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SOME ANALOGUES OF A LEHMER PROBLEM ON 
THE TOTIENT FUNCTION 

M. V. SUBBARAO AND V. SIVA RAMA PRASAD 

1. Introduction and notation. In 1932, Lehmer [9] considered the equa­
tion 

(1.1) M(j){n) = n - 1, 

where <j>(rì) is the Euler totient function and asked whether the sets SM 

of integers n satisfying (1.1) have any composite numbers. Obviously in 
the case M — 1, the answer is negative. But the problem is not settled for 
M > 1. However, the following partial solutions are known in the latter 
case. Firstly, Lehmer himself proved that each member of SM is odd, 
squarefree and has at least seven distinct prime factors. Later Lieuwens 
[10], correcting the proof of Schuh [13], showed that co(n) ^ 11 for every 
n e SM, where œ(n) denotes the number of distinct prime factors of n. 
Kishore [7] increased the lower bound of œ(n) to 13. Recently, Cohen and 
Hagis [2], using computational methods, established that œ{n) ^ 14. In 
another direction, Pomerance [12] proved that every such n is < r2\ where 
r = œ{n), and obtained that the number of n ^ x in any of SM with M > 1 
is 

0(x^ log3/4JC • ( log log Jc)"172). 

In this paper we discuss two analogous problems involving Jk(n), the 
Jordan totient function of order k and <^*(«), the unitary analogue of the 
Euler totient function. It is well-known that they are given by Jk{\) = 1, 
çj*(l) = 1, and if n > 1, 

(1.2) A(«) = «*n(i - - i ) , 
p\n \ P J 

(1.3) 4>*(n) = fi (Pa - 0, 
pa\\n 

where the product in (1.2) is over prime divisors of n and that in (1.3) is 
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over the prime powers unitarily dividing n. (We say that d unitarily divides 
/?, and write d\\n9 if d\n and (d, n/d) = 1). 

We prove that, for k > 1, Jk{n) divides nk — 1 if and only if n is a prime 
(Theorem 1). The case h — 1 is Lehmer's unsolved problem, since J\(n) 

= #*)• 
One of the authors [14] conjectured in 1971 that (j)*(n) divides n — 1 

only if n is the power of a prime, the converse being trivially true. This 
appears to be as deep as Lehmer's problem. Clearly, the conjecture states 
that, for every M ^ 1, the set S$ of integers n satisfying 

(1.4) M<f>*(n) = n - 1 

contains only prime powers. 
Since SM, defined earlier, contains only squarefree numbers and 0*(w) 

= (j)(ri) wherever n is squarefree, it follows that SM is a proper subset of 
S$. Therefore, a separate consideration of S$ is needed for the study of 
the equation (1.4). 

First, we dispose of (in Theorem 2) the case M = 1 and then go to the 
case M > 1. Some significant features of this paper in the latter case are 
as follows. In §3, we prove that co(n) ^ 7, for every n e S$ by a simple 
argument which is different from that used by Lehmer for his problem. 
Using this we improve the lower bounds for o)(n) with varying conditions 
on n and various values of M in §4. For instance, we prove that if 3\n 
and n e Sjfc, then co(n) ^ 1850, which automatically holds for ne SM and 
therefore improves a theorem of Lieuwens [10, Theorem 5] which says 
that o)(n) ^ 212 whenever 3\n and n e SM. Also, we establish that if n is 
squarefree and n e 5$, then o)(n) ^ 53, 140 or 200 according as M = 5, 
6 or 7; these increase the hitherto known lower bounds, namely 33 of 
o)(n) for the Lehmer problem. We mention that these improvements are 
obtained by using methods different from those of earlier writers for that 
problem. Further, in § 5 we show that if neS^ has /• distinct prime factors, 
then n < (r — l)2r_1 improving a result of Pomerance [12, Equation (1.2)]. 
In §6, an order estimate for N*(x), the number of n ^ x in any of Sfa, 
with M > 1, is obtained by showing 

N*(x) = 0(x1/2 log2* . (log log *)-2). 

Z(s) denotes the Riemann-Zeta function. It is well known that, for s > 1, 

(1-5) c(*) = n ( i - ^ ) ~ \ 

where the product is over all primes and that 

(1.6) C(2) = ^2/6. 

