ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 17, Number 4, Fall 1987

RULED HYPERSURFACES OF EUCLIDEAN SPACE

K. ABE AND D.E. BLAIR

In [2] J.R. Vanstone and one of the authors studied a minimal hyper-
surface of Euclidean space E™*! which admits a foliation by Euclidean
(n — 1)-planes. Such a hypersurface was shown to be either totally
geodesic or the product M2 x E"~2 where M? is the standard heli-
coid in E3. In this paper we are interested in this problem, not as a
minimality one, but as a cylindricity problem and in the question of
whether or not the mere existence of an (n — 1)-plane through every
point implies that the surface is foliated. Our basic assumption is that
for a hypersurface M immersed in E"*! we have the following condi-
tion.

CONDITION (*). Through each point £ € M, there exzists an entire
(n — 1)-plane contained in M.

We shall show that for a surface M in E3, this implies that the surface
is ruled (i.e., foliated by lines), but note that the lines of the ruling need
not be the lines hypothesized. For example consider a doubly ruled
surface (hyperboloid of one sheet, hyperbolic paraboloid or plane) and
for the lines of condition (*) make a random choice between the two
rulings at each point. In general if the hypersurface M is not foliated by
the given (n — 1)-planes, we have points where these planes intersect.
Our main result is to show that in a neighborhood of such a point
(n — 2)-dimensions break away and we have a product structure of an
open set in E™~2 and a piece of a surface in E3. If these intersections
are dense, M is the product of E®»~2 and a doubly ruled surface. Finally
we show by example that M may be foliated by (n — 1)-planes but
not have a product structure with E®~2 as a factor; in particular the
complement of the relative null distribution is not integrable.

Let ¥ denote the standard connection on E”*! and Vv the induced
connection on M the second fundamental form o of the immersion is
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then given by _
a(X,Y)=vxY —vxY

where X and Y are tangent vector fields. For each z € M we define a
subspace RN, of the tangent space TM; by

RN, = {X € TM,|a(X,Y) =0, VY € TM,}.

RN, is called the relative null space at z, v(z) = dim RN, is called
the relative nullity at z and v = mingep{v(z)} is called the indez of
relative nullity. Now let

G ={z € My(z) =v};

by the upper semi—continuity of v(z), G is open in M. Moreover RN,
for z € G defines a distribution RN on G. It is well known that RN is
an integrable distribution on G with totally geodesic leaves [1].

LEMMA 1. v >n—2.

PROOF. Let ey, - ,e, be an orthonormal frame at € M with
€2, - ,€y tangent to the (n—1)-plane through z. Then the Weingarten
map has the following matrix representation with respect to this basis

ai e [1 7%
an

which clearly has nullity > n — 2.

LEMMA 2. Let £, be the (n — 1)-plane through x and Ly the leaf of
RN through x € G. Then L, C £;.

PROOF. Referring to the basis used in the proof of Lemma 1, let

T
T = [ : J be an eigenvector of the eigenvalue 0 of the Weingarten

In
map. Then )7 a1z; = 0 and a;z; = 0 for j = 2,--- ,n. Since
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v(z) = n—2 for z € G, at least one of ag,- - ,a, is non—zero and
hence z; = 0 which means that X is tangent to £,. Thus since L, and
£, are linear subspaces of E™t1! the result follows.

LEMMA 3. For any two (n—1)—planes €1 and €y such that 1MLy # 0,
either £1 N €3 18 a leaf of RN or no leaf of RN intersects with £1 N £s.

PROOF. Suppose z € £; N £y which is in a leaf L, of RN. L, lies in
¢; and ¢; by Lemma 2 giving the result.

Our final lemma is a simple one on (n—1)-planes in the n—dimensional
space R".

LEMMA 4. Let £1 and £ be (n—1)—planes in R™ such that £1Nly # 0.
For every point x € €3 N £y there exist neighborhoods U and V with
x €U CV such that for everyy € U and any (n — 1)—plane £, through
y, £y intersects at least one of £1 or £y within V.

PROOF. Choose V to be a section of a solid cylinder about £; N4, cut
off by parallel (n — 1)-planes perpendicular to £; N £5 and consider the
open rectangular prism about £; N¢; inscribed to the cylinder. Now let
U be a neighborhood of z contained in the prism (see figure 1). Clearly,
an (n— 1)-plane passing through a point in the open rectangular prism
must intersect at least one of ¢; and /2 within V. This completes the
proof.

