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THE ZARISKI TOPOLOGY FOR 

DISTRIBUTIVE LATTICES 

GERHARD GIERZ AND ALBERT STRALKA 

A B S T R A C T . Our purpose in this paper is to study an 
intrinsic topology for distributive lattices which by its very 
definition is analogous to the classical Zariski topology on 
rings. As in the case of rings, the Zariski topology is the 
coarsest topology making solution sets of polynomials closed. 
In other words, the Zariski closed sets are generated from a 
subbase consisting of all sets of the form {z <E L : p(z) — c} 
where p(x) is a polynomial over L and c is an arbitrary but 
element from L. 

Although the name of this topology for lattices is new, the Zariski 
topology has appeared, usually unnamed and implicitly, in a variety 
of guises and formulations in lattice theory over the years. Recently, 
under different formulations, it was used effectively by R. Ball in [3] 
and by H. Bunch in [7]. 

Out context for studying intrinsic topologies on distributive lattices 
was set by Frink in [9] where he stated, "Many mathematical systems 
are at the same time lattices and topological spaces. It is natural to 
inquire whether the topology in such systems in definable in terms of 
the order relation alone." Seeking systems which are at the same time 
lattices and topological spaces, one must begin with i2, the real line 
with its usual topology and order, along with two of its substuctures I, 
the closed unit interval of i2, and 2, the chain consisting of the numbers 
0 and 1, and then go on to form all finite and infinite Cartesian products 
of such systems using the product order and the Tychonoff topology. 
Given this collection of mathematical systems, is it possible to find one 
intrinsic topology-really, topology definition scheme-which will define 
the topology exclusively from the order? 

For R, 1,2 and any chain, the interval topology gives the correct 
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topology. It also works well for products of complete chains and for 
complete sublattices of products of complete chains (i.e., completely 
distributive lattices). In each of these cases it provides a compact, 
Hausdorff topology relative to which the operations of meet and join 
are continuous. When one moves away from complete chains, the 
interval topology is more of a point of reference than a useful and 
usable topology. On R x R, for example, it is not even Hausdorff. To 
salvage the situation for finite dimensional Euclidean spaces, the Frink 
ideal topology and Birkhoff's new interval topology were created. (Cf. 
[10], [5], [1] and [2].) However these topologies do not return the 
correct topology for infinite products of complete chains-one of the 
cases handled well by the interval topology. 

Unlike the interval topology, the new interval topology and the Frink 
ideal topology, the Zariski topology is both finitely and infinitely 
productive which enables it to provide the correct topology for all 
spaces mentioned above. For complete sublattices of products of 
complete chains (i.e., completely distributive lattices), it is equivalent 
to the interval topology and from [12] we know that for Rn and any 
other distributive lattice of finite breadth, it is equivalent to the Frink 
ideal topology. 

Much of our discussion will center on subspaces and sublattices where 
the Zariski topology has some interesting properties. Our discussion 
requires extensive and heavy use of the theory of essential extensions 
of distributive lattices. 

The authors are grateful for the many helpful suggestions made by 
the referee. 

1. Preliminaries. By the usual topology on Rn we shall mean 
the Cartesian product (or Tychonoff) topology, and by the usual or­
der we shall mean the product ordering. Let L be a distributive lat­
tice. For x G L and A Ç L we define Î X = {z € L : z > X} and 
| A = (J{î a : a e A}. The sets j X and j A are defined dually. The 
interval topology on L is defined by declaring sets of the form | X and 
I X to be closed for all X G L. For J , a filter of subsets of L, lim inf 7 
is defined to be sup {inf A : AG 7} and lim sup J is defined dually. 

A subset D of a lattice L is up-directed if for each pair c, d G D, 
there is an e G D such that c,d < e. A complete lattice L is said to 
be meet-continuous if for every up-directed subset D of L and ever 
element x G L, x A supD = sup{x A d : d G D}. Down-directed sets 
and join-continuity are defined dually. A complete distributive lattice 
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which is meet-continuous and joint-continuous is called infinitely dis­
tributive. 

A topological space is quasi-compact if it has the Heine-Borei prop­
erty, i.e., every open cover has a finite subcover. A quasicompact Haus-
dorff space is called compact. The next result collects well known in­
formation about the interval topology 

PROPOSITION 1.1 Let L be a distributive lattice. 
(i) If L is complete, then it is quasicompact in the interval topology. 

If U is an ultrafilter of subsets of L, then in the interval topology, U 
converges to every point in the interval [Urn inf U, Urn inf UJ. 

(ii) L is compact in the interval topology if and only if it is complete 
and Urn inf XL = Urn sup U for every ultrafilter U of subsets of L. 

(iii) / / L is infinitely distributive, then L is compact in the interval 
topology of and only if L is completely distributive. 

(iv) / / L is completely distributive, then L is a compact topological 
lattice in the interval topology, i.e., the maps A, V : L x L —• L are 
jointly continuous. 

2. The Zariski topology. A polynomial in the variable x over the 
distributive lattice L is any expression which can be formed by taking 
any finite combination of meets and joins of elements from L\J{x}. 
Appeal to the distributivity law reduces the range of such expressions 
to a collection of very elementary polynomials: x, a, a V z, b A x and a V 
(x Ab) where a and b are arbitrary elements in L. The Zariski topology is 
the coarsest topology on L for which sets of the form {z G L : p{z) = c} 
are closed where p(x) ranges over all polynomials in x and where c is 
an arbitrary but fixed element of L. 