2. The analogous problem for Jordan's totient function. 
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THEOREM 1. Fork > \,Jk(n)\nk - 1 if and only if n is a prime. 

PROOF. Jk{n)\nk — 1 implies (n,Jk{n)) = 1, and, since p2\n for some prime 
p implies pk\Jk(n), n must be squarefree. Also Jk{n) = nk — 1 if and only 
if« is prime. Now, for k > 1, by (1.2), (1.5), and (1.6), 

w<a(i-*)"<ii(,-*)",-îR,-^<2-
completing the proof of the theorem. 

Thus, the analogue of Lehmer's problem for the Jordan totient func­
tion is easily settled. One can consider the analogous problems arising 
out of other generalizations and analogues of the totient function like 
Schimmel's. However, we find a most interesting and surprisingly difficult 
case arising when the unitary totient function is taken. The rest of the 
paper is devoted to that problem. 

3. Analogous problem for the unitary totient. The unitary analogue of 
Lehmer's problem is already mentioned in the introduction. We obtain 
a preliminary lower bound for œ(n), where n e S$, in this section. First, 
we note 

THEOREM 2. n e S* if and only ifn = pa,for some prime p. 

PROOF. If n = pa, it is in Sf. If n = p^pf • • • pa/(r > 1), then <f>*(n) < 
n — 1, proving the theorem. 

Throughout the following we take M > 1. n always denotes an integer 
greater than 1 in S$, for some M > 1. Then, clearly, we have (n,M) = 1, 
(/i, 0*(AI)) = 1, and 

(3.1) -Jy^ > A /^2 . 

THEOREM 3. n is odd and not a powerful number. 

PROOF. If n is even, by (1.4), we have <f>*(n) is odd. But <fr*(n) is odd if 
and only if n = 2a and, in this case, (1.4) cannot hold with M > 1. Hence 
n must be odd. 

We recall that a number is said to be powerful if each exponent in its 
canonical representation is at least 2. 

If n were powerful, then, by (1.3), (1.5), and (1.6), we have 

= C(2) = ^2 / 6 < 2, 

contradicting (3.1). Hence n cannot be powerful 
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We denote the sequence of odd primes by {q{}. That is, q1 = 3, q2 = 5, 
#3 = 7 , . . . . For any r > 1, we write 

and 

(3-3) e*-fl(^T> 
LEMMA 3.1. (i) a>(n) # 2. 

(ii) //"2 < w(n) ^ 6, //?e« M = 2 and 3\n. 

PROOF. If n = pp p9p • • • pa/, with P\ < p2 < - - • < pr, then, by 
Theorem 3, /?,- ^ #,., for / = 1, 2, 3, . . . , r, so that (3.1) gives M < 
n/<f>*(n) £ n?=i <7>/<7* - 1 = ßr-

Since Q2 < 2, (i) follows in view of Theorem 2. 
Since Qr < 3 for 2 < r _ 6, we get M = 2, again by Theorem 2. 
If 2 < r ^ 6 and 31«, then n = p^ p%2 • • • /?g6, where not more than 

three a{ can be zero and p{ ^ #,-+1, for / = 1, 2, . . . , 6. Therefore 
n 6 ncr,- 6 n 

contradicting (3.1). Hence 3\n. 

LEMMA 3.2. Suppose primes p, q are such that p\n and qß = l(mod p). 
Then qß cannot be a unitary divisor ofn. 

PROOF. Given p\n and qß = l(mod/?), if qß\\n, then also (j)*{qß) = qß — 11 
0*(«)so that p\<f)*(n). Thus, /?|(/?, 0*00), a contradiction. Hence the lemma. 

COROLLARY 3.1. If primes /?, # #AT swr/z //?#/ /?|/2 and q = l(mod /?), then 
qln. 

LEMMA 3.3 fj'3\n, then M = l(mod 3). 

PROOF. Suppose n = 3apfp%2 ••• pa/. Then pf ^ l(mod 3) for/ = 
1, 2, . . . , r, by Lemma 3.2. Now, (1.3) and (1.4) give 

M(3a - l)(/?fi - ! ) • • • (pa/ - 1) = 3ap^pf • • • pf - 1. 

