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SPECTRUM OF NONPOSITIVE CONTRACTIONS ON C(X).

ROBERT E. ATALLA

ABSTRACT. Known results in the spectral theory of Markov oper-
ators are shown to have analogues which are valid for general con-
tractions. For instance we discuss the group structure of the uni-
modular eigenfunctions, and the representation of an irreducible
operator as a rotation of a compact group, followed by a multi-
plication.

1. Introduction. Throughout, X will be a compact T2 space and C(X) the
continuous scalar valued functions on X, where the scalar field may be
either the real or the complex numbers. 7 will be a contraction on C(X),
i.e., a linear operator will |T|| £ 1. T is called a Markov operator in
case T =0 and T1 = 1. In areas such as ergodic theory and spectral
theory, the theory of Markov operators is much more developed than that
of general contractions. The reason is that positivity is a great convenience
when measures come into play. However there exists a device which en-
ables us to bring positivity into the picture even when 7 is nonpositive.
Let F(T*) = {m in C(X)*: T*m = m}, let m be an extreme point of the
unit ball Fy(T*), and let ¢,, be the Radon-Nikodym derivative dm)/d|m|.
This was introduced in [3] for the special case where 72 = T, and used in
[1] to transfer results from the ergodic theory of Markov operators to
general contractions. In this paper we make use of the functions ¢, to
prove results in spectral theory already well known for Markov operators
[4, 6, 7, 8]. For instance we show that the unimodular eigenfunctions form
a group under an operation a little more complicated than pointwise mul-
tiplication, and that if T is irreducible and the unimodular eigenfunctions
“strongly separate” X, then T is essentially a rotation of a compact group,
followed by a multiplication.

It should be noted that in contrast to the Markov case it is possible
that F(T*) = {0}. On the other hand it is easy to manufacture nontrivial
examples: let R be a Markov operator, ¢ a unimodular continuous func-
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tion, and define Tf = R(f¢)¢ 1. By [1; Proposition 2.9(b)], there is a
bijective correspondence between F(T*) and F(R¥*), so F(T*) # {0}.

2. Notation. If x is in X, let ¢, be the measure representing the linear
functional f - Tf(x)(f in C(X)), so that for f in C(X), Tf(x) = [f dt..
We may extend the domain of 7 to include the Baire functions by defining
Tg(x) = [g dt, for g Baire. An easy transfinite induction over the Baire
classes shows that Tg is again a Baire function. Moreover if m is in F(T¥*),
i.e., T*m = m, then transfinite induction gives {7g dm = [g dm for each
Baire function g.

If m is a positive measure, supp m is the smallest closed set of full
measure, and if m is a signed or complex measure, supp m = supp|m|.
We let M = closure | J{supp m: m in F(T*)} = closure ( J{supp m:
m extreme in Fy(T*)}. (The second equality follows from Krein-Milman
[1].) Our results will be valid only on the set M rather than on all X.
In 3.3 below we show that M is invariant, i.e., x in M implies supp ¢, =
M, ie., fIM =0 implies Tf| M =0 (see [9]). As in [1], this implies that we
may define a contraction T, of C(M) by T,f(x) = Tf(x), where x is in M
and f is any continuous extension of f to all X. In view of this we are
justified in assuming throughout that X = M and T = T,

A Baire function f is called a unimodular eigenfunction if |f(x)| = 1
for all x, and Tf = Af with |A| = 1. For each m extreme in Fy(T*), we let
¢om = dm/d|m| (cf. [1, 2.1.]), so that ¢, can be taken as a Baire function
with |p,,| = 1 on supp m. Note that @, = d|m|/dm, and on supp m, @, =
¢nt. We may further assume that |p,,| < 1 everywhere.

3. Baire eigenfunctions. Lemma 3.1 was proved in [1, Lemma 2.5], but
with the restrictive assumption that a nonvanishing continuous fixed point
for T exists. Lemma 3.5 generalizes a well known characterization of
unimodular eigenfunctions for Markov operators. (See [8, p. 558], [6,
p. 24], and [4, p. 1044].) The group operation in Theorem 3.6 was defined
for positive operators in [7, p. 188].

Lemma 3.1. If m is extreme in Fi(T*)and x is in supp m, then supp t,
< supp m.

