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1. Introduction Let E be an elliptic curve defined over Q, of conductor 
N. For a prime p X N, the reduction Ep of E (mod p) is an elliptic curve 
defined over the field F ,̂ of/? elements. Denote by Np the number of points 
of Ep which are rational over F^, and write ap = p 4- 1 — Np. Then it 
is known that \ap\ <i 2pV2. We say that E has super-singular reduction 
at p if ap = 0. Define 

7tE{x) = # {p < x: p X N and ap = 0}. 

From results of Deuring [2], it is known that if E has complex multiplica­
tion, then, as x -> oo, 7tE(x) ~ (l/2)7r(x), where %{x) denotes the number 
of primes p < x. If E does not have complex multiplication, Lang and 
Trotter [4] conjecture that, as x -> oo, 

Serre [6] has shown that, for any e > 0, 

7CE(x) < £ x / ( l o g x ) 5 / 4 " £ 

and on the assumption of the Riemann Hypothesis for all Artin L-func-
tions, 7tE(x) < *3/4-

For each p, write ap = 2p1/2 cos dp with dp e [0, %]. Then it is conjectured 
by Sato and Tate that for any interval / in (0,7r), 

*{p£x:0pel} ~ fiE{I)7t(x) 

for a certain (specified) measure juE (cf. [5]). Attached to E, there is a 
family of /-adic representations 

p/. Gal(Q/Q) - Gl^Z,) 

such that if p X fN, and op is a Frobenius element at p, then pX0^) has 
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characteristic polynomial x2 - apx + p. We consider the symmetric 
powers Sym* p/ of p/ and the L-series Lk(s) = Lk(s, E) attached to them. 
Each of these series is known to be analytic in a certain half-plane. Sup­
pose we assume the analytic continuation, functional equation, and Rie-
mann Hypotheses for all the Lk. Let f(x) be any function tending mono-
tonically to co with x. The main purpose of this paper is to observe that, 
for any interval / in (0, %), 

${p<x:0pel} = iJLE(I)7t(x) + 0(*i'2(iog Nx) (log x) /(*)), 

provided x > f'KV ME(DX In particular, this implies that if E does not 
have complex multiplication, 

7CE{X) « X3 /4(log Nx)1/2. 

Moreover, the same method shows that, for any integer a, and any E 
defined over Q, 

*{p < x: ap = a} < x3/4(log Nx)1/2. 

In the case that E has complex multiplication and a i=- 0, this can be im­
proved to 0(x1/2+£). Under our hypotheses, it should be possible to prove 
the estimate 0(x1/2+£) in the non complex multiplication case also, but 
I have not yet been able to do this. 

In §2, we describe the Lk(s) and their conjectured functional equations. 
In § 3, we apply this to derive an explicit formula for Lk(s). This is done 
by the classical method, but the details are included, as it is necessary to 
keep track of the dependence of various constants on k and other para­
meters. In §4, we use the explicit formula to derive an estimate for the 
sum Ttp<x f(0p)log p, where dp e [0, %\ and ap = 2pV2 cos 0P, and F is a 
function on the unit circle satisfying some conditions. Finally, we choose 
F to approximate the delta function supported at 6 = TT/2. Using the Rie-
mann Hypothesis, for all k, we then deduce the estimate quoted above. 

Most of this work was completed in the fall of 1979 while the author 
was at Harvard University. 

2. Symmetric powers and their L-series. There is a strictly compatible 
rational system p = {p,} of /-adic representations 

P/: Gal(Q/Q) -> G L ^ ) , V, = H\E xQ Q, Q,). 

The associated L-series is of the form 

Us, P) = IK! - app-'rHl - äpp-°Y\ 

where, for p \ N, \ap\ = p1/2 and ap = ap 4- äp. The L-series naturally 
attached to the system Sym* p = {Sym* p,} is 
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p n=0 

This product converges absolutely for Re(.y) > 1 4- (k/2). It is conjectured 
that Lk(s) has an analytic continuation for all s and that it satisfies a func­
tional equation of the following form. Set 

rR(s) = a-"* r(s/2) 
rc(s) = (ix)-* r(s) 

and, for each positive integer k, 

n(s) = 

(rJs -±-k)ifk = 0(4) 

rR(s-^k + l)iffc = 2(4) 

rk(s) = rc(s)rc(s - i ) . . . rc(s 

if k is odd 

k - 1 |)r^). 

