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FINITE HARMONIC AND GEOMETRIC INTERPOLATION 

J.L. SCHIFF AND W.J. WALKER 

1. Introduction. In the works [4] and [5], the authors have been develop
ing the theory of finite harmonic interpolation in the unit disk. The basic 
idea is to express the value of a real-valued harmonic function u in the disk 
as a finite weighted mean 

(1) M(z) = ̂ Sf^"(W' 
for \z\ < R < 1, Cb C2» • • -, CAT points equally spaced on \z\ = R, and AT 
a fixed positive integer. 

In the present work, we also consider the notion of finite harmonic 
interpolation on a general domain Û with an exhaustion {Qn} such that 
the boundary of each Qm dQn, is an analytic Jordan curve. The Green's 
function gn(Zy Q of Qn with pole z has an inner normal derivative dg/drj 
and each Qn has length Ln. 

If u is a real-valued harmonic function on Q and z is in Qn then 

(2) ^=iL/ (0^ )KI' 
and dg„(z, Qldrj is continuous on the analytic Jordan curve dQn. Since 
Uon u(zi Î CI ^ L„u(z) we can rewrite equation (2) to obtain 

<3> Lfaè^fc 0 -*» Kl - 0. 

Let F(0 = u(Q (LJ27i;)(dgn(z, Q/drj — u(z)) and parametrize £ in terms of 
arc length ^, say Ç = <f> (s). Also let 30„ = \J^=1 yk, where each segment 
fk has length £„/#, and denote by Fk(s\ 0 ^ s <; LJN, the restriction of 
F(<fi(s)) to T> Then from (3), 

ns ̂W <ft = 0. 

By the continuity of F there exists s0 such that 2*Li ^*0o) = 0. That is, 
there exist W equally spaced points £ b £2, - , CAT on 3ÖW such that 
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(4) * ) - ^ S ^ ^ 
In the papers [4] and [5] these points were called harmonic interpolation 
points. A repetition of the above argument shows that there are at least 
two distinct sets of harmonic interpolation points on each dQn. The reader 
is referred to [4] and [5] for further results in the case that Q is the unit disk. 

If M is a real-valued harmonic function on the complex plane then 
a set of harmonic interpolation points R exp i(Q + InjjN) with respect 
to z = 0 exist on each circle \z\ = R and we have a discrete mean value 
theorem w(0) = (l/N) H^To1 "OR e xP KO + 2nj/N)). It is shown in [4] that 
in this case either all points are harmonic interpolation points or the 
number of distinct sets of harmonic interpolation points is finite. In 
the latter case we shall denote the number of distinct sets of points by 
p(u, R, N). 

If we set F(Re«>) = w(0) - (l/N) Ef^o "OR exp i(6 + 2icj/N)) then Fis 
a real-valued harmonic function and the harmonic interpolation points 
are traced by the level curves of F corresponding to F{Reid) = 0. 

We denote the harmonic conjugate for u (unique up to a constant) 
in the complex plane by v and set g(z) = g(x + iy) = u(x + iy) + 
iv{x 4- iy). Then setting the Mh root of unity co = exp(2ni/N), we define 
h(z) = g(z) + g(o)z) + . . • + g(o)N-lz) - Ng(0). It is clear that F(z) = 0 
if and only if Re h(z) = 0. A considerable simplification follows from 
the Taylor expansion of g in that (see [4] for details) 

h(z) = NÏZ^z» + Z(2N)Wz™+ . . . + g ( w N ) ( Q ) z ^ + . . .1 

Hence a necessary and sufficient condition for all points in the plane to 
be harmonic interpolation points is that g(mN)(0) = 0 for all positive inte
gers m. The objective of §2 is to show that if h has an essential singularity 
at infinity then lim^oo/^w, R, N) =oo. The technique used will depend 
on the theory of autonomous systems of differential equations in the plane. 

In §3 we shall consider a Jordan domain Û and the concept of a normal 
exhaustion. 

DEFINITION. A normal exhaustion {Qn} of a Jordan domain Q with rectifi-
able boundary is an exhaustion such that the boundary of each Qn, dûn, 
is an analytic Jordan curve, and such that the Green's function gn(z, Q 
of Qn with pole z satisfies 0 < m ^ dg„(z, Qldrj ^ M < oo for n = 1, 
2, 3, . . . , where £ e dQn, and z belongs to Q^ The constants m and M may 
depend on z. We also assume that the lengths Ln of dQn are uniformly 
bounded. 

Conditions for Q to have a normal exhaustion are given in §4. 
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In §3 this notion is applied to log \f(z)\ where / i s an analytic function 
which is not zero in Q. Then |/(z)| may be written as a product of geome
tric interpolation points. For fixed z and fixed N, we consider the geome
tric interpolation points of |/(z)| on each dQn. Theorem 4 shows that if the 
exhaustion is normal and / i s a bounded analytic function, then /cannot 
tend to zero along a sequence of geometric interpolation points which 
approach dû. 