PRrROOF. Suppose there exists x in supp m with supp ¢, \supp m # @. By
complete regularity there exists fin C(X) with0 < f < 1, f = 1 on supp
m, and f(w) < 1 for some winsupp ?,. Ldt Z = f~1(1) o supp m. We show
first that the set F = {y in supp m: supp 7, = Z} is closed. Let y(a) be a
net in F with y(a@) - y. If yis not in F, then supp ¢, ¢ Z. Choose 4 in C(X)
with 4 = 0 on Z and A(v) # O for some v in supp ¢,. Now, supp ¢, has the
characterization (see, e.g., [2, p. 121]). supp t, = (|{k71(0): k in C(X)
and 0 = [kg dt, for all gin C(X)}. Hence there exists g in C(X) with Tgh()
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= [gh dt, # 0, while since supp t,,, = Z, we have Tgh(y(a)) = 0 for all
a. Thus Tgh(y(a)) » Tgh(y), contrary to y(a) — y.

Now the set ¥ = {y in supp m: supp ¢, ¢ Z} is open and non-void in
supp m. Further, if y is in ¥, then supp #,\Z is a non-void open subset of
supp 1, and since |3, < 1 on this set, we have |Tf ¢,,(»)| = || f§,, dt,|
< 1. Since ¥V is open in supp m, we then get |[7f®,, dm| < 1. On the
other hand, [/, dm = [p, dm = [d|m| = 1, and hence [Tf,, dm +
{f ®m dm, contrary to T*m = m (since f,, is a Baire function).

ExaMPLE 3.2. The result can fail if |7] > 1. For instance let X =
{1, 2, 3}, so that C(X) is essentially R® or C3, and define T by the matrix

12 12 12
12 12 —1/2
0 o0 o0 |

e, t1=T%) = (1/2)d1 + (1/2)d2 + (1/2)d3, 12 = (1/2)d1 + (1/2)52 —
(1/2)d3, and t3 = 0. If m is the measure given by the row vector (1/2,
1/2, 0), then m is extreme in Fy(T*), but 1 is in supp m = {1, 2}, while
supp t; = {1,2,3} ¢ {1,2}.

COROLLARY 3.3. If fIM =0, then Tf|M =0 (f in C(X)), so that the T,

of the Introduction is well defined. Hence we may assume throughout that
M =X

Proor. This follows from 3.1, just as in [1, Corollary 2.6].

LeMMA 3.4. If m is extreme in F(T*), and a = ,, = d|m|/dm, then
Ta = a m-ae.

Proor. We have |a| = 1 on supp m, and 3.1 implies |Ta| £ 1 on
suppm, so (a7l Tadim| = [Ta dm = [a dm = [d)m| = 1. Since |m]| is a
probability, a1 Ta = 1 m-ae.

LEMMA 3.5. Let m and « be as in 3.4. and let W = W,, = {x: Ta(x) =
a(x)}. Let g be a unimodular Baire function which is an eigenfunction on the
set W, say Tg(x) = Ag(x) for x in W, where |A| = 1. For x in W we have
g(s) = Ag(x)a(x)a(s) t,-a.c.

ProorF. First we show that the measure r(4) = [ja(s)a(x)"1dt(s)
is a probability if x is in W. But r(X) = [a(s)a(x)"1dt(s) = a(x)a(x)1
=1; and if f is in C(X) with ||f|| £ 1, then since by 3.1 |a|=1 on
supp t,, and ||, < 1, we have |[fdr| < 1. Now, if x is in W, we have

I = 21g(x)1Tg(x) = jz—1g<x)—1g(s)dt,(s)
= [ 1r1g@r1gats)ra) drts).


file:///d/m/

210 R. E. ATALLA

Since r is a probability and the integrand has modulus 1 on supp r, we
conclude that the integrand is equal to 1 r-a.e., or ¢,-a.e.

THEOREM 3.6. (a) Let H, be the set of all unimodular Baire functions
which are eigenfunctions on W. Then H, is an Abelian group under the
operation fog = fga.

(b) If x: Hy — C is defined by Th = y(h)h, then y is a group character.

(©) If x is in W and y,: H; — C is defined by y.(h) = h(x)a(x), then
%x is a group character.

ProoOF. (a) To prove closure, Let Tf = Afand Tg = ug on W. For x in
W 3.5 yields

T(fga)(x) = 2 f(X)a(x)pg(x)alx) ja(S)a(S)cm dt,(s)

M = A uf@g@a)? fals) dro)
= A pf(x)g(x)a(x)"2a(x) = A pf(x)g(x)a(x).

Thus T(f-g) = Auf~g on W. The group identity is a. If g is in Hj, its
inverse is g~la?, for clearly g - (g71a?) = a, and g~1la? is in H;, because
if xisin Wand Tg = Ag on W, Lemma 3.5 gives

Tt @) = | 26) ats) de,(s)

@ = A1 (0! () ja(s)—la(s)z dt (s)
= 1 g0 a(o)

(b) If Tf =Afand Tg = ug, then (1) gives T(fo g) = Auf-g.
©) xdg°h) = xgh a™) = gx)h(x)a(x)(x) = x(8)x.(h).