Writing this equation to the congruence modulo 3, we get the lemma, 
since pf = 2(mod 3), for / = 1, 2, . . . , r. 

THEOREM 4. co(n) ^ 7. 

PROOF. If 2 < co(n) ^ 6, then M = 2 and 3|w, by Lemma 3.1. But if 
3\n, by Lemma 3.3, we have M = l(mod 3) so that M ^ 4. These two 
contradict each other. Hence co(n) ^ 7. 
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REMARK 3.1. Lehmer proved that a>(n) ^ 7, for all n e SM, using a dif­
ferent method. Since SM is a subset of Sjfr, our proof also holds for the 
Lehmer problem. 

4. Improved lower bounds for <w(n) with conditions on n and M. In this 
section we obtain lower bound of &>(>?) with different conditions on n and 
various values of A/, using Theorem 4. The following definitions are 
needed in the proofs of the results in this section. 

DEFINITION 4.1. Suppose/? is an odd prime. The sequence Gp = {/>,-} of 
primes, such that Px = p and, for / ^ 1, Pi+l is the smallest prime > P{ 

satisfying Pï+i JE l(mod Pk), for 1 ^ k ^ /', is called the "(/-sequence of 
primes with p as smallest member." 

For example, G3 = {3, 5, 17, 23, 29, 47, . . . } and G5 = {5, 7, 13, 
17, 19,23,37,. . . }. 

It may be noted here that the density and other aspects of (/-sequences 
were studied by Golomb [4], Erdös [3], and Meijer [11]. 

DEFINITION 4.2. If A = {ax,a2,. • • , am} is a finite set of numbers each 
greater than 1, by its "quotient", denoted by Am, we mean 

A = a\a2 '-am -_} 
m Xar-\)(a2- I )- ." . (am- I)' 

LEMMA 4.1. Suppose m ^ 2, A = {ax, a2, . . . , tfm}, # = {/?i, b2,..., bm) 
are two sets of integers such that 1 < a{ ^ 6, /òr éw/î /, vv/f/z sfr/W in­
equality for at least one i. Then Am > Bm. 

PROOF. The lemma can be verified easily in case a{ = b{, for all /, except 
for one index k, where ak < bk. By repeated application of the result, the 
lemma follows. 

THEOREM 5. ff3\n, then œ(n) ^ 1850. 

PROOF. Suppose n = p\xp2
2 • • • pa

r
r, with 3 = Pi < p2 < • • • < pr-

Then, by Theorem 4, r ^ 7. Also, by (1.3), (1.4), and Lemma 3.3, we see 
that the quotient Dr of {fö\ pa

2\ . . . , pa/} satisfies 

In view of Corollary 3.1, the p{ are such that pt ^ l(mod /?y), for / #y, 
and they are among those that belong to the set B = {3, 5, 11, 17, 23, 29, 
41, 47, 53, 59, . . .}, which consists of 3 and all odd primes p ^ l(mod 3). 
Also, if 6, is the ith element of B in increasing order, then/?, ^ bh for each 
/ with strict inequality for / = 2 or 3 or both. Further, if/ > 6, bt is of the 
form 29 4- 6A% for some x = 1, 2, 3, But 29 + 6x is composite if x e L, 
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where L={x:x = l(mod 5), l(mod 7), 8(mod 11), 6(mod 13), 15(mod 17), 
1 l(mod 19) or 22(mod 23)}. Therefore B is a subset of A = {3, 5, 11, 17, 
23, 29, 41, 47, 53, 59, 71, . . .} consisting of 3, 5, 11, 17, 23, and all positive 
integers in the progression 29 + 6x with x £ L. Clearly, if a{ is the /th 
element of A{\n increasing order), then b{ ^ ah for all /. Thus, we have, 
for any i{\ ^ i S rX t n a t Pf ^ Pi ^ b{ ^ ah and strict inequality holds, 
for at least one /, since r ^ 7. Hence, by Lemma 4.1 and (4.1), we see that 
the quotient Arof {ah a2, . . . , ar} satisfies Ar> Dr ^ 4 . That is, r is such 
that 

3-5-1M7-23 rf / 29 + 6x \ . 
2-4.10-16.22 iJ0 V 28 + 6x J 

x(£L 

or 

TT ( 29 + 6x \ ̂  22528 
!J0V28 + 6x) 12903 " 
x<£L 

A computer run showed that the smallest such r is 1850, proving the 
theorem. 

