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1. Introduction Let E be an elliptic curve defined over Q, of conductor
N. For a prime p | N, the reduction E, of E (mod p) is an elliptic curve
defined over the ficld F, of p elements. Denote by N, the number of points
of E, which are rational over F,, and write @, = p + 1 — N,. Then it
is known that |a,| < 2pl/2. We say that E has super-singular reduction
at p if a, = 0. Define

7p(x) = # {p < x: pfNand a, = 0}.

From results of Deuring [2], it is known that if E has complex multiplica-
tion, then, as x — o, wg(x) ~ (1/2)x(x), where n(x) denotes the number
of primes p < x. If £ does not have complex multiplication, Lang and
Trotter [4] conjecture that, as x — oo,
x1/2
TEE(X) ~ CEm.

Serre [6] has shown that, for any ¢ > 0,

wp(x) <.x/(log x)"*™*

and on the assumption of the Riemann Hypothesis for all Artin L-func-
tions, mg(x) < x3/4.

For each p, write a, = 2p1’2 cos 0, with 8, € [0, z]. Then it is conjectured
by Sato and Tate that for any interval /in (0, 7),

#{p = x:0,el} ~ pp(Nm(x)

for a certain (specified) measure g (cf. [S]). Attached to E, there is a
family of ~adic representations

0,: Gal(Q/Q) - GIx(Z,))
such that if p f /N, and g, is a Frobenius element at p, then p/c,) has
-T{e?t?\éa '—t;yﬁtwﬁe— e_ditors November 2, 1983
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536 V. KUMAR MURTY

characteristic polynomial x2 — a,x + p. We consider the symmetric
powers Sym* o, of p, and the L-series L,(s) = L,(s, E) attached to them.
Each of these series is known to be analytic in a certain half-plane. Sup-
pose we assume the analytic continuation, functional equation, and Rie-
mann Hypotheses for all the L,. Let f(x) be any function tending mono-
tonically to oo with x. The main purpose of this paper is to observe that,
for any interval / in (0, 7),

#{p < x:0,el} = pe(Dr(x) + O(xV2(log Nx) (log x) f(x)),

provided x > f~1(1/ug(1)). In particular, this implies that if £ does not
have complex multiplication,

wr(x) < x34(log Nx)1’2,

Moreover, the same method shows that, for any integer a, and any E
defined over Q,

#{p < x:a, = a} < x3%(log Nx)2.

In the case that £ has complex multiplication and a # 0, this can be im-
proved to O(x1/2*¢). Under our hypotheses, it should be possible to prove
the estimate O(x1/2*¢) in the non complex multiplication case also, but
I have not yet been able to do this.

In §2, we describe the L,(s) and their conjectured functional equations.
In § 3, we apply this to derive an explicit formula for L,(s). This is done
by the classical method, but the details are included, as it is necessary to
keep track of the dependence of various constants on k and other para-
meters. In §4, we use the explicit formula to derive an estimate for the
sum ¥, F(0,)log p, where 0,€[0, 7] and a, = 2p'’2 cos 0,, and Fis a
function on the unit circle satisfying some conditions. Finally, we choose
F to approximate the delta function supported at § = 7/2. Using the Rie-
mann Hypothesis, for all £, we then deduce the estimate quoted above.

Most of this work was completed in the fall of 1979 while the author
was at Harvard University.

2, Symmetric powers and their L-series. There is a strictly compatible
rational system p = {p,} of /-adic representations

0,: Gal(Q/Q) —» GL(V)), ¥V, = H(E x4 Q, Q).
The associated L-series is of the form
L(s, p) = [T(1 — app=)" Y1 — @pp~)71,

where, for p | N, |a,l = pY?and a, = a, + @, The L-series naturally
attached to the system Sym* p = {Sym* p,} is
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k
Ly(s) = ]} ﬂo(l — ajak™ p=o)~L

This product converges absolutely for Re(s) > 1 + (k/2). It is conjectured
that L,(s) has an analytic continuation for all s and that it satisfies a func-
tional equation of the following form. Set

I'g(s) = =2 I'(s/2)
I'o(s) = 2r)~s I'(s)

and, for each positive integer k,

1’R<s - %k>ifk = 0(4)
T = pofs = Lk + 1)tk = 20
1

if k is odd

Iio) = Fe@lets = 1) - Is = [ X5 ).