Thus, for example, A M = A**), A M = ^ ^ » W , A W = ^cW 
Afa — 1)» and so on. Now, set 

Afa) = Ay*rk(s)Lk(s), 

with a constant y4* specified in Serre [7, pp 19-04 to 19-06]. For our pur­
pose, it suffices to note that Ax = N and that the following estimate 
(which follows easily from the definition) holds. 

LEMMA 2.1. Ak ^ N^1, for all k > 1. 

Then it is conjectured (cf. Serre [7]) that 

Afa) = ± Ak(k + 1 - s). 

The precise determination of the sign has also been conjectured (by 
Deligne). 

3. Explicit formula. We derive an explicit formula in slightly greater 
generality than we shall actually need here. Let AT be a number field, 
and set nK = [K: Q], We consider a Dirichlet series 

Us) = L c(a) (Na)-' = U Pj((Nv)->)-\ 
a v 

where the sum runs over the integral ideals a of K, N denotes the norm 
from AT to Q, the product runs over the finite places v of AT, and 
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PAT) = n o - "i.vT<) 

is a polynomial in T with real coefficients, witV e C and \witV\ = 1. We 
assume that for almost all (i.e., for all but finitely many) v, deg Pv is con­
stant. Let us call it d. 
Set 

m = ^r(^±J^y 
where X runs over some finite indexing set, fx are non-negative integers, 
rix = 1 or 2. Let yL denote the number of T7 factors. Let A be a real num­
ber and set A(s) = Asr(s)L(s). 

We assume that A has an analytic continuation to the whole complex 
plane, except possibly for poles of order r (say) at s = 0 and 1, that the 
continued function is of order 1, and that there is a functional equation 
A(s) = wA(l — s), with w = ± 1 . Under these assumptions, we shall 
derive an explicit formula for L(s). We shall make use of the approach 
of Lagarias and Odlyzko [3]. 

In the calculations below, all implied constants are absolute. 

3.1. The first reduction. Let c > 1, x > 0 and 1 < T < x, and consider 
the integral 

c+tT 

1 = «*> - - 2ST J 4 > 
ds 

c-iT 

and let 

Using the discontinuous integral (cf. Davenport [1, p.109]) 

ifO ^ >> < 1 

if y = l, 

2TTI J y s 
c-iT 

we find that 

o ( ( ^ m i n ( l 

li+°(f> 

1 
V ' riiogji 

l 
riiogji 

7 = 2 ] 0(v») log(JVv) + of 2 £(v»)log(iVv) ( i - + £ 

+ ^Ä/^'MwJ-t1' 1 

[log 
(Nvy 
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As there are at most nK primes above a given rational prime, the first 
O-term is bounded by 0(dnK(\og x)((\/2) + (c/T))). The sum £ in the 
second O-term is estimated by splitting it into 3 sums. 

2 = 2 + 2 + 2 = S i+ £2+ 23 
\(Nv)n-x\^l \(Nv)n-x\^x/4 K\(Nv)»-x\<x/4 

Now, 

Si « r 
d nK log x 

log(Nv)\fx S2<<(rf£ w 

and 

2 3 « r , 2 ( - 7 Ì 
log(JVv) 

.(ATv)»/ r|logx/(iVv)"| 

</(iog *) v L 
Kl (M0»-*Kl/4* \og(x/(Nv)n) \ 

Since we have the inequalities 

( > y - 1 for 0 < y < 1 
llog^l ! 

> 1 - -y- for y > 1 

the above sum is 

^ rfflog x) vn (MQ* y -y 
r 1 ^ KUNvfi-xKx/i \X - (Nv)»\ i<|WÄ<*/4 |x-(AV)1 

dxlogx T 1 ̂  ^ x ( l o g x ) 2 

Putting all this together, we see that if we choose c = 1 + (1/log x), then 

c+t'T 

E 0(v)ioë(Nv) = - -±j \ ±j-{s)^ds + Rfc, T, K, L), 
(Nv)»<x 

c-iT 

with 

Rfa T, K, L) « nK dx(^-\ 

3.2. The behaviour of L'/L. Now we begin the estimation of the con­
tour integral. Lety be a large positive integer and let U = (1/4) + j . Write 
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i 

-u 

V T I 
1 

i 

-1 ! o 
H ! 

| 

1 _ i 
-*T 

\] c 

1 ""* 

i r J 4r(j)~r * = "( / l + h + h + h + h) + 5, 
c-iT 

where 71?. . . , 75 are integrals along the indicated segments: 
Ais on-(1/4) < (7 g c, t = -T; 
72 is on - U è o ^ -1/4, t = -T; 
73is on a = -U. \t\ ^ T\ 
74 ison -U £ a ^ -1 /4 , f = T; 
75 is on -(1/4) < (7 ^ c, f = T, with T chosen so that L(a ± iT) # 0 

for any a, and S denotes the sum of the residues at poles of the integrand 
inside this contour. To estimate each of these integrals, we need to know 
something about the size of L'/L. This information will be obtained 
through five lemmas. 

