F is a direct sum 
of pairwise nonisomorphic irreducible FG-modules which constitute a 
Galois conjugacy class over F. Suppose W is one of these. Now V*®FF 

is the contragredient module for V<8>FF and therefore W* is isomorphic 
to a constituent of it. Since V is T-conjugate to V*, it follows that W 
is T-conjugate to some irreducible constituent of V* <2>F F, but this 
constituent is not necessarily W*. The theorem asserts that in the case 
where W is not T-conjugate to W* (and p ^ 2), we can find two actions 
of r on E. In one of these, G — T (and hence all of T) centralizes Z, 
and in the other T — G inverts Z. (Note that since G centralizes Z, it 
is a triviality that all the elements of F — G act in the same way on Z.) 

As an example of the setting of the theorem, consider Dade's con­
struction [2] of an M-group having a non-M normal subgroup. What 
was needed there was an action of I \ a dihedral group of order 14, 
on an extra special group of order 27 such that the involutions of T 
interchanged two elementary abelian subgroups of order 24. Dade's 
situation was exactly as in our theorem. (There is an error in [2] which 
Dade corrected in [3]. The error occured at precisely the interesting 
part of Theorem A: the extension of the G-action to I\) 

The author would like to thank the referee for the suggestion that 
readers of this paper might appreciate information concerning other 
papers which deal with actions of groups on extra-special groups and 
on symplectic modules. Specifically, the referee mentioned papers [1], 
[6] and [7] (and in this context, I cannot resist including [5]). It should 
be stressed, however, that none of these papers bears directly on the 
present work which is concerned with synthesis rather than analysis 
and which is almost entirely self-contained. 

2. The construction of E(V). Let V be a finite dimensional vector 
space over an arbitrary field K. We construct a group E(V) which, in 
the case where K = GF(p), will turn out to be an extra-special p-group 
of order p|V|2. This construction is certainly not new. 
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Let A be the direct sum of the additive groups of V and k and write 
A multiplicatively. Let V* = Homx(V, K) be the dual space of V and 
let A be a copy of the additive group of V*, written multiplicatively. 
Now for (v, k) € A and A € A, write 

(*) (v,k)x = (v^vX + k). 

It is trivial to check that this defines an automorphism of A. Since 
v(Xfi) = vX -h vu, we have an action of A on A and we define 
E(V) = A x A, the semi-direct product. 

Let us write Z = (0, K) C A. It is routine to check that Z = Z(E(V)) 
and also that Z = (E(V))'. If we write B = ZA, then i - F + 0 K + -
B. Also, AB = E(V) and AC\ B = Z. In particular, in the situation 
of Theorem A, if we take K = F, then E = E(V) is extra-special and 
part (a) of the theorem holds. 

Now suppose V is a K G-module for some group G and make V* into 
a KG-module via the contragredient action so that (vg)(Xg) — vX for 
all v G V and A € V*. We can now let G act on A and A by defining 

{v,k)9 = (vg,k) tmdX9 = Xg. 

We need to check that (*) is preserved by these actions. Specifically, 
we need 

(v0,fc)<A*> = (v,v\ + k)9 

and this is clear by direct computation. 

It follows that G acts on E(V) and in this action, G centralizes Z 
and normalizes A and B. Also, the induced actions of G on A/Z and 
BjZ agree (via the natural isomorphisms) with the original actions of 
G on V and V*. In particular, part (b) of Theorem A is proved. 

3. Conditions for T-action on E(V). Assume G < T with 
| r : GI = 2 as in Theorem A. Let V be a KG-module and let G 
act on E(V) as in the previous section. Fix some element c € T — G 
and write s — c2 G G. 

LEMMA 3.1. Suppose we can find additive group isomorphisms 

a:V -+V* ß:V* -+V 7 : K -> K 
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such that 

i) vaß = vs and Xßa = Xs for all v EV and X G V*. 

ii) vxa = vaxc and Xxß = Xßxc for all v G V, AG V* and x G G. 

iii) &72 = k for all k G K. 

iv) (vAfr = -(A/J)(t/a) /or a« t; € V, A G F*. 

Then the action of G on E{V) can be extended to an action of T for 
which 

(v,0)c = va G A 

(**) Xc = (Xß,0)eA 

(0,*Oc = (0,fc7). 

In particular, the elements ofT — G interchange A and B. 

PROOF. We use equations (**) to define an action of c on E(V). To 
see that this does define an automorphism, recall that multiplication 
in E(V) satisfies 

(v,k)X = X(v,k + vX) 

by (*) and it suffices to show that 

(v, 0)c(0, ib)cAc = Xc(v, 0)c(0, k + vX)c. 

Writing 
va = fi and Xß = w, 

what we need becomes 

/i(0, *7)(u;, 0) = (u/, 0)/x(0, k-y + (vA)7). 