2. Level curves and harmonic interpolation. In order to prove the main 
theorem concerning harmonic interpolation points we first consider level 
curves of harmonic functions. Let /(z) = f{x + iy) = <f>(x, y) + i<fi(x, y) 
be a non-constant entire function and define a gradient system by dx/dt = 
(f)x(x, y\ dyjdt = <f>y(x, y). 

LEMMA 1. Every path of the gradient system is a level curve of cj> and 
conversely. 

PROOF. We apply the Cauchy-Riemann equations to the equation of an 
orbit to obtain dyjdx = </>y/(fix = — $x/$y. It follows that d<j> = cj>xdx -f 
(j)ydy = 0 and that </>(x, y) = c is a solution. To prove the converse the 
argument is reversed. 

LEMMA 2. The function $ is monotone along any level curve of<j>. 

PROOF. Suppose </> were not monotone along a level curve $(x, y) = c. 
Since / and hence cjj is non-constant it follows that $ must attain a local 
maximum say, (the situation is similar for a local minimum) at a point 
(*o> ^o) o n t n e level curve. But the level curves of cj) are orthogonal to the 
level curve <j>(x, y) = c. Hence by the orthogonality (transversality is 
enough) and smoothness properties of <f>(x, y) = c it is possible to con
struct a disk with centre (x0, Jo) s u c n t n a t ^ attains its maximum value on 
the disk at the centre. This is a contradiction since <J) is harmonic. Hence 
</> is monotone along <fj(x, y) = c. 

Now let us consider u harmonic on the complex plane and as in the 
introduction set g(z) = g(x + iy) = u(x,y) + iv(x,y) and 

HZ) H\_ m z + ( 2 ^ } ! z + + ( w i V ) ! z + -J. 

THEOREM 3. //* h(z) has an essential singularity at infinity, then 
lim^oo p(u, R9 N) = oo. 

PROOF. Since the total number of harmonic interpolation points on 
\z\ = R is Af/>(w, Ä, N) it suffices to show that the number of such points 
tends to infinity. We note that a harmonic interpolation point occurs when 
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a level curve of Re h{z) = 0 cuts \z\ = R. We shall now set <j>{z) = 
Re A(z), 0(z) = Im A(z) and apply Lemmas 1 and 2. 

The singularities of the gradient system correspond to points z0 = x0 + 
/>>o where <fix(x0, 70) = 0, ^(x 0 , y0) = 0, and hence /z'Oo) = 0. If # is the 
least positive integer such that /z(9)(z0) # 0 then the local mapping theorem 
[1, pp. 130-133] describes the bifurcation of the level curves into 2q arms 
at z0. There are tangents equally spaced at angles of %\q and a level curve 
entering z0 is identified with the unique branch levaing z0 along the same 
tangent line. 

In view of Lemma 1 we shall use the Poincare-Bendixson theorem to 
show that no level curve can remain bounded. Firstly, closed level curves 
and hence paths are impossible since <f> is a nonconstant harmonic function. 
Secondly, a half path entering a singularity is identified with a half path 
leaving it. (The direction of the gradient field may be different on the two 
half paths. This does not affect the argument concerning level curves.) A 
level curve consists of a succession of half paths. Since there can only be 
a finite number of singularities in each finite region and no closed paths, 
the Poincare-Bendixon theorem does not allow any level curve to remain 
bounded. 

In fact the level curves can be countably indexed. This is done by con
sidering each circle \z\ = R for increasing R. Each level curve has a point 
of closest approach to the origin and is counted when it first appears. There 
can only be finitely many level curves in any bounded region so the index
ing can always be well defined. 

We now show that the level curves indexed in this way are infinite. 
By Lemma 2, (p is monotone along each level curve and hence for a fixed 
value fa, the complex number ic/j0 is a value taken on by h at only one 
point on the level curve <f>(x, y) = 0. But h has an essential singularity at 
oo and by the big Picard theorem there certainly exists a complex number 
i(f)Q which is taken on by h in every neighbourhood of infinity. Hence 
there must be infinitely many level curves. 

It remains to show that the number of harmonic interpolation points 
on \z\ = R becomes infinite as R tends to infinity. The indexing of the 
level curves was necessary because distinct level curves can intersect at a 
bifurcation point leading to a reduction of harmonic interpolation points 
on that particular circle. However, this can only occur once for a given 
pair of level curves as a second intersection would lead go a closed level 
curve. Hence for sufficiently large R the first m indexed level curves give 
rise to m harmonic interpolation points. This completes the proof. 

REMARKS. We believe that there should exist examples which show that 
the limit lim^oo p(u, R9 N) = oo is not montone. We give several interest
ing open questions: 
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(i) Suppose N remains fixed and harmonic interpolation points are 
defined with respect to z = 0 for a general exhaustion {Qn}. Does the as
sumption that h has an essential singularity at infinity imply the analogoue 
of Theorem 3 for the exhaustion {£?„}? 