LEMMA \.If\z + m\ ^ 1/8, for all non-negative integers m, then 

r 
r 

(z) « log(|z| + 2). 

This is Lemma 6.1 of [3]. 

LEMMA 2. If s = G + it, G ^ - 1/4 and 

\nxs + m| ^ - i -

for all non-negative integers ra, and all X, then 

^-(s) « log A +dnK + Z {log(\nxs + fx\ + 4) 

+ log( | / i , ( l - J )+ / , |+4)} . 

file:///.If/z
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PROOF. Logarithmically differentiating the functional equation, we 
obtain 

T"(j) = - {T"(1 " s) + 2 log A + T^('} + T^(1 " 4 
For G ^ -1 /4 , Re(l - s) ^ 5/4 and so (L'/L)(l - s) < dnK. Also, 
(r'/T) (l—s) can be estimated by Lemma 1. Our hypotheses on s insure 
that Lemma 1 can be applied to ( J T ' / < 0 (s) also. Since each nx — 1 or 2, 
we have 

Ç w = Çy "' T" (T(W;1 * + ^ <<: Çlog(l"^ + /;i1 + 4)' 
and the lemma follows. 

LEMMA 3. For any s ^ 0, 1 or a zero ofA(s), we have 

where r is the order of pole of A(s) at s = 0, and the sum runs over zeroes 
p of A(s). 

PROOF. By the functional equation, the order of pole of A{s) at s = 0 
and 1 is the same. Thus [s(s — l)]r A(s) is an entire function of order 1, 
and so we have 

(1) A(s) = [s(s - l)]-rae*'U(l ~ — V ' ' , 
P \ P / 

where the product is over all zeroes p of A(s). (Note that, for any such p, 
we have 0 ^ Re p ^ 1). We take here the convention that if s = 0 is a 
zero of A(s), then the corresponding factor should be s. In particular, 
for any sl9 s2 which are not 0, 1 or a zero of A(s)9 we have 

+ Jl Si - 1 ^2 ^ 2 - 1 

But, from the functional equation, we see that 

£ ( ! - , ) - -^M, 
and so, in particular, 

(3) -£(1 - J) = - -£(*). 
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Therefore, we find that, from (2) and (3), 

- * H T M - 2 ( T = W 
— r 

1 
1 - s 

1 
s 

s — 

1 
s 

p 

s 
1 
-

~ 

1 J 
Now, if p is a zero of A(s), then so is 1 - p (using (2)). Hence, a typical 
term of the first sum is 

1 1 

p — s s — p 

Putting all this together, we deduce that 

Ä 

- 2 Re 1 

A p \s - p 
- rRe -W-J— 

J j - 1 

This proves the lemma. 

LEMMA 4. Let N(t) denote the number of zeroes p = ß + ij-, Q<ß<\, 
\r - t\ ^ 1 of L(s). Then 

N(t) « log A+dnK + ]£ \og(nx \t\ + fx + 4). 

PROOF. Let s = 2 + it. Then, by Lemma 3, 

R e 7T W > l r? l s l ( 2 - ^ + ( / - r )2 

On the other hand, from Lemma 1, 

Ä 

> N(t). 

A 
•is) « log A + dnK + Ç logfa |*| + / j + 4), 

Since 

Re(^W)« /T (s) 

the result follows. 

LEMMA 5. If s = a + it, —1/2 ^ a ^ 3, | «^ + £| > 1/4 /or a// «o«-

negative integers k and all À, and \s\ ^ 1/4, then 

L^ 
L 

W + - ^ r - 2 T ^ - I < l o g ^ + A i Ä + 2] 108(^1/1+^+5) + ^ 

PROOF. From the formula (1), we see that 
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(4) 
L v L v p\s-p 3 + it-pJ 

f<J> + f<3+Mi + ï=r-rb-2Tïï 
As usual, L'/£ (3 4- it) < dw# and the conditions on s imply that Lemma 
1 is applicable to r'/Tis). Hence, 

p, p, <Z\og(nx\t\+fx + 5). 

