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ABSENCE OF EIGENVALUES OF THE ACOUSTIC 
PROPAGATOR IN DEFORMED WAVE GUIDES 

R. WEDER 

ABSTRACT. We prove that the acoustic propagator for 
deformed wave guides has no positive eigenvalues. 

Introduction. The propagation of acoustic waves in a deformed 
wave guide with speed of propagation c(x,y) is described by the 
equation 

(1.1) ^-c2(x,y)Au = 0, 

where u{x, 2/, i) is a real valued function of £ E R n , y € R, t G R, where 

(1-2) A ^ ^ + 1 - , 
i-\ 

d*xi d V 

and where c(x,y) is a measurable real valued function of R n + 1 that 
satisfies 

(1.3) 0 < C l <c (x ,2 / )<c 2 , 

for a.e., (x,y), and ci,C2 positive constants. 

The deformed wave guide is a perturbation of a perfect wave guide 
whose velocity profile, co(2/), IS a measurable real valued function of y 
only, and satisfies (1.3). The corresponding wave equation is 

(1.4) ^rtu-4(y)Au = 0. 
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Let H be the Hilbert space consisting of the Lebesgue space L 2 (R n + 1 ) 
endowed with the scalar product 

(1.5) ( / , 0 ) H = / f{xìy)g(x1y)c-2(xìy)dxdyì 
J R " + 1 

f o r / , 0 € H . 

The acoustic propagator, A, is the selfadjoint operator in H defined 
by 

(1.6) Af = -c2(x,y)Afi 

(1.7) D(A) = { / G H : A / G H } , 

where the Laplacian is taken in distribution sense. D(A) consists of 
the Sobolev space # 2 ( R n + 1 ) . 

The acoustic propagator plays a fundamental role in the spectral and 
scattering theory for the pair of equations (1.1), (1.4). In [7, 8] the 
limiting absorption principle was proven and the scattering theory was 
developed. In [8] transmission problems and exterior domains were 
also considered. In [9] the limiting absorption principle is proven at 
thresholds (cutoff frequencies) and between spaces with radial weights. 

In [10] and [11] the same results are obtained for three dimensional 
wave guides, for the vector Maxwell equations. 

In this paper we prove the absence of positive eigenvalues of the 
acoustic propagator. 

Let n be a connected exterior domain, i.e., a connected set that is 
the complement of a compact set. 

In what follows the functions c(x, t/)c0(y), are only defined in Cl. 

THEOREM I. Suppose that co(y) is measurable, satisfies (1.3) in Q, 
and that 

(1.8) e0(y) = c+, y>h+, 

(1.9) \c0(y)-c.\<C(l^y2)^£
1 y<h-, 
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for some positive constants, c + , c_ , / i + , / i_ , and C,e > 0. 

We assume that c(xiy) is measurable, satisfies (1.8) in fi, and 

(1.10) c(x,y)-co(y) = 0, 

for a.e., y > yo, some yo, and 

(1.11) \c(x,y)-co{y)\<Ce-aW 

in fi for some positive constants C, a and where 

\x\ = (x*+xl + -.- + xl)1/*. 

Then let u{x, y) € L2(fi) be a solution in the distribution sense in the 
fi of the equation 

(1.12) -c2{x,y)Au = \u, 

for À > 0. Then u(x, y) = 0 for a.e. (x, y) € fi. 

In this paper we develop our technique under simple conditions. 

Theorem I generalizes in several directions. Condition (1.3) can be 
relaxed; c(xiy) and co(y) can have both zeros, and singularities. (1.8) 
only needs to holds asymptotically as y —• oo. The decay condition 
(1.11) can be generalized. We only need decay in the complement of a 
proper cone in R n . Also more general equations can be considered. 

Theorem I is proven by using the limiting absorption principle of a 
related problem, in an argument for absence of eigenvalues that seems 
to be new. In the case of the half space y > 0 with a boundary condition 
at y = 0, where there is only the asymptotic y —• oo to consider, the 
absence of eigenvalues was proven in [3] using a different argument (see 
also [1]). 

After this work was completed and presented at the Conference 
on February 5-7, 1986, I learned at the International Conference in 
Differential Equations and Mathematical Physics, held at Birmingham, 
March 2-8, 1986, of results in the absence of eigenvalues for the Dirichlet 
Laplacian in the complement of a deformed cylinder, obtained by W. 
Littman, using a technique similar to ours [4]. 
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Finally, in [9] we give a proof of absence of positive eigenvalues of the 
acoustic propagator for a different class of deformations by means of 
virial techniques that are quite different from the one in this paper. 