(ii) If the analogue of Theorem 3 holds for a single exhaustion (as
sume N fixed), does this imply that the result holds for a class of exhaus
tions? 

(iii) What happens under the hypothesis of Theorem 3 if harmonic 
interpolation points are defined with respect to z ^ 0? 

3. Bounded analytic functions. Let Q be a Jordan domain. If f(z) is an 
analytic function which is not zero in Q then log \f(z)\ is harmonic on Q 
and there exist harmonic interpolation points £ï(z), Q(z), . . . , £AT(Z) on 
each dQn such that 

log l / ( z ) l * "Stf S dgn(z^k(z)) log L/«3(*))l 

a*.(*c;c«)) \L*/27r" 

and 

(5) i/(*)i=yji/(œ*))i 97 

Following [3] and [4], the points Çj(z), 1 g & ^ TV, are called geometric 
interpolation points of |/(z)|. We denote a particular point on öw by 

THEOREM 4. Let f be a bounded analytic function which is not zero on a 
Jordan domain Q with a rectifiable boundary and a normal exhaustion 
{Qn}. Let (ö(»)(z))»=i,2, > be a sequence of geometric interpolation points 
of |/(z)|. Then limw_/(£2(w)(z)) ± 0. 

PROOF. We shall show that if lim^TO/(Ö(>l)(z)) = 0, then/(z) = 0 giving 
a contradiction. 

For each «, equation (5) holds for the geometric interpolation points 
on dQn. Hence 

|/(z)| = lim IT l/(CK*))l 9* 
w->oo \fc=l / 

Also for each n, the term containing |/(Q(M)(z))| appears somewhere in this 
product. 

Since dgn(z, Q/drj ^ m > 0 and Ln is bounded it follows that 

Hm(|/(a(w)(z))| ** = 0 . 
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It then suffices to observe that since fis bounded and dgn(z, Q/dy ^ M, 
all other terms in the product are bounded above as n -> oo. Hence, by 
taking the limit, \f(z)\ = 0. This completes the proof. 

It is an immediate corollary that / cannot tend to zero along a level 
curve generated by geometric interpolation points. We give an example to 
show that the theorem does not hold if/is not bounded. 

EXAMPLE. Let/(z) = (1 + z)/(l — z)be defined on the unit disk. Then 
R and — R are geometric interpolation points for 0 ^ R < 1 since 

\f(R)\ \f(-R)\ = |L±*| I j ^ J I = 1 « |/(0)|. 

A l s o l i m ^ / C - i ? ) = 0. 

4. Normal Exhaustions. The following theorem gives certain conditions 
for a domain to have a normal exhaustion. 

THEOREM 5. Let Übe a Jordan domain with a rectifiable boundary. Then 
the following are equivalent. 

(a) There exists an exhaustion {Qn} ofQ and a point z0 G QX such that the 
boundary ofûn, dûn, is an analytic Jordan curve and the conformai mapping 
(fin °f ®n onto the unit disk ((fin(zQ) = 0, <fi'n(z0) > 0) can be extended to a 
conformai mapping defined on Qn with 0 < m ^ dgn(z0, Q/dy = \<fi'n(Q\ ^ 
M < oo. 

(b) There exists a conformai mapping <fi of \w\ < 1 onto the domain Q 
and positive constants a and b such that a ^ 1^(^)1 = °-> M < 1-

(c) Let <f> be an arbitrary conformai mapping of\w\ < 1 onto the domain 
Q. Then there exist positive constants a and b such that a ^ |0'(y)l Û b9 

\w\ < 1. 
(d) There exists a normal exhaustion {Q„} of Q which has the property 

that any conformai mapping (J)n ofûn onto the unit disk can be extended to 
a conformai mapping defined on Qn. 

PROOF. It is clear that (d) implies (a) and straightforward to show 
that (b) implies (c). It is also routine to show that (c) implies (d) by con
structing an appropriate normal exhaustion using the images under <j> of 
circles \w\ = r where ^ is a conformai mapping of the unit disk onto Q. 

It remains to show that (a) implies (b). By the maximum principle 
m ^ |^(z) | ^ M on Qn and if we define <j>n to be the inverse conformai 
mapping of the unit disk |vt>| < 1 onto Qn then Ì/M ^ \<f>'„(z)\ ^ \\m. 
Now let (fi be the conformai mapping of \w\ < 1 onto Q (^(0) = z0, (fi'(<S) 
> 0). By the Carathéodory convergence theorem (see [3]) <fin tends to <fi 
uniformly in each disk |u>| ^ R < 1. By the corresponding uniform con-
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vergence of <j)'n to <j> it follows that 1/M S I0'(w)l ^ I Int. This completes 
the proof. 

We remark that condition (c) is necessary and sufficient for HP{Q) = 
E*(Q) where EP(Q) is the space first considered by Smirnov (see Düren [2]). 
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