Thus, for example, I'i(s) = [¢(s), I'o(s) = Ic(S)Tr(S), I's(s) = I'e(s)
I'«(s — 1), and so on. Now, set
Ai(s) = AP (S)Ly(s),

with a constant 4, specified in Serre [7, pp 19-04 to 19-06]. For our pur-
pose, it suffices to note that 4; = N and that the following estimate
(which follows easily from the definition) holds.

LEMMA 2.1. A, £ N*L forallk > 1.
Then it is conjectured (cf. Serre [7]) that

A(8) = £ Ak + 1 — ).

The precise determination of the sign has also been conjectured (by
Deligne).

3. Explicit formula. We derive an explicit formula in slightly greater
generality than we shall actually need here. Let K be a number field,
and set ngy = [K: Q]. We consider a Dirichlet series

L(s) = X (@) (Vo) = [] PV,

where the sum runs over the integral ideals a of K, N denotes the norm
from K to Q, the product runs over the finite places v of K, and
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P(T) = H(l —w

is a polynomial in T with real coefficients, w; , € C and |w, | = 1. We
assume that for almost all (i.e., for all but finitely many) v, deg P, is con-
stant. Let us call it d.

Set

o= (25

where A runs over some finite indexing set, f; are non-negative integers,
n; =1 or 2. Let 7, denote the number of /" factors. Let A be a real num-
ber and set A(s) = AsI'(s)L(s).

We assume that 4 has an analytic continuation to the whole complex
plane, except possibly for poles of order r (say) at s = 0 and I, that the
continued function is of order 1, and that there is a functional equation
A(s) = wA(l — s), with w = +1. Under these assumptions, we shall
derive an explicit formula for L(s). We shall make use of the approach
of Lagarias and Odlyzko [3].

In the calculations below, all implied constants are absolute.

3.1. The first reduction. Letc > 1,x > 0and 1l < T < x, and consider
the integral

c+iT

L
I=1IX) = - j ()sﬁ
and let
Q07 = Z} W o
Using the discontinuous integral (cf. Davenport [1, p.109])
7 min(1. y16g57):
I + O(<T> m1n<1, TTiog 3 ) ify>1
1 c+iT ds P\ 1
2mi _Lys? = o) min(1, gy} o

1 ¢ —_—
7‘ + O(T)s ]fy - 17

IIA

y<l1

we find that

—_— n n l
1= 2 007 logV) + 0( 2 Qemlogv) (7 T))

o . comefgi mns )




LANG-TROTTER CONJECTURE 539

As there are at most ng primes above a given rational prime, the first
O-term is bounded by O(dng(log x)((1/2) + (¢/T))). The sum }] in the
second O-term is estimated by splitting it into 3 sums.

2= 2 o+ pX + X =21+ 20+ 2

I (Nv)r—x|=1 | (Nv)#—x|=x/4 1<I (Nv)—x1<x/4
Now,
dnglog x
Ty« dnxlogx.
log(Nv))(iy
22<<<d§ e )\T
) (- o) <an(7)
<<d<T>< 240 < dnx (7))~
and

d x log(Nv)
2 < T‘Z<(Nv)"> " T[log x/(Nv)"|
d(log x) 1
< Tlte 1<I(Nv)"Z—xI<1/4x log(x/(Nv)®)|

Since we have the inequalities

>y—1lfor0<y<|

lo
log ¥l >l—%fory>l

the above sum is

< 9og x) (Nv) ) X
T1+e 11 (NIl <o/ [x — (Nv)"| 1< Nl <x/a [x — (Nv)7|
dx log x 1 _ dng x(log x)?
D S 1=t k < Tl+e

Putting all this together, we see that if we choose ¢ = 1 + (1/log x), then

c+iT
1 L X3
" =L (L@ +R(x T KL
o, AlogN) = — 5 JT () X ds + Ry(x ),

with

Ryx, T, K, L) < ng dx< ‘°§,x )

3.2. The behaviour of L'|/L. Now we begin the estimation of the con-
tour integral. Let j be a large positive integer and let U = (1/4) + j. Write
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T

-

!
C
|
£14]

e em m o . = = e o = o - -

T

c+iT
_sz "v %(s)deY:—(11+12+]3+]4+15)+S,
c—iT

where I3, . . ., I5 are integrals along the indicated segments:
Lison—(1/4) <o Zc,t = -T;
Lison —-U=So= —-1/4t=-T,
Liisonoc=—-U.|[t| £T;

ILiison —-UZc= —-1/41t=T,

Iison —(1/4) < ¢ = ¢, t = T, with T chosen so that L(¢ + iT) # 0
for any ¢, and S denotes the sum of the residues at poles of the integrand
inside this contour. To estimate each of these integrals, we need to know

something about the size of L’/L. This information will be obtained
through five lemmas.