PROPOSITION. Let M be a connected surface in E® satisfying condi-
tion (x), then M i3 a ruled surface.

PROOF. We first show that either M has an open cover {U,} by
coordinate neighborhoods such that the lines hypothesized induce a
foliation on each U, or M contains a triangle with simply connected
interior and whose sides are three of the given lines. Let {V3} be an
open cover of M and suppose that in some Vg two of the given lines,
say £; and /o intersect at a point z. Choose a neighborhood W of
z sufficiently small that for any y € W, the line through y meets at
least one of the £1,f2 in V3. This can be seen as follows. Let TM;
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Figure 1.

be the tangent space of M at z. TM, is realized as a 2-plane in R®
passing through z. Clearly, TM, contains ¢; and £3. Let P, denote
the orthogonal projection of R3 onto TM,, obtained by collapsing the
normal direction of M at z. P, restricted to M is a diffeomorphism in
a small open neighborhood W3 C Vj in M. Denote the restriction of
P; to Wj by the same letter P;. In addition, Wy is chosen so small
that any line in M passing through a point in Wp is projected under P,
onto a line in TM,. P;(Wp) is an open neighborhood of z in TM,. Let
U C V C P,(Wp) be the open neighborhoods of z in TM; constructed
in the proof of Lemma 4. By Lemma 4, any line in 7'M, passing through
a point in U must intersect either ¢; or £y within V C P;(Wp). Now
set W = P;1(U) C M. Then any line passing through a point in W
must intersect wither £; or £, within P, (V) C W C Vj. If for some
y, the line through it meets both ¢; and ¢3, we have a triangle of the
desired sort and we assume in the rest of the argument that such a
triangle does not exist. In particular note two things: 1) If for every



RULED HYPERSPACES OF EUCLIDEAN SPACE 701

y € W the line through y passes through z, then M is already the
plane; 2) if three lines pass through z, we can, using Lemma 4 for each
pair of lines, choose W small enough to obtain a triangle. If now for
every y € W the line through it meets one of the lines, say ¢;, we
have the desired foliation. If some of the lines through points of W
meet £; and some meet {5, we have a quadrilateral in M with simply
connected interior (choosing, e.g., Y sufficiently close to ¢;, if necessary
(see figure 2)). Now for each point interior to the quadrilateral the line
through it meets a pair of opposite sides (since we are assuming no tri-
angles). Thus at least one pair of opposite sides has uncountably many
lines connecting them. If this set of lines is dense in the interior of the
quadrilateral we have a foliation there. If not, choose a curve joining a
point of one side to a point of the other and lying in the complement of
these lines; through each point of this curve there is a line connecting
the other pair of opposite sides (and not intersecting) again giving a
foliation. Now proceed similarly in the other quadrants determined by
£; and £ to give a foliated neighborhood U, of z. Finally doing this
for each crossing point z € Vj if necessary, by the boundedness of Vg
we may choose a finite cover of Vg and in turn desired cover of M.

Before continuing with the case of the foliated neighborhoods, we
consider the case of the triangles. Let z be any point in the interior
of such a triangle. By hypothesis there exists a line £ through = which
is of course a geodesic in M and £ meets the triangle in at least two
points (cf. Axiom of Pasch). Now a line meeting two points of a plane
lies in the plane. Thus every point interior to the triangle lies in the
plane 7 of the triangle.

Let S be the largest connected open set of M lying in 7 containing
the interior of the triangle. We first claim that for a boundary point
of S, there exists an open line segment in M containing z and lying in
« but containing no points of S near z. For since z is a boundary point
of an open set in M and , the tangent plane to M at z is 7; thus the
given line £ through z lies in 7. Now suppose £ intersects S near z and
consider a sequence of points {x,} in M not lying in 7 and converging
to z. Also fix a neighborhood U of z in 7 such that neighborhood V of
z in M is the graph of a function on U. Then for n sufficiently large
the lines ¢,, through z,, intersect £ by the fact that V is in 1 — 1 corre-
spondence with U. Now the projections of these lines onto U lie in the
intersection of U with some half plane determined by a line m through
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Figure 2.