By (*), 
(it;, 0)/x = n(w,wii) 

and the desired equation follows by (iv). 

To show that we really have an action of V on E(V) we need to es­
tablish that c2 acts like s and that xc acts like cxc for all x G G. These 
follow by routine computations using (i), (ii) and (iii). 
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We shall impose the additional condition that the maps a and ß of 
Lemma 3.1 be If-linear. It follows by 3.1 (iv) that 7 will also be K-
linear and so must be multiplication by some element e 6 K. By 3.1 
(iii) we have e2 = 1 and soe = ±1 . 

In view of Lemma 3.1, we see that in order to complete the proof of 
Theorem A, it suffices to show the following. 

THEOREM 3.2. Let \G <T with \T : G\ = 2. Fix c € T - G and let 
s = c2 G G. Let K be a finite field and V an irreducible KG-module. 
Assume that V and V* are conjugate in T. Then there exists e = ±1 
and vector space isomorphisms 

a : V -> F* and ß : V* -» V 

such that 

a) vaß = vs and Xßa = Xs for all v eV and X € V*. 

b) vxa = vaxc and Xxß = Xßxc for all v eV,X € V* and x eG. 

c) (Xß)(va) = (vX)e for allveV and XeV*. 

Furthermore, e = ±1 can be prespecified except in the case where an 

absolutely irreducible constituent of V is V-conjugate to its dual. In 

that case, e is uniquely determined. 

4. Preliminaries. We begin work toward Theorem 3.2 with some 
elementary linear algebra. Fix a field K and let V be a finite dimen­
sional vector space over K with dual space V* = B.OÏÏÎK{V, K). 

LEMMA 4.1. Let © : V —» V* be an arbitrary K-isomorphism. Then 

a) There exists a unique K-isomorphism (p : V* —• V such that 

(A) (A^)(^6) = vX 

for all XeV* and v e V. 
b) If a : V —• V is any linear transformation, there exists a unique 

transformation ar :V —* V such that 

{B) (w)(vaO) = (waT)(vQ) 
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for all v,w € V. 

c) The map r is a K-linear antiautomorphism of the ring R = 
HomK{V,V). 

PROOF. Fix a basis for V and its corresponding dual basis for V*. 
We may now identify V with the space of row vectors over K and V* 
with the column vectors. With this identification, the computation of 
vX for v € V and À G V* is simply matrix mulitplication. Also, if [0] 
denotes the matrix of 6 , then v& = (^[6])*. If <p : V* —• V is any 
linear transformation, and its matrix is [<p], then X(p = A*[y>]. 

Equation (A) now reads 

(A*M)(«[e])* = t;A 

or equivalently 
A ' M i e j V = vA = AV. 

We see that the unique ip which works is determined by the matrix 
M = ([ö]*) -1 an<3 part (a) is proved. 

If a and aT are any two elements of R = Horn jb(V, V), equation (B) 
translates into matrix language as 

ti/(v[a][e])* = w[aT](v[e]Y 

and this is equivalent to 

ti;[e]4[a]V = ti;[aTJ[e]V. 

We see then that aT is uniquely determined by the matrix equation 

Part (b) is now proved and (c) follows since the map r, when viewed on 
the matrix level, is the composition of the transpose map with conjuga­
tion by ([0]*)"1 and so is a K-linear antiautomorphism of R as desired. 

We shall also need the following easy result on finite fields. 
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LEMMA 4.2. Let A be a finite field and let r € Aut (A) have order 2. 
Suppose 7 G A* with 7 r = 7" 1 . Then there exists 6 G A x such that 

« T V = 7. 

PROOF. Let |Fix(r)| = q so that |A| = q2 and ST = 6* for all 6 e A. 
We have 

7 _ 1 = 7 r = 79 

and so 7 g + 1 = 1. However, A* is a cyclic group of order (q + l)(q — 1) 
and it follows that 7 = <^ -1 for some 6 e A*. Now 

rt7" = <r ̂  = 7 

as required. 

We need one more preliminary result. 

LEMMA 4.3. Let V be an irreducible KG-module where G is a finite 
group and K is a finite field. Let A = RomKG(V, V) (and note that A 
is a finite field). 

a) Viewing V as a AG-module, it is isomorphic to an absolutely 
irreducible constituent O/V<S>K A. 

b) The dual KG-module V* can be made into a AG module by 
defining \6 € V* according to the formula 

(v)XÔ = (v6)X 

for v £ V, where \ €V* and ô e A 

c) The AG-module V* is AG-isomorphic to the A-dual of the AG-

module V. 