2. Proof of the theorem. Suppose that u(x, y) is a solution in 
L2(fi) of (1.12). Let Qi = R n + 1 \ Q be contained in a ball of radius 
R. Let <t> e C§°(Rn + 1) , satisfy )0 < <j) < 1, </> = 0 in the ball of radius 
R + 1, and <t> = 1, outside the ball of radius R + 2. Then 

(2.1) v(x,y) = <Kx,y)u{x,y) G L 2 (R n + 1 ) , 

and satisfies the equation 

(2.2) - A t » - -5 7-Tt; = /(x,») 
cUvY 

in the distribution sense in R n + 1 , for some f(x,y) that satisfies 

(2.3) /(*,</) = 0 , t / > M , 

for some M, and 

(2.4) e ^ l / ( x , 2 / ) G L 2 ( R n + 1 ) . 

We will prove that v(xi y) = 0 . for y > M. 

Let F be the Fourier transform in the x variables. It follows from 
a simple argument using the separability of the test space Co°(Rw+1) 
that, for almost every k € R n , 

(2.5) - | ^ ( * . w ) + (fc2 - ?^) )*(*>») = ft*»») 

in the distribution sense in i?, where £(fc, y) and/(fc, y) are, respectively, 
the Fourier transform of t>(x,y), and f(x,y). 

Suppose that k2 < X/c\. Then the homogeneous equation 



DEFORMED WAVE GUIDES 499 

has two linearly independent solutions for y > h+: 

(2.7) e±y/x/c+~k2y. 

By elementary techniques in O.D.E. (variation of parameters for 
example), we construct a solution tß(k,y) of (2.5) that satisfies 

(2.8) ^(fc,2/)=0, 2 />M, for k2 < X/c2.. 

Since v(k,y) € L2{R) for a.e. fc, it follows that i/j(k,y) — v{k,y) is 
a solution in L 2 (R + ) of the homogeneous equation (2.6). By (2.7) it 
follows that 

ip{k,y)-î)(k,y)=0, y>h+, 

and then 

(2.9) v{k,y) = xl){k,y)=0, y > M, 

for a.e. k2 < X/c\. 

We will prove below that, also, v{k,y) = 0,y > M, for a.e. k2 > 
X/c\. It will follow then by Fourier transform that v(x, y) = 0, y > M, 
for a.e. x. Then, by (2.1), u(x, y) = 0, for y > M and (x,y) outside 
the ball of radius R + 2. Then, by (1.12) and unique continuation [6], 

(2.10) u(x, y) = 0, a.e. (z, y) € Î1 

To complete the proof we will show that (2.9) also holds for k2 > 
A/c^_, by means of the limiting absorption principle for the operator 

/ « , , * t d2 X X 
(2-n) h=s-w-W)+*' 
where a = min(c_,C4-). 

For z in the resolvent set of h we denote 

(2.12) r(z) = (h-z) ~ i 

By Od{h) we denote the discrete spectrum of h. See [5] for definitions. 
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For any a G R we denote by L2^ the weighted L2 space of all 
measurable complex valued functions on R such that 

(2.13) ( l + y 2 ) a / 2 / ( y ) € L 2 ( R ) , 

with norm 

(2.14) | | /IUs=| |( l + y2r/2/(2/)IU*(R). 

By i?2,<*(R)> a € R, we denote the weighted Sobolev space of function 
f(y) e Li such that ±f(y) € L2

a and ^ / ( y ) € L2
a, with norm 

(2.15) H/HH,.. - (ll/lli, + | |£/Hi. + H^/Hi0 1 / 2-

LEMMA 2.1. The essential spectrum of h consists o/[0, oo), h has no 
positive eigenvalues. 

For every ß > 0,)U ^ \\/c\ — X/c2_\, the limits 

- l (2.16) r(fi ± z'O) = lim(Ä - \x T ie) 
ej.0 

eztó in the uniform operator topology in L(L2
x;H2i-a)- The functions 

(2.17) r ± W = (r(*), Imz/0, 
v y v y ^ r (z±z0) , Im2 = 0, 

defined for z ̂  D± = (C* UR + ) \ (0U |A/c^_ - A/ci |) , are analytic for 
I m ^ ^ O and are Holder continuous with exponent 7 < 1,7 < a — 1/2, 
/or À G R + \ 0 U |A/c+ — A/ci | . Furthermore, since H~\ad(h) ŝ 
contained in the resolvent set of h, r+ (z) = r~~(z) for z G R_\<7d(/i), 
and £/ie common value is analytic. 