A further reduction of complexity in the definition and use of the 
Zariski topology is achieved by means of two specified types of sets 
which normally are used in calculating relative pseudo-complements in 
Hey ting algebras (cf. [6, p. 45]). 

DEFINITION 2.1. Let L be a distributive lattice and let a, 6 e L. Set 

b\a = {x e L : a V x > b} 

and 
a/b = {x € L : b A x < a}. 

When working with sets of the form a/b and 6\a, we may assume that 
a < b since aWx >b holds if and only ifaVx > òVa and the inequality 
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b A x < a holds if and only if 6 A x < a A 6, whence a/b = (a A b)b and 
b\a = (a/b) /a. 

PROPOSITION 2.2. The Zariski topology is the coarsest topology on a 
distributive lattice which makes all sets of the form a/b and b" a closed. 

PROOF. The sets b\a may be written as {x G L : (a V x) A b = b} 
while the set a/b may be rewritten as {x G L : (6 A x) V a = a}. Thus 
the topology generated by the sets a/b and b\a is coarser than in the 
Zariski topology. 

Conversely suppose that {x G L : p(x) = c} is one of the defining sets 
for the Zariski topology withp(x) = aV(xAò). Since L is distributive, 
we have a V (x A b) = a V (x A (a V b)) which allows us to assume that 
a < b. Then from the equation a V (x A b) = c, we have a < c and from 
c = a V (x A b) = (a V x) A 6, we have c < b. Thus a < c < b. 

We contend that {x : p(x) = c} = c/bf]c\a. If z G c/bf]c\a then 
x A b < c and a V x < c. Hence c < a V (x A b) = (aV x) Ab < c 
from which it follows that p(x) = c. One the other hand, suppose that 
p(x) = c. Then a V (x A b) = c, which implies that x A b < c and upon 
rewriting p(x) as b A (a V x), we have a V x > c. Thus a; G c/òp| c\a. 

At this point it might be useful to explore a few of the connections 
between the Zariski topology and the interval topology. For an element 
a of a distributive lattice L, define two polynomials in the variable £, 
namely pa(x) =aAx and qa{x) = aVx. Then {z G L : pa(^) = a} and 
{ 2 6 L : <7a(̂ ) = a} are subbasic closed sets in the Zariski topology. 
However, a calculation shows that {z E L : pa(z) = a} = ] a and 
{z G L : qa(z) = a} = I a. Thus the interval topology will always be 
coarser than the Zariski topology. 

With no difficulty one sees that for chains, the Zariski topology and 
the interval topology coincide. On the other end of the distributive lat­
tice spectrum, they will also be in agreement. Suppose that L is either a 
Boolean algebra or a relatively pseudo-complemented distributive lat­
tice. Then for a, b G L the ideal a/b and the filter b\a are both principal 
and generated by the appropriate relative pseudo-complements. In the 
Boolean algebra case we have b\a = Î (6 A ac) and a/b = | (a V bc) 
where ac and bc are the complements in L of a and b respectively. 
The information about these relationships is summarized in the next 
proposition. 
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PROPOSITION 2.3. Let L be a distributive lattice. Then the interval 
topology is coarser than the Zariski topology. IfL is a Boolean algebra or 
a relatively pseudo-complemented distributive lattice, then the Zariski 
topology and the interval topology coincide. 

For lattices such as chains and Boolean algebras in which the interval 
topology works best, it is equivalent to the Zariski topology. The 
Euclidean plane treated as a lattice is a good illustratoin of a situation 
in which the interval topology works poorly. Not only does the interval 
topology fail to yield the usual Euclidean topology on R x i?, but every 
pair of nonempty open subsets relative to the interval topology on the 
plane will have a nonempty intersection. 

To remedy some of the deficiencies of the interval topology has with 
lattice such as the plane, the Frink ideal topology (cf. [10]) and 
Birkhoff's new interval topology [5] were brought into the picture. 
For finite products of JR, these two topologies coincide with Euclidean 
topology. Unfortunately they go astray for larger products like R (cf. 
[1]). The Zariski topology is fully productive. Then since it yields the 
usual topology for R it will give the Tychonoff topology on all products 
oîR. 

THEOREM 2.4. Let {Li)iei be a family of distributive lattices. Then 
the Zariski topology on Yliei ^i ^ the product topology of the Zariski 
topologies on the Li,i G I. 

PROOF. AS usual, let iTj : JXe/ Li —» Lj be the projection onto the 
j t h factor and let / = (/»)*€/> 9 = (di) £ Yliei Li b e g i ven- T n e n 

g/f = {he]\Li'.fy>g} 

= {h G \[Li : fi V hi > Qi for all i e 1} 

=rï*7H9i/fi). 

Dually, fig = f)ieI 7T"1 (/*/&); hence the Zariski topology on HieI L{ 

is coarser than the product topology. In order to show that every closed 
set in the product is Zariski closed, it is enough to verify that 7T"1 {a/b) 
and njl (b\a) are Zariski closed for every pair a,b G Li and every i G / . 
For every j € I/{i} pick an element Cj G Lj. Define elements / , g G nLi 
by 
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fj = gj = Cj whenever j E I/{i} 

fi = a, 9i = b. 

It is routine to check that 7T"1 (a/6) = f/g and that ir^^a) = g/f. 

One more point needs to be made about the difference between the 
Zariski topology and the interval topology. The interval topology is 
a so-called compatible topology which means that given an upward 
directed set D in a lattice L such that sup D = x exists (or alternatively 
given a downward directed set D such that inf D = x), then a 
compatible intrinsic topology will require that D converge to x. In 
effect a compatible topology will waste no possible limit point. 