PROOF. We have Horn AG (V, F) = A and this implies that V is an 
absolutely irreducible AG-module by Theorem 9.2 of [4]. As such, it 
is a constituent of V <8>K A by Lemma 9.18 of [4]. This completes the 
proof of (a). 
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It is clear (since A is commutative) that the action of A on V* defined 
in (b) makes V* into a A-space and we need only check that the A-
action commutes with the G-action. For X G G , A G P , 6 e A and 
v G V we have 

(v)(Xx6) = {v6){Xx) = (vôx'^X = (vx~1ö)X = (vaT1)^«) = (v)(\6x) 

as desired. 

To prove (c), let V be the A-dual of V, viewed as a AG-module and 
let T : A —• K be any nonzero K-linear map. For each a G V, the 
composition aT : V —• K is ÜMinear and thus a i—• aT defines a map 
V —> V*. We claim that this is a AG-module isomorphism. 

This map is clearly additive. To see that it is A-linear, let v G V and 
6 G A and compute 

(v)(aS)T = (vô)(aT) = v{(aT)6). 

Also, if x G G, then 

(v)(ax)T = (vx'^iaT) = (v)(aT)x 

and so our map a *—> aT is a AG-module homomorphism. Since any 
nonzero a E V maps onto A, we have aT ^ 0 and the map is one-tò-
one. We see that it maps onto V* by a dimension argument. 

5. Proving the theorem. 

PROOF OF THEOREM 3.2. We are assuming that the ifG-modules 
V and V* are conjugate in T. This means that there exists a K-
isomorphism 9 : V —• V* such that 

(1) (vx)G = vGxc for xeG. 

(Recall that c is some fixed element of T—G). Fix 0 and let <p : V* —• V 
be as in Lemma 4.1 (a). Our object is to produce certain maps 
a : V —» V* and ß : V* —• F and we shall do this with suitable 
modifications of B and (p. 

Our first goal is to prove the analog of (1) for the map </?. We claim 

(2) (Xx)<p = \(fxc for x G G 
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To see this, let v € V and compute 

((\x)(p)(vG) = v(Xx) = (vx-^X = (Xip^vx^S) 

using (A) of Lemma 4.1. By (1), this yields 

((Xx)(p){ve) = (Xcp^vSix-1)0) = (X(pxc)(vS) 

and since v@ runs over all of V*, (2) follows. 

Now, as in Lemma 4.1, write R = H o m ^ f ^ y ) and let r be the 
antiautomorphism of il given by 4.1 (b,c). Let A = H o m ^ ( y , V) Ç R 
so that A is a finite field. 

Suppose we fix e = ±1 and 8 € A x . Let 

a = 8@ : V -> F* 
( 3 ) /? = y ? ^ ) - ^ : V* -> V. 

We will show that for suitable choices of e and 6, these maps satisfy 
the conclusion of the theorem. 

To check condition (c), compute 

(Xß)(va) = {Xip(6T)-1)(v6e)e = (Xip{6ry16T)(ve)e = (X(p)(vQ)e = vXe 

as required. (We have used equation (B) of 4.1.) Thus (c) holds with 
8 and e arbitrary. 

Next, we check (b) with a and ß defined by (3). We have 

vxa = vx8Q — v8xS = v8@xc 

by (1) and thus vxa = vaxc as required. To prove the second part of 
(b), we will need to know. 

(4) r maps A to A. 

Assuming this for the moment, we compute 

Xxß = Xxip^yh = X<p(8r)-1€xc = Xßxc 
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where we have used (2) and (4). 

To establish (4), let us write x G R to denote the linear transformation 
of V induced by x G G. Then A is the centralizer in R of G = {x\x G G} 
and it will suffice to show that r maps G to itself. In fact, we claim 
that 

(5) (xr = (*r*. 

To see this, compute for v, w G V that 

w{vxQ) = w{vBxc) = wdx0)-1)^). 

Comparison of this with the defining property (B) of r in 4.2 proves 
(5). We have now shown that (b) holds for arbitrary 6 and e in (3). 

Before we can prove (a), we need to obtain some information about 
the map 0</? : V —• V. For x G G and v G V we compute 

vxQifs'1 = v@<ps~1x 

for all v G V and x G G. In other words, setting 7 = 0 ^ 5 _ 1 , we have 

(6) 7 = Sips'1 G A. 

Now let us check to see if we can make (a) hold. By (3) we have 

vaß = v6Qip{6T)-le = v6js(6T)-1e = (vs)6'y(6T)-1e 

and so we need 

(7) «(«TV = 1 

for the first part of (a). For the second part of (a) we compute 

Xßa = XtpiS^eSe = \ip(6T)-1e6'ys<p-1 

and if (7) holds, this yields 

Xßa = X(psip~x = Xsc ipip~l = Xs 

using (2) and the fact that c centralizes s. 
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To complete the proof of the theorem, we need to show that 6 G A* 
and e = ±1 can be chosen so that (7) holds and that £ = ±1 is uniquely 
determined if and only if an absolutely irreducible constituent of V is 
T-conjugate to its dual. 