It follows from (4) that 

i > •,-:•,-

+ 2 
ir-*i>i 

2 (s-Pyi\ « r + 2 logfa |/| + / , + 5) 

1 1 
15 — |0 3 4- it— p 

Since |3 + it - p\ > 1, the last sum is bounded by N(t). Also, 

L 
\r-t\>\ 

1 1 
3 4- it - p 

«z 
y 3 — G 

ir-*i>i k - p i 13 + it- p\ 

v^ 3 - a 
j^i j<\t-r\<i+i 

*X\W + J) + N{t - j)). 

Now using Lemma 4, all these estimates together yield 

L 
r •T"(J) + ^ - r - 2 (s-py1 \<logA+dnK + r+ %log(nx\t\+fÀ + 5). 

3.3. Estimation of the integrals. The lemmas of the previous section 
immediately yield estimates for Il9 . . ., 75. Indeed, since the contour over 
which I3 is taken lies in a region where s satisfies the conditions of Lemma 
2, we deduce that 

h « ~~ T(log A+ dnK + Ç \og(nx(T 4- U) + fx + 4)). 

As our earlier assumption that T > 1 is still in force, Lemma 2 applies 
to I2 and 74 also, so that 

h 4- h « y - (log A+dnK + Z \og{nxT 4- / , 4- 4)). 

To estimate / l9 and 75, we use Lemma 5. Indeed, 
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h + h = L4(4> + iT) T^r - T<* - iT> T^r)d° 
= / i + 0(J2) (say), 

where 

Jl = J -1/4 V ? L o + iT - p " a + iT- l) o + I T )
 rf * 

J-i/4\ir-m^iö' - iT - p a - iT — \) a — iT 

and 

^2 « Y j ^ y 0og^4 + ^ + r 4- Ç logfoT* + / , + 5)}. 

To estimate Jl9 we use [3, Lemma 6.3] which states 

1 "7 T-T7 : x- d o <. -i—r Xa pT , 

J-1/4 (o + /0(ö" + it - p) \t\ a - j8 ' 

where p = /3 + />% 0 < /3 < 1, y # r, | / | ^ 2, JC ^ 2, and 1 < a <; 3. 
In our case, we use it to deduce that, for T ^ 2, 

j , « ^ f + (JV(D + JV(-r)) * g l ° g * 

« *£ + ^ - ^ (log A+dnK + % log(nxT + /A + 5)). 

Summarizing all of these estimates, we have proved the following 

PROPOSITION. Suppose that 2 ^ T < x and T is not the ordinate of a 
zero of L(s). Then 

1 fc+iT J' rf* 

where S is the sum of the residues from poles of the integrand lying in the 
rectangle |Im s\ < T, — U < Re s < c, and 

R2 « - ^ P - l o g [A*"* r i (nxT +fx + 5)] 

+ Ç- T loglAe*»« IJ (nx(T + U) + fx + 5)] 

, xr x r 
T2 T log x 

3.4. Computation of residues. The poles of (L'/L) (s) xsjs in the rec­
tangle — U < o < c, | /1 < T are described as follows. 
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(a) Poles coming from zeroes of L(s) in 0 < o < 1. These contribute a 
sum 

\y\<T 9 

(b) Poles coming from the trivial zeroes (possibly excluding 0). These 
contribute a sum 

- \ n ^ 2 1 * + / , ' 

where the inner sum is over integers m ^ 0, with 0 < (2m + fx)lnx < U. 
Indeed, the functional equation 

Asjjrl^p^jLis) = ±Ai-Tjr(niil-2
s)+f*)m - s) 

shows that for s to be a trivial zero, we must have a = Rc(s) < 0 and, for 
some A, nxs + / = — 2m, m a non-negative integer. This means that 
a = — (2m + / ) / « , and / = 0. 

(c) Pole of L(s) at s = 1. This contributes a term rx. 
(d) A possible (double) pole at s — 0. The contribution may be calc­

ulated as follows. Let a be the number of X such t h a t / = 0. Then 

L 
(s)— = ( — -f cx + higher terms H— 4- log x + higherterms j , 

for some constant cx. Hence 

^yt^s)= (a " r) log * + ^ 
The constant cx can be given in a more useful form. We have 

d-b + r-logA- E T " ^ ( 4 ) - S 4-»;., 

where ft is the constant in the product (1). Starting from (4), with 3 + it 
replaced by 3, we find that 

4 > = £<3) + E(^r-p - 34-p) - £ « + -f O) 

- r l ± + ! 5 
s s - 1 6 

Hence 
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As in the proof of Lemma 5, we see that 