LEMMA 1. If |z + m| = 1/8, for all non-negative integers m, then

1177(2)’ < log(lz] + 2).
This is Lemma 6.1 of [3].
LEMMA 2. If s =¢ +it,0 = — 1/4 and

1
lnys +m| z 2

for all non-negative integers m, and all A, then
L) < logd + dug + T {loglims + /il + 4)

+log(lny(1=5) + fil + 9}


file:///.If/z
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Proor. Logarithmically differentiating the functional equation, we
obtain

LI

L

For ¢ £ —1/4, Re(l — s) = 5/4 and so (L'/L)1 — s) < dng. Also,

(I'’/I") (1 —=s) can be estimated by Lemma 1. Our hypotheses on s insure

that Lemma 1 can be applied to (I"’/I") (s) also. Since each n; =1 or 2,
we have

@ =-{Ea-9+21004 + L+ L - o)

Be© = Dhm A (Fons + 1) < Dlog(ms + /il + 9),

and the lemma follows.

LEMMA 3. For any s # 0, 1 or a zero of A(s), we have

Re ?11,(5)= ZjRe( 1 )—rRe<%+—s—l——1—>,

§—p

where r is the order of pole of A(s) at s = 0, and the sum runs over zeroes
p of A(s).

ProOF. By the functional equation, the order of pole of A(s) at s =0
and 1 is the same. Thus [s(s — 1)]” A(s) is an entire function of order 1,
and so we have

0) As) = ls(s = DI ae]] (1 - %)«:s/p,

where the product is over all zeroes p of /A(s). (Note that, for any such p,
we have 0 < Re p < 1). We take here the convention that if s=0is a
zero of A(s), then the corresponding factor should be s. In particular,
for any sy, s, which are not 0, 1 or a zero of /(s), we have

260 = L) = D515 - 55)

§1—p S — p

@ 1 1 1 1

_r[El—+SI—l _E;— Sz—‘l].

But, from the functional equation, we see that

A _ A
LU -9 ==L,
and so, in particular,
3 La-9=-2).
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Therefore, we find that, from (2) and (3),

—2Re%(s)=2<l_§_p _s—1p>

11 1 1
_rlil—f K s s—li('

Now, if p is a zero of A(s), then so is 1 — p (using (2)). Hence, a typical
term of the first sum is

_1___ 1 =—2Re< 1 >’
p—5 S=0 S—p

Putting all this together, we deduce that

Re ill’ (s) = ZPIRe< I >— rRe[—}v—+ﬁ].

s§—p
This proves the lemma.

LeMMA 4. Let N(t) denote the number of zeroes p = 3 + iy, 0 < § < 1,
lr — t| = 1of L(s). Then

N(t) < log A + dng + lelog(n; It] + f1 + 4).

PrOOF. Let s = 2 + it. Then, by Lemma 3,

A 2-5
Re “-(s) > |7§§| PR e (O]

On the other hand, from Lemma 1,

L) < log 4 + dug + X logln 1] + £ + 4),

Since

b

Re<% (s)> < AT (s)

the result follows.

LeMMa 5. If s=0 +it, —1/2 £ 0 £ 3, |nys + k| > 1/4 for all non-
negative integers k and all A, and |s| = 1/4, then

L r 1

—L—(s)+sTl - M_Zt;glm < logA +dng + ; log(n;|t] + f;+5) +r.

ProOF. From the formula (1), we see that
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' L . 1 1
T(s) _T(3 +it) = Zp:(}_—p —3—+l;j§>

@ ' ' 1 1 1 1
- Lo+ ferio—t+ - s o)
As usual, L'/L (3 + it) < dng and the conditions on s imply that Lemma

1 is applicable to I''/I'(s). Hence,
Lo+ Lo+ zz)f<< X log(ny [t] + f3 + 9).