THEOREM 6. If 3 K n, 5|w, then cù(rì) ^ 1 1 . 

PROOF. Here we take G5, the G-sequence of primes with 5 as the smal­
lest member. That is, Gb = {5, 7, 13, 17, 19, 23, 37, 59, 67, 73, . . .}. If/>, is 
the /th element in this sequence and P* is the quotient of {Ph P2,>-, Pio}, 
we observe that JP* < 2. 

If n = PilP22 • ' ' Pa/ with 5 = pi < p2 < • • • < pr and r ^ 10, we 
prove the quotient D of {pf1, pf2, . . . , pa/} is ^ />*, from which the 
theorem is immediate. It suffices to prove this when r = 10. 

Because of Corollary 3.1, the/?,- are from the set {5, 7, 13, 17, 19, 23, 29, 
37, 43, 47, 53, 59, 67, 73,...} of odd primesp ^ 5 such that/? £ l(mod 5). 
If p. = ph for / = 1,2,. . . , 10, then D = p*, proving our assertion. There­
fore, let k be the least positive integer such that pk ^ Pk. Then 2 ^ h ^ 
10. For any k(3 ^ k S 10), we observe that p{ ^ P{ for / = 1,2,. . . , 10 so 
that Lemma 4.1. gives D ^ P*. Also, if k = 2 , all choices of p{ are such 
that/) ^ P*. Hence the theorem. 

We state below a theorem which follows on the lines similar to [2, 
Proposition 1]. 

THEOREM 7. If 3 K n,5 X n, then a)(n) ^ 17. 

In the rest of this section we prove results which are improvements of 
[7, Lemma 1]. 

THEOREM 8. Ifn e Sjfc, for M = 3, 4 or 5, then w{n) ^ 33. 
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PROOF. If 3\n, the theorem follows from Theorem 5. 
If 3Xn and œ(n) S 32, then n = p^ p?- • • • pa/, with px < p2 < 

< pr, is such that p{ ^ qi+i, for / = 1, 2, 3 , . . . , r, so that n/<f>*(n) ^ 
n?=i^i+i/^*+i — 1 < 3. But this is a contradiction since 

T^TY "= M + > 3 
(f>*(n) <ß*(n) 

if A/ = 3, 4 or 5. Hence œ(n) ^ 33 in this case also. 

LEMMA 4.2. If n E Sfa has r distinct prime factors unitarily dividing it, 
then Qr > %M\%2 or M according as n has a square factor or not. (Qr is 
given by (3.2)). 

PROOF. Suppose n = m - m' where m is squarefree, rri is powerful and 
(m, m') = 1. Then o){m) = r ^ 1, by Theorem 3. Let s = w{m'). Now 

"<TOr-B(Wn)-Ä(r^r) *«'•«• 
where Qf is given by (3.3). Hence M < QrQf or Qr according as s §: 1 
or s = 0. The lemma now follows from the fact that, for j ^ 1, 

< | C ( 2 ) = y ,by (1 .6 ) . 

THEOREM 9. 

(i) / / / i 6 5f awd« is squarefree, then co(n) ^ 53. 
(ii) If n G 51e, then o)(n) ^ 140 or 48 according as n is squarefree or not. 

(iii) If n e S?, f/?é72 co(tf) > 200 or 103 according as n is squarefree or not. 
(iv) Ifn e S fi, for M è 8, fAe« Û>(«) > 200. 

PROOF. These can be proved easily making use of Lemma 4.2 and Table 
IX of Legendre [8], which gives the values of Q~l for 1 <; r <; 200. 

For instance, when M = 6 and n is squarefree we must have Qr > 6, 
by Lemma 4.2. This requires r ^ 140 from the table, proving the first 
part of (ii). 

THEOREM 10. If 2 < œ(n) ^ 16, then M = 2, 3 X n, 5\n, l\n. 