Since A is commutative, it follows by (4) that the antiautomorphism 
r defines an automorphism of A. We claim that 

(8) <T2 = 6 for 6 G A. 

To see this let v, w G V and compute 

(w)(v6@) = (wóT)(vS) = (ve(p)(wóT@) = (veip6r2)(wQ) 

using (A) and (B) of 4.1. By (6) it follows that Q(p centralizes A and 
so we have 

(w)(v6S) = (vór2eip)(we) = (W)(VÔT2Q) 

and (8) follows. 

We wish to use Lemma 4.2 to solve (7) and so we need to establish 

(9) 7T = 7 _ 1 

where 7, of course, is as in (6). Let v, w G V and compute 

(w)(vG) = (vQ<p)(wG) = (we<p)(vG<pQ) = (wQ(p(e(p)T){vQ). 

It follows that Qip(®(p)T = 1 and (@(p)T = (O^ ) - 1 . Therefore 

7 r = ( e ^ - 1 ) 7 " = ( 5 - 1 ) r ( e ^ ) r = « ( e ^ ) - 1 = 7 " 1 

where we have used (5). 

Now that (9) is established, it follows by Lemma 4.2 that if the 
automorphism induced on A by r has order 2, then for either choice of 
e = ±1 , we can find 6 G A x with 

<r V = £7 

and (7) is satisfied. The remaining possibility (by (8)) is that r induces 
the trivial automorphism on A. In that case, we have <$(<$r)-1 = 1 and 
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also 7 = ±1 by (9). It follows that (7) will be satisfied for any choice 
of 8 G A x provided e = 7. If e ^ 7,there is no solution. 

Now (7) is necessary as well as sufficient for the existence of the maps 
a and ß of the theorem. This is because any pair of maps a and ß which 
satisfy 3.2 (b,c) are in fact given by (3) for some choice of 6 G A x . To 
see this, observe that a@ _ 1 G A by (b) and (1) and so a = (56 for 
some 6. For v G V and À G V*, condition (c) yields 

(\<pe)(ve) = vXe = (Xß)(vSe) = (Xß6T){vS) 

and so ipe = ßoT. Therefore, (3) is satisfied, as claimed. 

What remains to be shown is that the case where r is the identity 
on A happens if and only if an absolutely irreducible constituent of V 
is T-conjugate to its dual. By Lemma 4.3, it suffices to show that the 
AG-modules V and V* are conjugate in T if r is trivial on A. Note that 
the conjugacy of V and V* is equivalent to the existence of a A-space 
isomorphism ip : V —• V* such that 

(10) (vx)tf> = (vtp)xc 

for v G V andx G G. 

In view of (1), we see that (10) is equivalent to the assertion that 
ipS~x G A and so we need to show that r is trivial on A if and only 
if some map of the form rp = OS : V —• V* is A-linear for some choice 
of 6 G A. Since A is commutative, our condition reduces to the A-
linearity of 6 . Now for v, w G V and 6 G A, we have 

w(v6G) = (w6T)(vS) = (w)(vG6T) 

where the last equality is by the definition of the A-action on V*. We 
now have 

v6Q = vS6T 

and so 0 is A-linear if and only if r is trivial on A. D 

6. Concluding remarks. In the situation of Theorem A, let 
A = HomiP<3(V, V). If IA : F\ is odd, then necessarily the absolutely 
irreducible constituents of V are T-conjugate to their duals and we 
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cannot hope to specify whether r — G is to centralize or invert Z = 
Z(E). (Except, of course, when p = 2 where it makes no difference.) 
In particular, this occurs if V is absolutely irreducible or if d i m ^ F ) is 
odd. 

For example, suppose G is cyclic of order 4. Let p = 1 mod 4 and let 
V be a faithful FG-module of dimension 1 (where F = GF(p)). If we 
take r = D$ or Qg? then V is T-conjugate to V* and so T will act on 
2£, extra-special of order p3 and exponent p. In this situation, T — G 
necessarily inverts Z if T = D$ and centralizes Z if T = Q$. 

On the other hand, suppose p = 3 mod 4. In this case there is a unique 
faithful FG-module V and it has dimension 2. We have V ~ V* and 
there are four possibilities for T. In addition to D$ and <3s> there are 
two abelian groups: Zs and Z4 x Z2. In this case, |2£| = p5 and again 
Z>8 — G inverts and Q% — G centralizes. Each of the abelian possibilities, 
however, can act in more than one way and T — G can be made to invert 
or centralize, as desired. 

Note that at first glance, it seems unlikely that if Y — G contains an 
element c of order 2 that c can centralize Z = E' since if e € E, then 

[e,er = [ec,e) = [e,ecr1 

and this seems to imply an inverting action. Of course, what must 
happen in this case is that [e, ec] = 1 for all e G E. 
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