It follows from (4) that

‘L @+ (s—-p)‘l‘ < r+ Xlognylt] + fi + 5)
lr—ti<1 2
1 1 ' . -
- . 3+it—p| L
+ Sils — o 340t—p + lr—ZtI:§1| i ol

Since |3 + it — p| > 1, the last sum is bounded by N(z). Also,

1 1 ’___ 3-0¢
s ls —p  3+4i0t—p i s —pl 13 4+ it — pl
3—-0

<)X ) )
7=zl j=it—rI<j+1 J

« X LVe + ) + Na - ).
=
Now using Lemma 4, all these estimates together yield
Lo+ L5 - % G-y ! <« log A+ dny +r + T log(lt| +£; +3).
3.3. Estimation of the integrals. The lemmas of the previous section
immediately yield estimates for I, . . ., I5. Indeed, since the contour over

which 73 is taken lies in a region where s satisfies the conditions of Lemma
2, we deduce that

-U
I < i‘v_ T(log A + dnyg + ; logn(T + U) + f; + 4)).

As our earlier assumption that 7" > 1 is still in force, Lemma 2 applies
to I, and I, also, so that

12+I4<<>

(log A + dng + Z logm;T + f; + 4)).

To estimate /;, and I5, we use Lemma 5. Indeed,
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xd+t’T

e (L .
11 + 15 = j—1/4 <T(0' + lT) -————0 T iT

= Ji + 0(J>) (say),

x° iT
(a —iT) ——I—T—>da

where

_ 4 1 _ r xo+iT
Ji= j—1/4<lr—;‘1§10' +iT—p o+ il — l> o+ iT)da

¢ 1 r xo—iT
j—1/4<|7+;g10 —iT—p o —IiT— l) g - dea

and
X
JZ < Tgx{log/i + dnK + r + ; log(an +f2 + 5)}.

To estimate J;, we use [3, Lemma 6.3] which states

ja xa-Ht —1— xa 1
1/4(0'+It)(0+ll—p) 7] a— B’

IIA
w

where p =8 +ir, 0<fB8<lLy#t|t|] 22, xz2 and 1 <«
In our case, we use it to deduce that, for T = 2,

7o« EE 4+ (N(T) + N(- T))ﬁ—l°_g_’i

1
<-ﬁ + X c;,g’((logA +dnK+;log(n}T+f;+ 5)).

Summarizing all of these estimates, we have proved the following

PROPOSITION. Suppose that 2 £ T < x and T is not the ordinate of a
zero of L(s). Then

1 cHT ! d
277.'1 jc~—;7‘ L ()xs Ss =5+ RZ(xa T, U, L, K)

where S is the sum of the residues from poles of the integrand lying in the
rectangle Ims| < T, — U < Re s < ¢, and

Ry < X108 X jog [geins [1 (T + /; + 9)

+ 20 Tlogldets [ (T + U) + £ + 9)]

Xr Xr

te Tt Tlog x

3.4. Computation of residues. The poles of (L'/L) (s) x*/s in the rec-
tangle —U < ¢ < ¢, |t| < T are described as follows.
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(a) Poles coming from zeroes of L(s) in 0 < ¢ < 1. These contribute a
sum
xP
fRr o’

(b) Poles coming from the trivial zeroes (possibly excluding 0). These
contribute a sum

x @2m+f2) /m;

BRI e ey

where the inner sum is over integers m = 0, with 0 < 2m + f)/n; < U.
Indeed, the functional equation

A‘];ll"(—nis;'—ﬁ)L(s) = s (=20 0 10 - )

shows that for s to be a trivial zero, we must have ¢ = Re(s) < 0 and, for
some A, ms + f; = —2m, m a non-negative integer. This means that
o= —02m+ f))/n;and t = 0.

(c) Pole of L(s) at s = 1. This contributes a term rx.

(d) A possible (double) pole at s = 0. The contribution may be calc-
ulated as follows. Let a be the number of 2 such that f; = 0. Then

—I[‘J—-(s) sz = <i;—r + ¢; + higher terms> <% + log x + higherterms),
for some constant ¢;. Hence
L' xs\ _
Ei?)(T(S)T) =(ax — r)log x + ¢;.

The constant ¢, can be given in a more useful form. We have

_ _ _ 1,I [z_>_ 1
caa=b+r—log4 Zz"‘p(z 1;202’11’

A:f7#0 fi=

where b is the constant in the product (1). Starting from (4), with 3 + it
replaced by 3, we find that

L L 1 1 ! !
TO=10+I(1,-31)- O+ O

1 13
2 - 2

Hence
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=-o(1+. L 1, I"(3m+ fi

© c Zp<p+3—p>+212n‘]’< 5 >
vl . I
fﬁ&o2n‘1“< f*> f§02n"+0(dnK)+ r.