(7) S ( - l +=-!-)= S | + 0 ( l o g ( ^ ^ n (4 + »A+ /;)))• 
/5 \ p o — p/ lpl<l/2 ^ A 

Indeed, by Lemma 4, 

2 I *-1 S N(0) « \og(Ae*«K [I (4 + h)Y 
\p\<\/2\J — p\ A 

Also, 

iplèl/2 
L - K 1 s 2 r4s3g(W)+.f-'V3 S T^ 

Using Lemma 4 again, 

2 ^¥- « f; 72 logMc-"* n (4 + /i,,; + m 
« log ^ 4 - ^ + 2 log(4 + nx + /A) , 

and the other sums are handled similarly. Putting (6) and (7) together, 
we deduce that 

cx= - 2 \ - I > \ n x Ç ( \ f \ + 0(dnK) + ("A 

+ 0(log[^*+'IJ (4 + „,+/,)]). 

REMARK. The method of this section, which is essentially based on [3] 
can also be used in the following more general setting. We drop the condi­
tion that the P£T) have real coefficients and we define 

m = nn (i - wum-r1-
For each A, let cpk be some real number, and set sx = s + i<px, s^ = 
s — i(px. Define 

and 

rw = n / i ( Ä ± A ) . 
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Set A(s) = As r(s) L(s), A(s) = As r(s)L(s) and suppose that A and A have 
an analytic continuation and satisfy the functional equation 

A(s) = ù)Â(l - s) 

with û>eC, |Û>| = 1. In this case the Proposition of 3.3 in valid for 
max(2, 1/4 -f max ; <px) û T < x9 provided we replacd the term 
log fa r + h + 5) in R2 by 

log {nx\T + n\ + / i + 5) + log fair - ^ | + /A + 5) 

In the calculation of S, the contribution of (b) in 3.4 has to be replaced by 

exp( - ( m „ + ^ + i<px)logx 

4 ^ ^ 2™+/, + / ^ 
and in the contribution of (d), a is the number of X such that 

<px = Oand/ ; = 0, 

and 

c = - 2 -J- + tf(log[^«+' r i (4 + nx{\ + 1^1) + A)]) 

- L -U-f(A±»m.)+(KdnK) + o(rù + "r. 
morfeo I l \ 2. ) o 

4. Application. In this section, we apply the explicit formulae of §3 to the 
L-series Lk(s) of §2. We shall assume, throughout, that all of the Lk 

(i) have an analytic continuation to the entire s-plane as functions of 
order 1 ; 

(ii) satisfy the conjectured functional equation which was described in 
§2. 

We shall also assume that E does not have complex multiplication. 
Write 

-~^(s + ^) = ZOk(p
n)p-»s. 

PROPOSITION 4.1. Suppose the Riemann Hypothesis is true for Lk. Then 

E Ok(p)logp = Skx + 0(kx™ (log x)log(N(x + *))), 

where dk = 1 if k = 0 and 5k — 0 otherwise. 

PROOF. The Proposition of §3.3 gives an expression of the form 

Z Ok{p-)\ogp = Sk(U, T) + Rk(U, T), 
p<x 
pXN 

where Sk(U, T) is a sum of residues of -(L'kjLk){s + (k/2))(xs/s) and 
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Rk(U, T) is an error term. The conditions on Uand Tare that 2 ^ T < x 
and T is not the ordinate of a zero of Lk(s), and U = 1/4 + j , j a large 
integer. In this expression, we let U -> oo. It is clear from §3.4 that 
£*(£/, r ) converges. Furthermore, by the usual argument [1, p. 114] we 
may choose any Tsuch that 2 ^ T < x. Taking T = x — 1, we find that 

** « fcflog x) log((x + -|- + 5 ) ^ e . 

The assumption (i) implies [5] that Lk(s + lc/2) # 0, for Re (s) = 1 and 
k > 0. Hence, the order rk of Z^(s 4- (k/2)) at J = 1 is given by rk — 5k. 
Furthermore, the sum over trivial zeroes is easily seen to be 

[k/2] °o 

- 2 2 2 (2a + 2j + I)"1 x-(c+/+1/2), for jk odd, 

fc/2 oo oo 

- 2 2 2] (a + y)"1 *_(fl+y) - L (2«)-1 xr**9 for fc = 0(4), 
>=1 ß=0 a = l 

- 2 2 £ (ö+y)"1 *-(«+» - f; (2fl+ l)-i x- (2a+1), for k = 2(4). 