PROOF. 3|«, 5|AI, M = 2, respectively, follow from Theorems 5, 7, 8 and 9. 
If 7 | AI, then n/(f>*(n) = *n?ii^*+i/(^+i ~ 0» where * indicates that the 

primes q{ = l(mod 5) are excluded in the product. Since the product is 
< 2, which contradicts (3.1), we get that l\n. 

REMARK 4.1. Summing up the results of §2 and §3, we have shown that 
(o(n) ^ 11, for every n e 5$ . 
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5. Upper bound for n with r distinct prime factors. Throughout this sec­
tion N, denotes an odd natural number. 

LEMMA 5.1. If N e Sfa, m\\N,m # N, then m/<ß*(m) < M. 

PROOF. If m = 1, the lemma is obvious. 
Assume m > 1. It is enough to prove the lemma for m having exactly 

(r — 1) unitary prime power divisors of N. Let m' = pa be the comple­
mentary unitary divisor of m so that mm' = TV and (m, m') = 1. 

Since N e Sfa, we have 

I = N - M<f>*(N) = mm' - M<f>*(m)(m' - 1) 

= m'[m — M(j)*(m)] + M<^*(m), 

from which the lemma is immediate because M<fi*(m) ^ M ^ 2. 

LEMMA 5.2. Suppose (N/<ß*(N)) > M. If m\\N, m # 1, m ^ N and 
(m/é*(m)) < M, then the least among the prime power divisors of m' 
= N/m is less than a>(m')m. 

PROOF. Since N is odd we have m ^ 3. Let m' = p^p^2 • • • pfy with 
p$ < /?|2 < • • • < pfr. Now m/<f>*(m) < M < N/$*(N) implies m'/(f>*(m') 
> M(<f>*(m)/m) ^ 2. That is, 

Also, p$ < pß
2
2 < - - - pß/ and each p{ odd implies that pf ^ p{1 -f 

2(i - 1), for / = 2, 3, . . . , /. Therefore, by the decreasing nature of 
(x/x — 1) and (5.1), we get 

Again, since x/(x — 1) is a decreasing function, we have 

p$ + 2/ - 2 p$ + 2/ - 3 
/?$ + 2/ - 3 >/Ji + 2/ - 4 

for each /', from which it follows that 

/ / ^ + 2 / - 2 \ 2 /># + 2/ - 2 
P j V/>t + 2/ - 3 y '/>$ + 2/ - 4 * 

Now, from (5.2) and (5.3), we get 

4 < n f P t + 2 i - 2 \ _ pfr + 2 f - 2 
^ M Vi1 + 2/ - 4"/ /># - 2 

or /?f < 2 + 2 f/3 < 3? ^ w/, proving the lemma. 
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LEMMA 5.3. If NeS& and N = p^pf • . • pa/, with pV < pf < • • • < 
pa/, then 

PV <(r - i + l)(n/>?'•) 

for i = 2, 3, . . . , r. 

PROOF. Fix / and write m = 17 Pi/7?'- Then m\\N, m # 1, m ^ N, so 
that by Lemma 5.1, mj^(m) < M. Also, by (3.1), we have N/<f>*(N) > M. 
Now, the lemma is immediate from Lemma 5.2. 

A result of interest is established in the proof of Lemma 5.2. We record 
it as the following lemma. 

LEMMA 5.4. If TV = z??1/^2 • • • Pa
r
r, with /?f < p%2 < • • • < pa

r
r, is such 

that N/<p*(N) > 2, then />f < 2 + 2(r/3). 

REMARK 5.1. Otto Grün [5] proved a similar result for odd perfect 
numbers. In fact he showed that the least prime factor of an odd perfect 
number N with o)(N) = r is < (2/3) r 4- 2. 

THEOREM 11. Ifco(n) = r, then n < (r - l)2r_1. 

PROOF. Suppose n = PVPT ' * * Pr% with p\l < Pf- < • • • < /??r, so that 
nl<j)*{n) > 2 and r ^ 11, by (3.1) and Remark 4.1. Therefore, by Lemma 
5.4, 

(5.4) /7f < - |-r + 2 < r - 1. 

Now, by Lemma 5.3 and (5.4), we successively have 

/7§2 < (r - 1 ) ^ 1 < (r - 1)2, 

pf < (r - 2 ) / W < (r - 2)(r - l)(r - 1)2 < (r - l)22, 

More generally, /??' < (r — l)2 ' -1, for / = 1, 2, . . . , r. 