As in the proof of Lemma 5, we see that

1 1
7 (L ”_>= L 1 O(log(Aetnx+r
D D\gt3=,)= L, + Olosde [T (44 m + f).
Indeed, by Lemma 4,

L]
3 - p1

< N(0) < log(Aedx ];[ 4 + /).

101<1/2

Also,

Lo tims o

N(j)+N(-j "
lol?

3 - )
P <3 < - > 3
22: 2 ;1 _]4 1/2=Ipi=1

II/\
IIA

Using Lemma 4 again,

N;(/) < Z log[Aed”K H(4 + nyj + f)l
) .

5

<~
i

<<logA+dnK+4::log(4+nl + 1,

and the other sums are handled similarly. Putting (6) and (7) together,
we deduce that

b= - - B m L (Lh) + oo + (Y1)

1
1pi<l2 0 fx#0

+ O(log[Aerstr ];[ 4 + ny + ).

ReMark. The method of this section, which is essentially based on [3]
can also be used in the following more general setting. We drop the condi-
tion that the P,(T) have real coefficients and we define

L(s) = ITIT (1 = w; (W) )1,

For each 2, let p; be some real number, and set s; = 5 + ip;, 57 =
s — ip;. Define

I'(s) = ];[ P( n1312+ S >
and

Fe = [ (et h),
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Set A(s) = As I'(s) L(s), A(s) = As f'(s)L(s) and suppose that 4and A have
an analytic continuation and satisfy the functional equation
As) = 0A(1 = 5)

with w € C, |w| = 1. In this case the Proposition of 3.3 in valid for
max(2, 1/4 + max; ¢;) < T < x, provided we replacd the term
log(m;T + f; + 5)in R, by

log (M| T + il + f2 + 5) + log (m|T — ;| + f2 +5)

In the calculation of S, the contribution of (b) in 3.4 has to be replaced by

exp( <2m—n-:f—* + ip; >log x)

_;n}‘Z 2m+f;+l<p,1n1 ’

and in the contribution of (d), « is the number of A such that

p2=0and f; =0,

and
c= — Img/ﬁ + O(log[Aeix+r n(4 + (1 + lga) + /D
_ 1, I (fit g 1
Zamp (A58 v odm) + 0G) + g

4. Application. In this section, we apply the explicit formulae of §3 to the
L-series L,(s) of §2. We shall assume, throughout, that all of the L,

(i) have an analytic continuation to the entire s-plane as functions of
order 1;

(ii) satisfy the conjectured functional equation which was described in

§2.
We shall also assume that E does not have complex multiplication.
Write

CL(se )= 5 00 e

PROPOSITION 4.1. Suppose the Riemann Hypothesis is true for L,. Then

Z Q(p)logp = 9, x + O(kx'2 (log x)log(N(x + k))),
b
where 6, = 1 if k = 0 and J, = 0 otherwise.

PrOOF. The Proposition of §3.3 gives an expression of the form

p;;: Q(p)logp = S(U, T) + R(U, T),
N

where S, (U, T) is a sum of residues of —(L,/L,)(s + (k/2))(x/s) and
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R,(U, T) is an error term. The conditions on Uand Tarethat2 < T < x
and T is not the ordinate of a zero of L,(s), and U = 1/4 + j, j a large
integer. In this expression, we let U — oo. It is clear from §3.4 that
S,(U, T) converges. Furthermore, by the usual argument [1, p. 114] we
may choose any 7 such that 2 £ T < x. Taking T = x — 1, we find that

R, < k(log x) log<<x + % + 5>A1 e>.