REMARKS ON ERGODIC THEORY. We shall discuss here how our less
restrictive version of [1, Lemma 2.5], namely 3.1 above, leads to less re-
strictive versions of all other results, in [1]. The need for Lemma A4 below
in proving the unrestricted version of [1, Lemma 2.2] was pointed out by
a referee.

LEMMA A. Let m be extreme in F(T*), f in C(X), and suppose Tf = f
on supp m. Then T,f = f on supp m, where T, =(1/n) (I + --- + Tr1),
nzl.

PRrOOF. If x is in supp m, then by Lemma 3.1 above, supp ¢, = supp m,
and so T?(x) = [Tfdt, = [ fdt, = Tf(x) = f(x). By induction T*f(x) =
f(x), and hence T,f(x) = f(x).
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LemMa B. (Cf. [1, Lemma 2.2).) If If = f on supp m (rather than on all
X) then Tf = [ fdm ,, m-a.e.

Proor. Exactly as in [1, Lemma 2.2].

LemMma C. (Cf. [1, Lemma 2.6].) If fIM = 0, then Tf|M = 0. (This is just
3.3 above.)

Using A, B and C in place of their counterparts in [1], we now need only
assume in the statements of Theorems 3.2, 3.3 and 3.4 of [1] that there
exists o in C(X) such that Ta = a on M (rather than on all X), and a # 0
on M.

4. Continuous eigenfunctions. In this section we assume the existence
of a continuous 8 with T8 = 8 and |8(x)| = 1 for all x. This is necessary
if we are to consider H = H; (1 C(X) as a subgroup, since then g will
serve as the identity. If m is an extreme point in F;(7*), then by [1, Lemma
2.2}, B = kp,, m-a.e., where k = | dm. Since k # 0, p,, may be taken as
continuous on supp m [1, Remark 2.3]. Note that we now have W =
W,, = supp m for each extreme m.

Much of the development here is an adaptation to the general case of
results on Markov operators in [6, Paragraph 6].

LemMaA 4.1. If g is in H, say Tg = Ag, if m is extreme in F|(T*), and
if x is in supp m, then g(s) = Ag(x) f(x)"14(s) on supp ¢,.

Proor. If a = @, then since 8 = ka, 3.5 implies that for ,-almost
all s, g(s) = Ag(x)a(x)ta(s) = Ag(x)B(x)15(s). By continuity the equality
holds for all s in supp m.

THEOREM 4.2. (a) H is an Abelian group under the operation f- g = fgp.
(b) If x is defined by Th = y(h)h, then y is a group character.
(©) If x isin X, then y, defined by y(h) = h(x)B(x) is a group character.

PRrOOF. (a) To prove closure, first let m be an extreme point of Fy(T%).
Lemma 4.1 and the same computation as (1) in Theorem 3.6 yield
T(fog)(x) = Au(f~g)(x) for x in supp m. The union of the supports
of such extremes is dense in M = X, so by continuity the result holds
for all x. Clearly the group identity is 3, and the inverse of g is g~182. The
proof that g~182 is in H is the same computation as (2), except that we
use 4.1 and replace a by 8.

(b) and (c) are left as exercises.

DEFINITION 4.3. A subset S = C(X) strongly separates X if for x # y,
there exists no scalar b such that for all fin S, f(x) = bf(y).

LeEMMA 4.4. Suppose H strongly separates X. Then for each x, there exists
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y (which we shall call ©x) such that for all f in C(X), Tf(x) = k(x)f(zx),
where k(x) = B(x)B(mx).

ProoF. First, the set Hj is closed under pointwise multiplication, since
if fand g are in H, then by the proofs of 3.6 and 4.1, fg@ is in H, and so
(fB)(gP) = (fgP)Bisin HB. Also 1 = BBisin Hp. By the strong separating
property of H, Hp separates X, and hence by Stone-Weierstrass the linear
span of Hp is a dense subalgebra of C(X).

For fixed x, consider the measure dr = §(x)~18dt,, which was shown in
the proof of 3.5 to be a probability. By 4.2 if fand g are in H, say Tf =
Afand Tg = ug, then

[ £BeB dr = BEITCBIx) = xRS @e()
Also

j 1B dr j 8B dr = BEIT(fBRYXBX)T(BB)X)
= BRPAuf(0g().