The Zariski topology is not necessarily a compatible topology nor does 
it make the direct translation of completeness to quasi - compact-ness 
that the interval topology does. The next example should point out 
these distinctions. 

EXAMPLE 2.5. Let L = {{x,y) e R x R : 0 < x < 1,0 < 
y < 1}IK(0,0),(1,1)} and let D = {(x,y) € L : x = §}. Then 
SUPLD = (1,1) and infx,^ = (0,0). For any compatible topology, the 
closure of D will contain both (0,0) and(l,l). The Zariski topology on 
L is the same as the restriction of the usual topology of R x R to L. 

The interval topology on L will be compact since L is complete, but 
it will not be Hausdorff. The Zariski topology on L will be Hausdorff, 
but it will not be compact. 

In [12] the authors, together with J.D. Lawson, show that for dis­
tributive lattices of finite breadth, the Zarinski topology and the Frink 
ideal topology coincide. So it seems that in the situations in which the 
Frink ideal topology works well, it agrees with the Zariski topology. 
The next example is very similar to 2.5 but the differences are crucial. 

EXAMPLE 2.6. Let m = {(x,y) eRxR:0<x<l,0<y< 
1}|J{(0,0)}. Then on M the Lawson topology (cf. [11]) is compact 
and Hausdorff and the meet operation is continuous. However, the join 
operation is not continuous. As with Example 2.5 the Zariski topology 
is the same as the topology that M inherits from the plane. So it is 
Hausdorff and both operations are continuous. Very clearly it is not 
compact. 
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It is debatable whether the Zariski topology or the Lawson topology 
is a better topology for Example 2.6. 

3. The Zariski topology and essential extensions. To continue 
our discussion about the qualities of the Zariski topology, in particular 
to discuss the manner in which it behaves relative to subspaces and 
quotients, we need to discuss the theory of essential extent ions in 
some detail. In essence our work here will allow us to turn questions 
about distributive lattices into questions about Boolean algebras. An 
imbedding of distributive lattices i : L —• M is essential if whenever <p 
is a congruence on M such that <pf)(i(L) x i(L)) Ç A, then <p = A. 
When this situation holds, M is said to be an essential extension of L 
via the imbedding i : L —> M. Frequently no mention is made of the 
specific imbedding involved. In [4], Banaschewski and Bruns showed 
that every distributive lattice has a unique maximal essential extension 
which turns out to be a complete Boolean algebra. We will need a 
realization of this maximal essential extension for our later work. 

For a distributive lattice L, let @(L) be the (algebraic) lattice of 
all lattice congruences on L. It is a well known fact that O(L) is 
distributive. For <p G O(L) define 

ipL = sup {ip G &{L) : if) A (p = A}. 

From a theorem of Glivenko (see also [6, p. 130]) the set 0*(L) = 
{(p1- : <p G 0(1/)} becomes a complete Boolean algebra with the order 
— but not the operations — which it inherits from 0(L). For a G L 
we define congruences 

6a : = {{x,y)eLxL:xVa = y\/a} 

0a : = {(x, y) G L x L : x A a = y A a}. 

One verifies almost immediately that 6a is the complement of 9a in 
the lattice 0(L), therefore 0£ = 0a and (fl0)-1 = 0a. It follows from 
results of Glivenko and Hashimoto [17] that 0*(L) is the maximal 
essential extension of L via the imbedding a —• 6a (see also [14, 1.6] 
for an explicit proof). The next results will be of importance (cf. [14]) 
in the rest of the paper. 

PROPOSITION 3.1. / / 0 is a congruence on the distributive lattice L 
andif6ee*{L), then (a, b) G 9 if and only if0a\/0 = 0bV0 inG*(L). 
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PROPOSITION 3.2. Let L e D,a,b e L and let 0{a,b) denote the 
smallest lattice congruence identifying a and b. If a < b, then a pair 
(x,y) E L x L,x < y, belongs to 0{a, b) if and only if 

x = (a V x) A y 

y = (bVx) Ay, 

PROOF. From Gratzer's book [16, 2.9.3] we know that (x, y) G 0(a, b) 
if and only if 6 V x = 6 V y and a Ax = a Ay. 

Clearly this implies that (a V x) A y = (a A y) V x = (a A x) V x = x 
and (b V x) A y = (b V y) A y = y. 

Conversly, if x = (aWx)Ay then xAa = (aVx)AyAa = (a\/x)AaAy = 
a Ay. Similarly, y — (b V x) A y implies yVb = x\/b. 

Implicitly contained in the proof of (3.2) is 

PROPOSITION 3.3. If L is a distributive lattice and if a,b G L,a <b, 
then 

(i)0(a,o)=06r|0a 

(ii) 0(a,b)± = $b V 9a = na,b where ira,b -= {{%,y) '• (a V x) A b = 
(aVy)Ab}. 

For an explicit proof of (3.3) as well as for more historical notes 
concerning essential extensions, please see [14]. 

Since every congruence 6 on L is the supremum of the congruences 
0(a, 6), (a, b) G 0, de Morgan's law yields 

0±= f | 7Ta,ò. 
(a,6)€0 

In fact, this characterizes congruences in 0*(L). 

PROPOSITION 3.4. A congruence 0 on the distributive lattice L 
belongs to 6*{L) if and only if 6 = C\ieI^aiibi for certain elements 
ai,bi e L,i e I. 

At this point we will begin to connect the idea essential extension 
with the Zariski topology by providing an alternative definition for the 
Zariski topology in terms of essential extensions. 
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THEOREM 3.5. The map a —• 0a : L —+ 0*(L) is topological imbedding 
when both L and 0* (L) are equipped with the Zariski topology. 