z such that mNU C M (see figure 3); for if not the line through some
nearby point y € S would intersect these projections contradicting the
local 1 — 1 correspondence. Moreover in this case where we have the
line £ through z meeting S we see that part of the boundary of S is
an open line segment containing z. We now show this in general. First
note that what we proved above shows that the set S is convex (see,
e.g., [4], p. 53). Let m be the given line through z. If forally € SNU
the given line through y does not meet m, we clearly again have the
result. So suppose that for some y € SN U the line £ through y meets
m, say at w # z. Join y to z by a segment in S. Again considering
projections we see that for z in the triangle bounded by ¢, m and this
segment, z € S. Therefore the boundary of S contains a line segment
with z as an endpoint. Now consider a boundary point z’ near z but
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not in this segment; it has a line segment m' associated to it as m is to
z. Since m’ does not meet SNU, m' meets m either at z or at a point
on the side of z opposite the segment. In the latter case, the argument
just given gives the interval about z. The former case gives us vertical
angles at x with one angle as the boundary of S. Again some y' € SNU
has a line ¢/ meeting m and m' (otherwise the lines through points of
SNU would “enlarge” S to the other side of m’ or m). Now for z near
z on the side of m containing SNU, the projection of the line through z
meets at least two of m,m’ and ¢ giving z € S and the desired interval.

Figure 3.

Now since the boundary of S contains an open line segment about
each of its points it must be either a line in 7 or a pair of parallel lines
lying in 7. But S contains a triangle whose sides are given lines and
moreover at most one of these is parallel to the boundary of S. Con-
sidering two sides £; and ¢, transversal to a boundary line m (figure
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4), we “enlarge” S. Arguing as above, the line £ through a point z
near an intersection point, e.g., £; N'm, must meet £; (or already lie in
m) and its projection must be parallel to m. Therefore £ meets ¢; and
hence lies in 7. Thus S was not the largest connected open set of M
lying in 7 and containing the interior of the triangle, a contradiction
unless S (and therefore M) is the entire plane w which is a ruled surface.

L
/

~
/ T~

Figure 4.

Finally returning to the case of the foliated neighborhoods, we as-
sume that M has an open cover {U,} such that each U, is foliated
by line segments which belong to entire lines lying in M. If now in
the overlaps of these neighborhoods the foliations agree, M is a ruled
surface. If in the overlap of two neighborhoods the foliations do not
agree, then this overlap is a piece of a plane or a quadric (the only
doubly ruled surfaces are quadrics except for the plane (see, e.g., [3] p.
227, p. 345)). Moreover since the entire lines lie in M we see that M
contains a closed “thick X” and conclude that M is a plane or a ruled
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quadric.

THEOREM. Let M be a hypersurface in E™t! satisfying condition ().
Let x be a point in M through which there are at least two (n—1)—planes.
Then there exists an open neighborhood U of x in M which is the Rie-
mannian product of a ruled surface S and E"2.

PROOF. Let #; and ¢; be two such (n—1)-planes through z and TM,,
the tangent space to M at z to be regarded as an n-plane in E"*1,
Clearly then ¢; U £y C TM,. Denote by p the projection of E**1 onto
TM,. Let V be a neighborhood of z in M on which p is a diffeomor-
phism. Then for every y € V, the (n — 1)-plane ¢, through y is also
mapped diffeomorphically as an (n — 1)-plane into TM,. Therefore
p(€y) Np(£;) is an (n — 2)-plane unless they are parallel. Now choose a
neighborhood U of z in M so small that for every y € U, p(¢y) intersects
either ¢; or ¢ (in TM,) in p(V) C TM; (cf. Lemma 4).

Suppose that for an arbitrary y € U, £, intersects £2. The idea of the
proof is to show ultimately that £, N 2 is parallel to ¢ N £;. Assume
£y N £o]|¢1 N £y, Since £, N £ and £; N 43 lie in £; and have dimension
n—3, (byN¥€z) N (£y N€2) # O and has dimension n — 2. In partic-
ular then dim(¢, N ¢;) = n — 3. Now if ¢ N ¢y = Lg, a leaf of RN,
(£yN£2)N(€1NE3) contains a point in a leaf of RN and hence by Lemma
3, €3N ¢y = Ly. Thus each ¢, for y € U is a union of (n — 2)-planes
parallel to £; N#; in E™t! giving the desired product structure. On the
other hand if ¢; N £z intersects with no leaf on BN, then the relative
nullity at any point in ¢ N¢2 > n—1. By the argument of Lemma 1 we
see that in fact the relative nullity at any point in £; N4y = n, i.e., the
second fundamental form vanishes along £; N ¢3. We now distinguish
two cases.