Thus the probability measure r is multiplicative on Hj, and hence on
all C(X), so by [5, 33] we have r = §,, for some zx in X. Thus for all
fin C(X), flzx) = [f dr = B)T(fB)(x), or Tf(x) = T(fBR(x) =
B)B(mx) f(mx).

REMARKS 4.5. (a) We see the curious result that if fis in H with Tf =

Af, then for all x, Af(x)f(zx) = B(x)B(znx).
(b) If H strongly separates, then x # y implies y, # ;.

DEFINITIONS 4.6. Let s be a fixed element of X and Hy = {fin H: 1 =
%s(f) = f(5)3(s)}, a subgroup of H. Let G be the (compact) group of all
characters on H,. Finally, let ¢ = y,;.

THEOREM 4.7. Assume H strongly separates X. Then

(a) the map x — y, from X to G is a continuous injection,
(b) y; is the unit of G,

©) Xxs = Xlu, where y is as in 4.2(b),

(d) For all X, Y. = CYx = Yas Yx-

(e) {c*: k an integer} = {y,: x in X}.

PRrOOF. (a) and (b) are obvious. - L

(c) If fis in Hy, then y.(f) = flws)B(ms) = Tf(s) ps) = x(f)Sf(5)B(s)
= y(f), the second equality by 4.4, the third by 4.2(b), and the last
since f'is in H,,. L o

(@) If fis in Ho, then y(f) = f(zx) f(zx) = TAX)B(x) = x(HI(x)B(x) =
¥=s()x(f), the last equality following from (c).
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() In fact, ¢, = yk = yx,, where t = z*s, for all k 2 1. To show this,
note first that by an easy induction, T%(x) = A(x)B(%*) f(z*x). Then if f
is in Ho, x(f) = f(w*s)B(wts) = T*f(s)/B(s) = T*(s) = y()*f(s) = x/H*

That c* is in {),: x in X} for all integers follows from [6, Lemma 6.4].

THEOREM 4.8. Assume H strongly separates X, and further that T is
irreducible, i.e., there exists in X no proper invariant closed set. (In parti-
cular, supp m = X for every m in F(T*).) Then K = {y,: x in X} is a
subgroup of G homeomorphic to X. Define S: C(K) — C(K) by Sf(y.) =
k(O)f(xsxx) and U: C(K) —» C(X) by Uf(x) = f(y,). Then ToU = Uos.

Proor. That K is a subgroup homeomorphic to X is proved as in [6,
Theorem 6.9]. If f is in C(K), T(Uf)(x) = k(x)Uf(mx) = k(x)f(¥..), and
U(S/)(x) = Sf(x) = k(x)f(3sx2)- But by 4.7(d), Yzx = %X

REMARK ON THE SPECTRUM OF T. It follows from the proof of Theorem
3.6(b) that the set of eigenvalues corresponding to Baire eigenfunctions
on W is a multiplicative subgroup of the unit circle. Likewise Theorem
4.2(b) implies that the eigenvalues corresponding to continous uni-
modular eigenfunctions is also a subgroup. In case T is irreducible, we
have the stronger result that the set of all eigenvalues of 7 which have
modulus one is a subgroup of the unit circle. Just as in [4, p. 1044], one
shows that if Tf = Af where |A| = 1, and |f|| = 1, then the set F =
{x: |f(x)| = 1} is an invariant set, so that by irreducibility we have F =
X. Hence A corresponds to a unimodular eigenfunction.

REFERENCES

1. R. Atalla, Local ergodicity of nonpositive contractions on C(X), Proc. Amer. Math.
Soc. 88 (1983), 419-425.

2. R. Edwards, Fourier series, vol. 11, Holt, Rinehart and Winston Inc., New York,
1967.

3. Y. Friedman and B. Russo, Contractive projections on C(K), Trans. Amer. Math.
Soc. 273 (1982), 57-73.

4. B. Jamison and R. Sine, Irreducible almost periodic Markov operators, J. Math.
and Mech. 18 (1969), 1043-1057.

5. G. Leibowitz, Lectures on complex function algebras, Scott, Foresman and Co.,
Glencoe, IL, 1970.

6. H. Lotz, Uber das Spektrum postiver Operatoren, Math. Z. 108 (1968), 15-32.

7. M. Rosenblatt, Equicontinuous Markov operators, Theory of prob. and its appl.
9 (1964), 180-197.

8. G. Rota, On the eigenvalues of positive operators, Bull. Amer. Math. Soc. 67 (1961),
556-558.

9. R. Sine, Geometric theory of a single Markov operator, Pac. J. Math. 27 (1968),
155-166.

DEPARTMENT OF MATHEMATICS OHIO UNIVERSITY ATHENS, OH 45701.