A straightforward calculation shows that these sums are 0(1 jx) uni­
formly in k. 

Putting all this together, we find that for 2 ^ T < x9 

2 Qk(p
n) logp = dkx + Bk - 2 VkXxVk 

+ o(*(iog*) iog((x+A + 5yx e^y 
where we have used Lemma 2.1 and 

I^Kl/2 Vk 0^j<k/2 1 \± J 

and 7]k denotes a zero of Lk(s + fc/2), and ^ = Im 7jk. 
First, we observe that 

2 öÄ(/>w)log/? « £x1/2. 

Next, by Lemma 3.1, 

plN 

2 ^(4-y)«^log/c. 
'J<k/2 1 \ £ J 0^j<k/2 

Finally, using the Riemann Hypothesis, 
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i7-*isr I%KI/Z irtisr 

^x^f:\\oi{Aie)^ n (j + ^ - x + 2) 
« A: ^1/2(log T) log^x e ( r + | + 2 

< * jc1/2(log x) XogLii e(x + ^- + 2 

by our choice of T. Putting all of this together, we find that 

Ç 0k(p) log p = ôkx + o(k x172(log x) log(Ate(x + A 4- 2 
few 

= 5, x 4- 0(* Jc1/2(log x) \og(N(x 4 *))). 

This proves the result. 

Choose a real number 5 such that 0 < 5 < 1/4. By a result of Vino­
gradov [8, Ch. 1, Lemma 12], there is a periodic function D(x) on R of 
period 1 satisfying 

(i) D(x) = 1 on [(1/4) - (1/2)5, (1/4) 4 (1/2)5]; 
(ii) D(x) = 0 on [(1/4) 4- (3/2)5, (5/4) - (3/2)5]; 

(iii) 0 ^ D(x) ^ 1 in the rest of the interval [(1/4) - (3/2)5, (5/4) -
(3/2)5]; 

(iv) if we write D(x) = c0 4 Tim=\(cm c o s 2Kmx 4 dm sin 2%mx) then 
c0 = 25, and | c j , |rfj < m~2 d~l for all m ^ 1. 

We set F(0) = D(ßß%) 4 D(-Oßic). Then F is an even function of 
period 2n which takes the value 1 on[(7r/2 -7T5, (TT/2) 4 TTÖ] (J [ — Or/2) -
^5, -Or/2) 4 7T5], and if we write 

m G Z 

then |ûr0 — <z2l < 5. 
We have, for any M > 1, 

(9) F(0) = £ Ö,**" 4 Oid-W-1). 

Furthermore, setting 

we have 

Xk(0) = £e"<*-2/>, 
>=o 
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M-2 
(10) F(d) = (a0-a2) + 2ia1-a3)cose+ £ {an-an+2)In(d) + 0(O^M^). 

n=2 

For/?] '#, the p-th Euler factor of Lx(s + 1/2) = L(s + 1/2, p) is 

(1 -app->YK\ -âpP-*)-\\ap\ = 1. 

Write ap = ei6p so that Qp is determined up to sign. We have 

Qk(p) = È ajâJ-> = 2 Ï'P*-™ = z ,(0,). 

Substituting into (10), summing over/7, and observing that 

2 log p = <jj{x) + 0((log N) (log x)\ 
p^x 
pKN 

we have 

M-2 
2 F(dp)\ogp = (a0 - a2)(/j(x) + 2 (** - 0*4-2) 2 Ok(p)^gp 

p^x k=l p^x 
pm pKN 

+ O((a0 - a2) (log N) (log *)) + 0(O^M^ #*)) . 

Using the estimate |aÄ| < d~lk~2 and Proposition 4.1, we see that the 
Riemann Hypothesis for all the Lk implies that 

M-2 
S (a* - ak+2) 2 £*(/>)log/> « 3-1 ^ ( l o g x)\og(N{x + M))log A/. 

If we choose M = <5~2, we deduce that 

2 / X ^ l o g p = 0(öcf*x)) + 0(ö-WHlog or) (log (tf(* + a-2)))log0-2)) 

and also that 

7cE(x) « <?TT(X) + r ^ ^ l o g 7V(x + 5-2))(log 5-2). 

As the implied constant does not depend on d, we may choose 5 = 
x_1/4(log Nx)1/2 log x. This yields the following result. 

PROPOSITION 4.2. Suppose the Riemann Hypothesis is true for all the Lk. 
Then 

nE{x) « x3/4(log Nx)1'*. 

The more general result stated in the Introduction is proved similarly. 
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