We give below a simple proof of this Lemma. We handle the different 
limiting values of the potential in the left and the right by adding a 
Dirichlet boundary condition at zero. It is clear from the proof that 
the lemma is true if only co(y) is asymptotic to c+ when y —• +00. 

Before we prove Lemma 2.1 let us use it to complete the proof of 
Theorem I. 
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By (2.5) and Lemma 2.1, 

^ ( 4 - k2)f(k,y) = H m r ( ± - fc2 ± ie)f(k,y) 

<2-18) = ^ r ( à - f c 2 ± i £ ) ( / l - ( à ) + f c 2 ) ' ( f e ' y ) 

= v{k,y) ± limie rl —^ — k2 ±ie )v(k, y) = v{k,y), 
£4.0 \CL J 

for a.e. k such that A/a2 - k2 € R \ ( o u | A / 4 - A/c?.| Uap(ft)V 

Then 

(2.19) t>(*, 2/) = r ± (^A/a2 - A:2 )̂ /(fc, 2/). 

By (2.4) f(k,y) has an analytic extension as a function of \k\ to the 
strip —a < lm\k\ < a. By Lemma 2.1 and (2.19), v(k,y) is Holder 
continuous as a function of \k\ for A/a2 - A;2 € R \ (0 U |A/c^_ - X/c2_ \ U 
(jp(/i)), and it has analytic extensions to the strips 0 < Im \k\ < a, —a < 
Im |A:| < 0. By (2.19) the analytic extensions above and below the real 
axis coincide on the real axis with v{k,y). Then v(k,y) is also analytic 

in \k\ for A/a2 - k2 G R \ ( o u \\/c\ - \/c2_\\Jav{hj). 

Note that, since (2.5) is not true for a set of measure zero of 
exceptional values, we have to redefine v{k,y) as given by (2.19) at 
those points. 

Note that at this point it is enough to have that v(k, y) is analytic in 
one side only and continuous up to the boundary. In this way Theo­
rem I holds true if (1.11) only holds in the complement of a proper cone. 

PROOF OF LEMMA 2.1. This elementary result can be proven in 
many ways. We give a simple proof based on the techniques of [8]. 

Let h± be the selfadjoint realization of — ^ 7 in L 2 (R ± ) with Dirichlet 
boundary condition at zero. 

The limiting absorption principle for h± follows easily by, for exam­
ple, as in the proof of Lemma A.7 of [7], using the fact that the sine 
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transform gives us a spectral representation for h±. The existence of 
the trace operators is elementary in this case. Let 

(2 20Ì r+(z)- / ( ' H - * ) " 1 ' Im* JÉ0 

be the extended resolvents of Ä+, where the limit is in the uniform 
operator topology in L(L2 ,uf2,-a)î# > 1/2, and r±(z) are defined 
in C± U R+. The extended resolvents r±{z) of h- are similarly 
constructed. 

We define 

(2.21) é)={Z)n7/:? max(0, X/cl - \/c\), y > 0, 
max(0, X/c\ - À/eu), y < 0. 

Let &£> be the selfadjoint realization of — -^ in £2(R) with Dirichlet 
boundary condition at zero. We denote 

(2.22) m = hD + q = (fc_ + <?_) © (h+ + ?+)> 

where g± are the restrictions of q to R ± . 

By (2.20), and the corresponding statement for h- the limiting 
absorption principle is true for ra. We denote by p±{z) the extended 
resolvents of m for z € C* U ( R + \ 0 U |A/c^ - Aci|). 

Let /io be the selfadjoint realization of — •£-? in £2(R) with domain 
i/2,o- Let 6 > 0 be such that hD + g + 6 > 0, and (ft0 + q + 6) > 0. We 
denote 

(2.23) V = {h0 + q + ft)""1 - (ÄD + g + ft)"1. 

As in Lemma 2.4 of [8] we prove that V extends to a compact operator 
from L2_a into Z^, for any a,j9 E R (this problem is clearly much 
simpler). The limiting absorption principle for ho + q follows as in the 
proof of Theorem I of [8]. Finally, since 

(2.24) h = ho + q(y)+p{y), 

where p(y) satisfies 

(2.25) | p (y ) |< ( l + » a ) = ^ = £ , 
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the limiting absorption principle for h is obtained from the one for 
ho + q(y), for example, as in [7]. 

The absence of positive eigenvalues for h follows from [2]. 
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