I. For every neighborhood of z, there exists a point w in the neigh-
borhood such that v(w) =n — 2.

I1. There exists a neighborhood of z such that v(y) > n —1 for every
y in the neighborhood.

I. We may assume the (n — 1)-plane £, meets ¢; in the neighborhood
V (cf. Lemma 4). We also suppose that £,, # ¢ or {3, since G is an
open set. Then £; N £, is an (n — 2)-plane. As above if £; N ¢, is not
parallel to £; N4s,la N Ly, # 0. By Lemma 3 therefore the leaves of RN
in £, must intersect with ¢; and/or £5. This is possible only if £,, = ¢;
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or {2, a contradiction. Therefore £; N £y||€2 N £y||Ly. Now let y be
any point in U. Then ¢, intersects ¢; and/or £, say £, N ¢; # @ and
£y N £1]|€1 N €3. Moreover the leaf L,, of RN through w meets £, in
a point 2 (see figure 5). v(z) = n — 2 and the above argument again
gives a contradiction. Thus through each point y € U, there exists an
(n — 2)-plane parallel to £; N £3 giving the desired product structure.
II. We now shrink V, if necessary, so that the relative nullity > n—1
on V and construct U C V via Lemma 4 as before. We shall show
that the relative nullity is actually equal to n on U. Let y € U with
v(y) = n — 1. Now £, meets at least one of ¢; or {2, say {;, join y
to a point in £, N ¢; by a line segment lying in £, NU. As before the
relative nullity along ¢, N ¢; is n. Let 2 be the first point in the line
segment such that v(z) = n, i.e., the relative nullity along the segment
ly,2) is n — 1. Since the subset of V where the relative nullity is n — 1
is open, there exists a neighborhood of the line segment [y, z) in which
the relative nullity equals n — 1. Thus this neighborhood is foliated
by the leaves of this (n — 1)—-dimensional relative null distribution and
each leaf is an open subset of an (n —1)-plane. An argument similar to
the one given to prove the completeness of the relative null distribution
[1] then shows that the rank of the second fundamental form cannot
decrease at z. Thus v(2) = n — 1, a contradiction. Therefore v(y) =n
and hence U is totally geodesic in E™*1, i.e., U is an open subset of E™.

COROLLARY. If through every point of M (or every point of a dense
subset of M ) there exists two (n— 1)—planes in M, then M is the prod-
uct of E*~2 and a doubly ruled surface in E3.

COROLLARY. If M is a hypersurface of E™*! satisfying condition (*),
then M is foliatable by (n — 1)—planes.

We close with an example of hypersurface of E4 which is foliated by
planes but which is not a Riemannian product of E, the leaves of RN,
and a surface. In particular the orthogonal distribution RN is not
integrable. We give the position vector X in E* as a function of three
parameters u, v, w.

X = (ucosw,usinw + cos w, w + vsinw, w).
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Figure 5.
The matrix of the differential of the immersion is
cos w sinw 0 0
0 cos w sinw 0

—usinw wucosw—vsinw 1+4wvcosw 1
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The vector

2w — usinw 4 vcosw)

N= (—sin2 w, ¢os w sin w, — cos> w, cos
is normal to the hypersurface. We compute the components &;; of the
second fundamental form except for hs3. The matrix is

0 0 sinw
0 0 —cosw
IN] sinw -cosw  ///

1

RN is spanned by cosw(9/0u) + sinw(d/0v). The matrix g;; of the
first fundamental form is easily computed. We then see that RN is
spanned by

Y = sin w cos w(u cos w — vsinw) +sin2w£ 0
= cosw(1 + sin® w) du  Ov
and
7 - 9 cosw(1+sin2w)_3_
= du sinw(l+cos?2w) v’

A direct computation of the Lie bracket [Y, Z] shows that [Y, Z] is not
orthogonal to RN.
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