Hence /i = pf/?f . . . p«r < (r _ j)(r _ j)2(r _ 1)22 . . . (r _ j ^ - i 

= (r - l)2'"1. 

REMARK 5.2. Theorem 11 gives an improvement of a result of Pomerance 
[12, equation (1.2)] where he showed that n < r2\ for every n e SM, with 
coin) = r. A similar result for amicable numbers is obtained by Borho [1]. 

6. Order estimate for N*(x). Let N*{x) be the number of« g x in Sjfr, for 
some M > 1. In this section we obtain an order estimate for N*(x). We 
state the following equivalent form of the combinatorial lemma proved 
by Pomerance [12, Lemma 4]. 
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LEMMA 6.1. Suppose ô ^ 0, 0 < ax ^ a2 S - - - ^ at, Bt- = £j=i ah for 
1 ^ / ^ t, and aï g ö 4- Bt+1, for 1 ^ / ^ / — 1. 77z£«, given y with 
0 ^ y ^ Bt, there is a subset S of {I, 2, 3y . . , t} such that 

y - ô - tfi < S at S y. 
ÏŒS 

THEOREM 12. N*(x) = <9(x1/2 log2x • (log log x)"2). 

PROOF. Suppose n = p^pf- • • • pa/ e S fi, for some M > 1 ; pf- < p% 2 < 
• • • < /??% and « ^ x. Then, for each /, by Lemma 5.3, 

pf < (r - i + l ) ( j ] V ' 

so that 

» - 1 

log/??< < logr + 2]log(/??0. 

Let J(x) be a function (to be chosen suitably) satisfying 1 ^ A{x) < x. 
Now, for x ^ « > J(x), we have log « > log J(x). Taking ö = log r, 
t = r, ai = \og(pf) and y = log zJ(x) in Lemma 6.1, we get a unitary 
divisor moîn such that 

y — ô — log /?f! < log m ^ y. 

That is, 

(6.1) - ^ 4 r < m ^ J(x). 

Now, by (5.4), and the fact that there is a positive constant c such that 
r — o)(n) < (c log «)/(log log n), for n ^ 3 (see [6], p. 335), we get 

(6.2) r • /7f < r(r - 1) < r2 < - Cl l o g 2 * 
(log log x)2 ' 

for some cx > 0. 
Then, (6.1) and (6.2) imply that, for every n with J(x) < n ^ x, there 

is a unitary divisor moîn such that 

(6.3) f(x) <mS â{x), 

where 

(6-4) /(*) = ^ g ^ -

Now, among the integers n e Sfi(J(x) < n ^ x), we count those n for 
which a given m is a unitary divisor satisfying (6.3). Since m\\n implies 
<ß*(m)\$*(n), any such n must satisfy the congruences n = 0(mod m) and 
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n = l(mod <f>*(rn)). By the Chinese Remainder Threoem, the number of 
such n g x is at most [x/m<ß*(m)]9 where [t] is the greatest integer ^ t. 

Hence 

N*(x) ^ A(x) + 
f(x)<oZkj(x)Lrn<f>*(m) J 

= 0{A{x)) + o(x ^ 1 

' fix)<iïkA{x) m<j)*(m) / 

Now, using a result of Landau, we have 

(6-6) E J/ ^ ^ £ —i-v = ofl 
m>y m$*(m) m>y m<f)(m) * 

From (6.5) and (6.6), we obtain that 

N*(x) = 0(A(x)) + o(-£-A + 0| 
f{x) J \ A(x) 

Choosing A(x) = 0(x1/2 log2* • (log log x)~2), all terms on the right of 
(6.7) will be 0(J(x)), proving the theorem. 

7. Concluding remarks Using, computational methods similar to that 
of Kishore, Cohen and Hagis or by some other techniques, it may be 
possible to improve Theorem 6, by showing, say, œ(n) ^ 13 whenever 
3 X n and 5\n. 

Considering the infinite nature of the set complement of SM in Sfa the 
order estimate we obtained for N*(x) is reasonably good as a first attempt. 
Further improvements of this are, of course, possible and will be con­
sidered in a future paper. 
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