PROOF. Since 0*(L) is a Boolean algebra, the Zariski topology on 
0*(L) is the interval topology and this fact should be kept in mind 
throughout the proof. First of all, let a, b G L, a < 6, then 

{x€L:6x< 7ra.6} = {x€L:0x<0aV 9b} 

= {x(EL:Ox<Oa\/0jj-} 

= {xeL:0xA0b<0a} 

= {xeL: 0xAb < 0a} 

= {x G L : x Ab < a} = a/b. 

Let e : L —• 0*(L) denote the imbedding a H->- 0a. Then the equation 
{x G L : 0xKa,b} = a / ^ m^y be reformulated as 

a/6 = e _ 1 ( | 7Ta>6). 

This last equation yields two things: 
(1) The mapping e is continuous. Indeed, if 0 E ©*(£), then 0 = 

infï€/7rai)5i for certain at-,6» G L (see (2.6)). Hence i 0 = fite/ J- ^ t , ^ 
and 

c" i( iö)=ria«/6« 
te / 

is closed. By symmetry e _ 1 ( | 0) is closed, too. Since the sets of the 
form I 0 and f 0 form a subbase for the closed sets, e is continuous. 

(2) Every Zariski closed subset A Ç L is of the form A — e-1(.B), 
where £? Ç 0*(L) is closed in the interval topology. This follows from 
(*) and its dual statement for the subbasic closed sets of the form a/b 
and b\a and hence for every closed subset AÇL 

Theorem 3.5 turns out to be very useful in deriving properties for 
the Zariski topology. All we have to do is to verify the correspond­
ing statement for complete Boolean algebras and then check whether 
the property is preserved under the formation of subspaces. A first 
application of this idea leads to the following result. 
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PROPOSITION 3.6. Let L be a distributive lattice with the Zariski 
topology. Then 

(i) the translations x-+-Ax:L^-L and a ; - ^ - V a ; : L - > L are 
continuous for all a G L\ 

(ii) L has a subbase for the closed sets consisting of ideals and filters; 
(iii) every point x G L has a neighborhood base consisting of order-

convex open subsets of L. 

PROOF. All these properties are straightforward for Boolean algebras 
in the interval topology and obviously preserved under the informaiton 
of subspaces which at the same time are sublattices. 

We now consider the question of whether the lattice operations A 
and V are jointly continuous. Again, we need only turn to complete 
Boolean algebras to find a counterexample and use some ideas of E. 
Floyd (see [8]). 

EXAMPLE 3.7. Let B be a complete Boolean algebra. Then by 2.3 
the Zariski topology on B is the interval topology. Moreover, it is easy 
to see that the product topology on B x B is the interval topology. In 
fact this is true for every lattice B with 0 and 1. 

Next we take B to be the Boolean algebra of regular open sets of the 
unit interval. For every natural number n G N let 

ff iPnm)m is any subsequence of the sequence {Un)neN, then \JmeN ^n, 
is dense in / , the unit interval of R, and hence supm6ArC/nm = I in B. 

We now show that / is a limit point of (Un)neN in the interval 
topology. Indeed, a typical open neighborhood of / is given by 

A = {V G B : V 2 Wi for i = 1,..., jfc} , 

where the W{ are certain fixed regular open sets. Now assume that I is 
not a limit point of {Un)neN- Then there is a subsequence (Unm)m of 
{Un)n and an index io G {1,..., k} such that Unm C W{0 for all m EN. 
We conclude that / = supm€iVL r

nm Ç Unm, contradicting the fact that 
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I e A. 
Given n G iV, we let 

Then Fn is the complement of Un in the Boolean algebra of regular 
open subsets of / . The same reasoning as before shows that the 
sequence Vn converges to / . Now assume that the mapping A : BxB —* 
B is continuous. Then I = If]I would be a limit point of the sequence 
(Un A Vn)nç.N, i.e., a limit point of the constant sequence ((t>)neN, 
contradicting the fact that j </> = {(/>} is closed. 

4. Topological suprema and topological infima. For com­
patible topologies directed sets converge to their suprema and infima 
whenever they exist. Thus no further refinement is necessary. For 
topologies such as the Zariski topology for which this is no longer true, 
we need further specification. 

DEFINITION 4.1. Suppose that D is an upward directed subset of the 
distributive lattice L. If sup D exists and if D converges to sup D in 
the Zariski topology, then sup D is said to be a topological supremum 
of D relative to the Zariski topology. Topology infima relative to the 
Zariski topology are defined dually. 

Since we will only be discussing the Zariski topology in this section, 
we shall suppress the phrase "relative to the Zariski topology" and sim­
ply use the terms "topological infima" and "topological suprema." 

Before we come to the various characterizations of topological suprema 
and infima, let us make two remarks. 

PROPOSITION 4.2. 

(i) Let L be a distributive lattice and let D be an upward directed 
subset of L such that supD exists. If the net formed from D has a 
cluster point x, then x = supD and D converges to x. Especially, in 
this case D has a unique limit point. 

(ii) / / L is a complete relatively pseudocomplemented lattice, then ev­
ery upward directed set has a topological supremum and every downward 
directed set has a topological infimum. 
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PROOF. 
(i) Let doo = sup-D. For every given da G D the net (d)deD is 

eventually in the closed set [da,doo] and hence every cluster point 
belongs to [da,doo]- Since r\daeD[doc,d00) = {doo}, it follows that doo 
is the only possible cluster point of D. 