The assumption (i) implies [5] that L,(s + k/2) # 0, for Re (s) = 1 and
k > 0. Hence, the order r, of L,(s + (k/2)) at s = 1 is given by r, = 0,.
Furthermore, the sum over trivial zeroes is easily seen to be

[k/21 o

— 3723 (2a + 2j + 1) Lx- it for k odd,

7=0 a=0

oS @4 )t — 3 Qa)tx2,  for k = 0(4),
=1 a=0 a=1

2 00 o
— $ ST (@)t x @t — 37 Qa+ 1)L x- @D for k = 2(4).
=1 a=0 a=0

A straightforward calculation shows that these sums are O(l/x) uni-
formly in k.
Putting all this together, we find that for 2 < 7 < x,

péx Qp)logp =0, x + By — 2 pptxm

= =T
o Tk

+ 0<k(log X) log<<x + k4 S)A1 e))
where we have used Lemma 2.1 and

1 I <k )
B, = — - — = (== O(k log((k + 10)4
k m,.é:uz Mk 0§jz<:k/2 r\z-/)* (k log((k + 10)4, €))
and 7, denotes a zero of L,(s + k/2),and y, = Im 7,.
First, we observe that

2 Qu(pr)log p < kxV2.
»2::
IN

=
i

Next, by Lemma 3.1,

L(—k— —j><<klog k.

0=2he ' \ 2

Finally, using the Riemann Hypothesis,
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=1 x7k -1 1/2 -1
X7k 4 < X
IT§ST T I77;,§1/2 T Ir:IL‘;’T |77kl

<02 5 L (NG) + M=)

«xlfzzrj%log[(Ale"H I1 <j+%—l+2>]

= 0=isk/2

< k x2(log T) log(A1 e<T + 2))

< k xV2(log x) log(Al e<x + % + 2>>

by our choice of T. Putting all of this together, we find that

%Qk(l’) logp = d,x + 0<k x12(log x) log<A1e<x + % + 2)))

= 8, x + O(k xV*(log x) log(N(x + k).
This proves the result.

Choose a real number § such that 0 < § < 1/4. By a result of Vino-
gradov [8, Ch. 1, Lemma 12], there is a periodic function D(x) on R of
period 1 satisfying

() D(x) = 1 on [(1/4) — (1/2)9, (1/4) + (1/2)d];

(it) D(x) = 0 on [(1/4) + (3/2)d, (5/4) — (3/2)d];

(1) 0 < D(x) £ 1 in the rest of the interval [(1/4) — (3/2)d, (5/4) —
(3/2)o1;

(iv) if we write D(x) = ¢y + X (c,, cos 2nmx + d,, sin 27 mx) then
¢y =20, and |c,)|, |d,,| <« m2g-1forallm = 1.

We set F(0) = D(0/2z) + D(—0/2z). Then Fis an even function of
period 2z which takes the value 1 on [(z/2 — 74, (z/2) + 7d] U [—(x/2) —
w0, —(7/2) + =0d], and if we write

FO) = ¥ ane™,

then |ay — a5 < 4.
We have, forany M > 1,

©) F) = | ,Zg:M ae’™ + O(6-M1).

Furthermore, setting

14(0) = i 010 k=2))

7=0

we have
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(10)  F(0)=(ao— ;) +2(a;—az) cos 0+ 57 (ay—as),(6) + OG- M-1).
n=2

For p | N, the p-th Euler factor of Ly(s + 1/2) = L(s + 1/2, p) is
(I = app) W1 = ayp=) oyl = 1.

Write a, = ¢'’» so that 0, is determined up to sign. We have
N T .
Qp) = Dl ajah = Y e®2) = y,(0,).
7=0 7=0

Substituting into (10), summing over p, and observing that

éx log p = ¢(x) + O((log N) (log x)),
DIN

we have
M-2
2 F(0log p = (ag — ax)(x) + Z (ap — ap0) 23 Qu(p)log p
i & =
+ O((ag — ay) (log N) (log x)) + O(0"IM~1¢(x)).

Using the estimate |a,| < 6142 and Proposition 4.1, we see that the
Riemann Hypothesis for all the L, implies that

M2
23 (ap = apz) 23 Q(p)log p < 671 xV2(log x)log(N(x + M))log M.
i

If we choose M = ¢72, we deduce that

P; F(0,)log p = O(dg(x)) + O(6-1x2(log x)(log (N(x + 072)))log(672))
pTA’IC
and also that

we(x) < dn(x) + 6 1x2(log N(x + 6-2))(log 672).

As the implied constant does not depend on ¢, we may choose ¢ =
x~V4(log Nx)1/2 log x. This yields the following result.

PROPOSITION 4.2. Suppose the Riemann Hypothesis is true for all the L,.
Then

me(x) < x34(log Nx)’z.
The more general result stated in the Introduction is proved similarly.
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