(ii) If L is a double Heyting algebra, then the Zariski topology is the 
interval topology. Then since L is also complete it follows that the 
interval topology is compact. Finally our result follows from the fact 
that the interval topology is compatible. It is possible that a directed 
set has a supremum without having a cluster point. To illustrate this 
fact, take L and D as in Example 2.5. Then D has no cluster point 
in L, however sup£> = (1,1) exists in L. This is also an example 
for a directed set D which has a supremum yet this supremum is not 
topological. 

The idea behind part (i) of Proposition 4.2 will appear again in the 
proof of the next theorem. 

THEOREM 4.3. Let L be a distributive lattice and let D be an upward 
directed subset of L. Then the following conditions are equivalent: 

(a) The net (d)deD converges in the Zariski topology. 
(b) The set of D admits a topological supremum. 
(c) sup D exists in L and the imbedding a —• 6a : L —» 0* (L) preserves 

supD. 
(d) If 0 = sup{0<2 : d G D} in Q*(L), then there is doo in L such that 

e = edoo. 
(e) supD exists in L and for every a € L, a AsupD = sup{a A d : 

deD}. 

Especially, if L is complete, then L is a complete Heyting algebra if and 
only if all suprema are topological. 

PROOF. The equivalence of (c) and (d) is evident. 
(a) => (b). Let d^ = limd€£> d. We have to show that doo = sup£). 

First we will verify that doo is an upper bound of D, hereby establishing 
the fact that the set of upper bounds of D is nonempty. Indeed, given 
do € D the net (d)deD is eventually in the closed set ] do, hence 
doo € î do i.e., do < doo- Since d0 € D was arbitrary, do© is an upper 
bound for D. 

Now let a € L be any upper bound of D. Then the whole net (d)deD 
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is contained in the closed set J, a and therefore doo < &• This shows 
that doo is the least upper bound of D. 

(b) => (c). By definition, supD exists andsupD = limD. Let 
doo = supD. Since the imbedding a i-> 0a : L —» Q*(L) is topological, 
we obtain Od^ = lim^eD Od- Now we use the proof of (a) H-» (b) 
again in order to show that limdeD^d = s u p d e D ^ . We conclude 
öd«, =sup d € D (9 d . 

(c) => (e). Let D Ç L be a directed subset and assume that supD 
exists and that 0SupdeD0d- Further, let a E L. We now use the 
meet-continuity of ©* (L) in order to calculate 

#aAsup D = #a A 0Sup D 

= 0a A sup 0d 
deD 

= sup 0aAd. 
deD 

Let w be an upper bound of {a A d : d E D}. Then 0U > 0aAd 
for all d € D and hence 0U > s\ipdeD 9aAd = OaAsupD- We conclude 
that u > a A sup D. This shows that in fact a A sup D is the smallest 
upper bound of {a Ad : d € D}. (Note that a A sup D always bounds 
{a Ad: d ED} from above!) 

(e) => (c). Assume we are given a directed subset D Ç L such that 
sup D exists and such that we have a A sup D = sup d € D a A d for every 
d G D. Let c?oo = sup IX We wish to show that 0 ^ = supd€£> 0^. Now 
note that 0 ^ < s\xpdeD6d is equivalent to 

deD 

i.e. 

deD 

We have 
(x, y) G 0d°° iff a: A d«, = 3/ A doo, 

iff x A sup D = y A sup D, 

iff sup x Ad = sup y A d. 

If we let (x, 2/) G Hd€£> ^d t n e n by definition of 0d we always have 
x A d = y A d for all d G ZX Clearly this implies supdG£> x A d = 
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supdeDy A d, i.e., (x, y) G 9d°°, establishing the inculsion fldei> ^ — 
0do° and therefore 9d00 < sup d € l ) #<*• Since the other inequality always 
holds, we have verified (c). 

(c) => (a). Let us assume (c). Recalling 4.2 (ii) we observe that 
(#d)deD converges to sup d e D 9d = 0supr>. Since the imbedding a —> 6a 

is topological, the net (d)deD converges to supD. 
We now have enough information to turn our attention to closures of 

ideals and filters in the Zariski topology. 

PROPOSITION 4.4. Let J be an ideal in the distributive lattice L. 
Then cl(J), the closure of J in the Zariski topology, is again an ideal. 
Moreover, x G cl(J) if and only if x is the topological supremum of 

PROOF. Again, we consider the imbedding a —• 9a : L —• 6*(L). 
Let 9 = a € Jöa. Then [ 9 is a closed ideal in 0*(L) and hence 
Y = {x : 9X < 9} is a Zariski closed ideal of L. It suffices to show that 
every x G Y is the topological supremum of I x f\ J. Now 9X < 9 and 
the meet-continuity of B*(L) imply 9X = 9X A 9 = sup a € J 9X A 9a = 
sup a G j 0 l A a . Hence x = sup(j xf) J) and the imbedding a H-• 9a 

preserves sup(j xf]J). Now use 4.3 to show that x is the topological 
supremum of j x f] J. 

THEOREM 4.5. Let f : L —+ M be homomorphism; then f is 
continuous relative to the Zariski topologies defined on both L and M 
if and only if f preserves topological suprema and topological infima. 

PROOF. If / is continuous relative to the Zariski topologies of L and 
M, then from (4.3) it follows that / preserves topological infima and 
topological suprema. 

Conversely, suppose that / preserves topological suprema and topo­
logical infima. By symmetry we need to verify that / _ 1 (a/b) is closed 
in L for every pair a, 6 G M. Note that a/b and hence / _ 1 (a/b) are 
ideals. Assume that x G cl(/_ 1(a/ò)). From 4.4 we know that x is the 
topological supremum of [ xf\f~1(a/b). Thus f(x) is the topological 
supremum of / ( | xf]f~1(a/b)). Since / ( j xf]f~x(a/b) which shows 
that f~x(a/b) is closed. 

Subspaces. The Zariski topology works very well for subspaces. As 
a point of comparison let us review a bit of the subspace situation for 
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the interval topology. As an example we will consider the unit interval 
I. Both J and I x I are completely distributive, so their usual topology 
is the interval topology. The sublattice L = { x G / : x = l o r x < | } 
of / is compact and connected in its own interval topology, but it has 
neither of these properties relative to the topology it inherits from / . 
The sublattice M = {(x,y) elxIixAy^O and x V y ^ 1} of 
I x I fails even more poorly. As an ordered set, M is isomorphic to 
R x R. Thus as we already know, M is not a Hausdorff space in its 
own interval topology. As a subspace of the Hausdorff space / x / , it is 
Hausdorff in the topology it inherits from I x I. Hence, for subspaces 
the interval topology can be coarser or finer than the restriction of the 
interval defined on the superspace. This is not the case for the Zariski 
topology. 

LEMMA 5.1. If L is a sublattice of the distributive lattice M, then 
the Zariski topology defined on L is contained in the restriction of the 
Zariski topology defined on M to L. 

PROOF. One need only note that for elements a,b € L with a < 
b,{seL:xVa>b} = {x€M:xVa>b}f)L. 

For open sublattices of completely distributive lattices, we are able 
to show the reverse containment to that established in 5.1. 

PROPOSITION 5.2. Let M be a connected completely distributive 
lattice with the interval topology and let L be an open sublattice of M. 
Then the topology that L inherits as a subspace of M is equivalent to 
the Zariski topology defined on L. 

PROOF. From Lemma 5.1 we see that the Zariski topology on L is 
finer than the topology it inherits from the Zariski topology on M. 
We need to verify that for every point a G M, the set f o>Ç\L and 
| af]L are closed in the Zariski topology of L. Suppose that a E M 
is given. We need only check that J, af]L is closed; the other case 
then follows from duality. Let x G Lj \ a. Then a A x ^ x and 
the interval [a A x, x] Ç M is a nondegenerate connected subset of 
M (it is the continuous image of the connected space M under the 
map y \-+ (x Ay) V (a Ax) : M —• [a A x, x]). Since x G L and L is 
an open subset of M, L must intersect the interval [a A x, x] in more 
than the single point x; otherwise x would be isolated in [a A x,x]. 
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Let y G Lf][a Ax,x], y ^ x. Then for every 6 G M, b < a implies 
b/\x<a/\x<y, i.e., I a Ç {b € M : x Ab < y} and therefore 
laf]LÇ{bGL:xAb<y}= y/x. Since y < x we conclude that 
x ^ y/z and hence j a P| L is an intersection of Zariski closed sets. 

It remains an open problem whether (5.2) is still true for arbitrary 
lattices M which are connected in their Zariski topology. The next 
example shows that the connectedness of M in Theorem 5.2 is not 
superfluous. 

EXAMPLE 5.3. Let M = {(x,y) G I x I : (x,y)< (§, §) or (x,y) > 
(§, §)} Then L = {(x,y) G / x / : (x,y) < (§, §) or x > | , y > §} is 
an open sublattice of M. However, the Zariski topology on L is strictly 
coarser than the topology from the interval topology on M (which, 
by the way, is the topology induced from the usual topology on the 
square). 

In order to verify this statement, note that {(x, y) G Ixl : x > § , y > 
| } is relatively closed in L. It is not too complicated to see that every 
Zariski closed subset of L containing {(x,y) G Ixl : x > | , y > §} also 
contains the point ( | , | ) G L. Hence the Zariski topology is strictly 
coarser than the relative topology 

Lemma 5.1, when combined with Theorem 4.5, immediately yields 

PROPOSITION 5.4. Let i : L —• M be an imbedding of distributive 
lattices. Then the following conditions are equivalent: 

(a) i is continuous when both L and M are equipped with the Zariski 
topology. 

(b) i is a topology imbedding when both L and M are equipped with 
the Zariski topology. 

(c) i preserves topological suprema and topological infima. 

Essential extensions always respect topological suprema and topolog­
ical infima. Indeed if M is an essential extension of L, then (up to 
isomorphism) M is a sublattice of 6*(L), the maximal essential exten­
sion of L. From 4.3 we know that the imbedding L —• 6*(L) preserves 
topological suprema and topological infima. It is now straightforward 
to check that these suprema and infima are also preserved when map­
ping L into the smaller space M. Hence from either the preceding 
remarks or from (3.5) directly we obtain 
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COROLLARY 5.5. Let i : L —• M be an essential imbedding of 
distributive lattices. Then it also is a topological imbedding when L 
and M are both given the Zariski topology. 

With 5.5 we have established a firm bond between the Zariski topol­
ogy and essential extensions. 

EXAMPLE 5.6. LetL = {{x,y) elxl :{x,y) < ( £ , | ) or \ < xAy}. 
Then it is easy to see that J x J is an essential extension of L. Hence 
the Zariski topology on L is the same as the topology that L inherits 
as a subspace oî I x I. 

The connection between the Zariski topology and essential extension 
is so strong that it seems to be plausible (at least to the authors) 
that dense imbeddings give rise to essential extensions. However, the 
following example refutes this conjecture. 

EXAMPLE 5.7. Let C denote the first uncountable cardinal number. 
Then [0, l ] c is separable and hence contains a dense countable sublattice 
L. But the inclusion map i : L <-+ [0, l ] c cannot be an essential 
extension since otherwise [0, l ] c would be metrizable by [13]. 

One naturally expects the Zariski topology to be invariant under the 
formation of closed sublattices. This is not the case. 

EXAMPLE 5.8. Let M := {(r,s) e I x J : r,s < §}. Then 
L := {(r, s) G M : r — s = 0 or \ < r, s} is a closed sublattice of 
L. In the relative topology on M the point (0,0) is isolated. However, 
{(r, s) € L : | < r, s} is a filter in L which has (0,0) as topological 
infimum. 

6. Remarks on quotient maps. In this section we record some 
observations on topological quotient maps between distributive lattices 
with their Zariski topologies. If the lattices in question are infinitely 
distributive (and hence carry the interval topology), the situation is 
completely understood. 

PROPOSITION 6.1. Let L and M be infinite distributive and let 
f : L —• M be a surjective lattice homomorphism. Then the following 
are equivalent: 

(i) / preserves arbitrary infima and arbitrary suprema. 
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(ii) / is continuous for the Zariski topologies. 
(iii) / is continuous and closed for the Zariski topologies. 
(iv) / is a topological quotient map for the Zariski topologies. 

PROOF. With the exception of the implication of (i) => (iii), all those 
statements are straightforward. To verify that (i) implies (iii), assume 
that A c L is closed and let B = f{A). We have to show that B 
is closed. Let Q be an ultrafilter on B and let y be a limit point of 
Q. We have to show that y G B. Pick an ultrafilter 7 on A such that 
/ ( / ) = g. Since A is closed, all limit points of T belong to A. It follows 
that [lim inf J , lim sup T] C A. Since / preserves arbitrary suprema and 
arbitrary infima, and since / is a surjective lattice homomorphism and 
hence preserves intervals, we conclude that /[lim inf J , lim sup 7] = 
[/ lim inf 7, lim inf /[lim sup fT] = [lim inf Q, lim sup Q]. Now since y 
was a limit point of Q, we conclude that y € [lim inf £, lim inf Q] c 
f(A) = B. 

If the range and domain of a lattice homomorphism f : L —+ M are 
no longer infinitely distributive, the situation is not so clear. In the 
remainder of this section, we will give an example of meet-continuous 
complete distributive lattice L and two points a, 6, € L such that the 
canonical quotient map f : L —> L/0(a,b) is continuous but not a 
quotient map for the Zariski topologies. 

EXAMPLE 6.2. Let [0,1] be the real unit interval with its usual order 
and topology. We consider the following sublattice L C [0, l ] 2 : 

L = {(x,y)e [0,1]2 :y < 1 orx = y = l}. 

Let a = ( | ,0)and b = (1,0). Then L/9(a,b) is isomorphic to 
{(x, y) e [0, if '{x<\ and y < 1) or (x = | and y = 1)}. Under this 
identification, the canonical map / : L —» L/$(a,b) is the restriction 
of the map(x,2/) —> (min{s, \},y) : [0, l ] 2 —• L. Moreover, [0, l ] 2 is 
an essential extension of L and [0, | ] x [0,1] is an essential extension 
of L/6(a,b). Hence the Zariski topologies on L and L/^(a, 6) are the 
natural topologies inherited from the Euclidean plane. This makes / 
a continuous map. However, / is not a quotient map: Consider the 
set B = {(x - | , x ) e ro, 1] x [0,1] : § < x < 1} C L/0(a,b). Then 
f~l(B) = B is closed in L, but B is not closed in L/0(a, 6), since (^, 1) 
belongs to the closure of B in L/0(a, b). 
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7. Hausdorffness conditions. In this section we will try to answer 
the question: Under which conditions is a lattice L Hausdorff in its 
Zariski topology. A first solution of this problem was given by R. Ball 
in [3]. We shall restate his result here and give a different, more direct 
proof. Let us start with some preliminary results. 

PROPOSITION 7.1. Let M be a distributive complete lattice which is 
meet-and-join continuous, let L be a sublattice of M and let A be a 
closed subset of M in the interval topology. If L Ç A, then A also 
contains the smallest complete sublattice generated by L. 

PROOF. Let us introduce some new notations which we also will use 
later on. 

If B C M, then 

B+ = {sup C :C CB,C up-directed}. 

£ ~ = {inf C :C Ç B,C down-directed}. 

Since directed suprema and infima are limits in the intercal topol­
ogy, we obtain L+ Ç A, L~ Ç A, where L and A are as speci­
fied in the proposition. Moreover, since M is meet-continuous and 
join-continuous, L + and L~ are sublattices. We obtain L+ Ç 
J 4 , L + - + Ç A, etc. Since the smallest complete sublattice V gener­
ated by L is obtained by applying the operators + and — recursively, 
an easy transfinite induction shows L Ç A. 

PROPOSITION 7.2. Let L be a distributive complete lattice which is 
meet-and-join-continuous. If any two comparable elements x,y E L 
can be separated in the interval topology, then L is Hausdorff in the 
interval topology. 

PROOF. We have to show that every ultrafilter û on L has a unique 
limit point. Since limits are given by lim inf's and lim sup's, it suffices 
to show that lim inf û = lim sup û for every ultrafilter u. Assume not. 
Then there is an ultrafilter û such that lim inf û ^ lim sup u. Choose 
disjoint open neighborhoods U of lim inf û and V lim supû and lim 
sup û are limit points of û, we conclude that C/, V € û, contradicting 
Uf\V = 0. 

If L is a distributive lattice, then L* Ç 6*(L) denotes the smallest 



214 G. GIERZ AND A. STRALKA 

complete sublattice of 6*(L) containing {9a : a E L}. It is clear that 
L* is an essential extension of L. 

THEOREM 7.3 (BALL, 1983). Let L be a distributive lattice. Then the 
following conditions are equivalent: 

(i) L is Hausdorff in the Zariski topology. 
(ii) L* is completely distributive. 

(iii) L admits an essential extension which is completely distributive. 

PROOF, (i) ^ (ii). Let 9,ip e L*,9 £ t/>. Using (1.1), we have to find 
closed subsets A,B € L* such that 

(i)A[jB = L\ 
(ii) 6 £ A,ip $. B\ in this case L*\A and L*\B are disjoint open 

neighborhoods of 8 and ip respectively. 

First of all, L* is an essential extension of {9a : a C L}. Hence there 
are elements a, 6 € L, a ^ 6, such that 0a and 9b are identified by the 
smallest congruence collapsing 9 and tp. As we already noticed in the 
proof of 5.7, this means 

9a = {9aV0)A0b, 9b = {9a\/iP)A9b. 

Since that Zariski topology on {9a : a G L} is Hausdorff and since 
the Zariski topology is the relative topology of the interval topology on 
B*(L) by 3.5, we can find open neighborhoods U Ç &*(L) of 9a and 
V CS* (L) of 9h such that Uf]V Ç]{9a : a e L} = 0. We conclude that 
{9a : a e L} ç (e*{L)\U)\J{Q*{L)\V). Since the latter set is closed 
in the interval topology, we obtain L* Ç (G*(L)\U)\J(G*(L)\V) by 
(4.1). Let 

A ^ = L*f | (e*(L) \ t f ) , 

B':=L*r\{e*(L)\V). 

Then, 0* (L) also being an essential extension of the larger sublattice 
L*, the sets A' and B' are closed in the Zariski topology of L* by (5.5). 
Note that L* as a complete sublattice of Q(L) is infinitely distributive, 
hence the Zariski topology and the interval topology agree on L*. Now 
let 
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/ : i *^£* ; r-(0avr)A06. 

Then / is continuous by 3.6, f(0) = 6a G B'\A' and f(i/j) G A'\B'. 
Let 

B: = r\B'). 

Then A and B are closed subsets having the required properties. 

(ii) => (iii) is trivial, since L* is an essential extension of L. (iii) => 
(i) follows from (1.1) and (5.5). 

COROLLARY 7.4. Let L be a distributive lattice and assume that L 
is Hausdorff in the Zariski topology. Then L is a completely regular 
topological lattice in the Zariski topology. 

PROOF. This follows immediately from the fact that L is algebraically 
and topologically a (dense) sublattice of L*. 

Thus, we can say that lattices which are Hausdorff in the Zariski 
topology are those topological lattices L which allow a compactification 
L*. It is not hard to see that L* = L + ~ = L~ + . If we start with L 
being the open square, then L* is the closed square. It seems to be not 
without interest to study the categorical properties of the imbedding 
L —• L*; we shall return to this question in a later paper. 

The characterizations given in (7.3) are external in the sense that 
they use extensions of L. It would also be desirable to have an internal 
characterization. 

DEFINITION 7.5. A distributive lattice L is called reductive if for every 
pair of comparable elements x, y G L, say x ^ y, there are elements 
a, b G L such that x < a %b < y and such that the interval [a, b] is a 
chain. 

Reductive lattices were introduced and studied in [14]. There are 
several other algebraic properties leading to reductivity - one is the 
property that every element be the infimum of finitely many primes; a 
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second is that the lattice does not contain a copy of 2W as a complete 
sublattice. 

PROPOSITION 7.6. A distributive lattice L is reductive if and only if 
L admits an essential extension which is a product of (complete) chains 

PROOF. This was shown in [14] without the adjective "complete." 
Hence (7.6) would follow from the following two observations: 

(i) The Dedekind-MacNeille completion of a chain is an essential 
extension. 

(Indeed, let C be a chain and let C be its Dedekind-MacNeille 
complete. If x,y G C, x < y, then there are elements a,b € C such 
that x < a < b < y. Hence every congruence relation on C which is 
not the smallest congruence A has a non-trivial restriction to C.) 

(ii) If L{ C Mi are essential extensions for every i G / , where / is an 
arbitrary index set, then n ^ / M i is an essential extension of UiejLi. 

(Let 0 be a non-trivial congruence relation on \\ieIMi and take 
elements / , g G Y\ieI Mi such that f < g and (/, g) G 9. Pick an index 
i G / such that fi < gi. Since Mi is an essential extension of Li there 
are elements x,y G Li such that x < y and such that (x, y) belongs to 
the smallest congruence relation 0(fiigi) on Mi identifying fi and gi. 
From (3.2) we conclude that 

x = {fi V x) A y, 

y=feVx)A y. 

For every j G I\{i} let aj G Lj be an arbitrary element. Define 
elements s,r e YlieI Li by 

Sj =rj = aj for j ^ i, 

Si = X, 

r% = 2/. 

It follows that s = (fWs)Ar and r = (gVs)/\r. By (3.2), (s, r) belongs 
to the smallest congruence containing (/, g). Especially, (r, s) G 0.) 

Since a product of complete chains is completely distributive, we 
obtain 

COROLLARY 7.7. If L is reductive, then L is Hausdorff in the Zariski 
topology. 
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