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ON FACTOR STATES 

STEVE WRIGHT 

1. Introduction. Let A be a (complex) C*-algebra, / a state on A. Let 
{iCf, Hf, Xf] denote the GNS triple corresponding to / . / is a factor state 
if flT/(A)" is a factor (' denotes taking the commutant). Traditionally, the 
set of factor states has played an important role in the integration and 
disintegration theory of states and representation of C*-algebras ([6], 
Chapter 8; [16], Chapter 3). Recently, in work of Choi-Effros and Connes 
characterizing separable nuclear C*-algebras ([3], [4], [5]); see also [7]) 
and work of Anderson and Bunce on the Stone-Weierstrass problem 
([1]), the set of factor states has also been important. The detailed study 
of factor states was started by Kadison in [11] (see Theorem A, p. 306). 
In view of the above recent work, it therefore seems worthwhile to con­
tinue this study, and this paper is thus a contribution in that direction. 

In §2 of the present paper, we give a characterization of factor states 
analogous to the Segal characterization of pure states, and use this to 
obtain an extension theorem for factor states. In §3 we characterize com­
mutative and elementary C*-algebras by a condition on their set of factor 
states, in a way which exhibits these two classes of C*-algebras as opposite 
extremes of a common phenomenon. In Section 4 we present a vector 
state characterization of irreducibility of C*-algebras which grew out of 
the investigations of the two preceding sections. 

We review and fix our notation for the sequel. If A is a C*-algebra, / 
a state on A, #/, Hf, and xf will denote respectively the representation, 
Hilbert space, and unit cyclic vector arising in the GNS construction 
corresponding to / . A+ and A% denote respectively the positive elements 
of A and the positive linear functional on A. We denote unitary equi­
valence of algebras, representations, and operators by ~ . If Xis a normed 
algebra or linear space and a is a cardinal number, a • X denotes the en­
fold multiple of X with the standard algebra or normed linear space opera­
tions inherited from X. If S is a subset of X, we set Ball S = {s e S: \\s\\ ^ 
1} and Si = {s e S: \\s\\ = 1}. If H is a (complex) Hilbert space, B(H) 
will denote the W*-algebra of all bounded operators on H and C(H) 
will denote the C*-algebra of compact operators on H. 
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2. Extensions of factor states. Let A be a C*-algebra, and denote by 
B(A x A) the set of all positive semi-definite, conjugate bilinear forms 
on A. We say that <p e B(A x A) is self-adjoint if <p(ab, c) = <p(b, a*c), 
for all a, b, ce A. By applying the GNS construction to A relative to <p, 
one can easily show that there exists p e A$ such that <p(x, y) = p(y*x) = 
(pp(x, y), x, y G A if and only if <p is self-adjoint. 

L e t / b e a state on A. For each a e Ball A+, the form defined by <pfta: 
(x, y) ->f(y*ax), x, y e A is an element of B(A x A). Let Bf = {<pfta-
a e Ball A+} and let Sf denote the set of self-adjoint point-wise limit 
points of Bf. Set »S'y = {p e A!f : <pp e Sf}. Sf can be described alternately 
as the set of p e A% for which there is a net {aa} E Ball A+ such that 
p(y*x) = lima f(y*aax) for each (x, y) e A x A. Sf is a wk*-compact, 
convex subset of [0, f] = {pe A$: p ^ / } . Set Qf = {0} U {ap: 0 # 
peSf,0 ^ a ^ \\pW~1}- Geometrically, Qfis the union of allline segments 
starting at 0, ending on the surface of Ball A%, and passing through an 
element of Sf. 

The following is a characterization of factor states which is analogous 
to the familiar one for pure states (cf. [6], Definition 2.5.2 and Proposition 
2.5.5): 

THEOREM 2.1. Let f be a state on A. The following are equivalent : 
(a) / is a factor state, 
(b)Sf = {Xf:0 ^ ^ \},and 
(c) / is an extreme point of Qf. 

PROOF, (a) => (b). Let p e Sf. Since p ^ / , by [6], Proposition 2.5.1, there 
is an element z e ^/(A)', 0 ^ z ^ 1, such that p(a) = (7uf(a)zXf, xf), a e A. 
We have p(y*x) = (z7Uf(x)xf9 7üf(y)xf)9 x,yeA, and since p e Sf, it follows 
that there is a net {aa} in Ball A+ such that 7Cf(aa) -» z{WOT). We con­
clude that z is in the center of %f(A)'\ and this latter is a factor, so z = A 
for some scalar A between 0 and 1. Thus p — Xf 

(b) => (c). In this case, Sf = Qf, and / therefore is clearly an extreme 
point of Qf. 

(c) => (a). Suppose 7Cf{A)" contains a nontrivial central projection P. 
Then for all a e A, 

(2.1) f{a) = (7üf(a)Xf, xf) = {iZf{a)Pxf, xf) + (7Cf(a)(I - P)xf, xf). 

If we define px: a -> (7cf(a)Pxf, xf), p2: a -* {iZf(a){I — P)xf9 xf), a e A, 
then by the Kaplansky density theorem pl9 p2 e Sf. Thus by (2.1) and the 
nontriviality of P, we can write 

/ = ii^/ii2wn^/ii2) + w - p)Xf\\Hp2iw - p)xfn 
a nontrivial convex combination of elements of Qf, which is not possible. 
Thus P is trivial, and/ is a factor state. 

file:////pW~1}-
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One of the most important applications of the Segal characterization of 
pure states deals with pure extensions of pure states. In fact, if A is a 
C*-algebra and S is a self-adjoint linear subspace of A, i f / i s an extreme 
point of the set of positive linear functionals on S of norm not exceeding 1, 
and if Ef = {p e Ball A%: p extends / } , then the Segal characterization 
quickly implies that each extreme point of Ef is a pure state of A ([6], 
Lemma 2.10.1). In particular, if B is a C*- subalgebra of A and / i s a pure 
state of B, then/extends to a pure state of A. We will show next that if 
B is hereditary and / i s a factor state of B, then Theorem 2.1 can be used 
to obtain the analogous extension theorem. Later we will indicate an 
alternate proof of the same fact. 

COROLLARY 2.2. Let Abe a C*-algebra, B an hereditary C*-subalgebra of 
A. Let f be a factor state of B, and set Ef = {p e Ball A$ : p extends f}. 
Then each extreme point ofEf is a factor state of A. In particular, f extends 
to a factor state of A. 

PROOF. Since Ef is nonempty, wk*-compact, and convex, it has extreme 
points. Let g be such an extreme point. Define 

T = {p G Ball A*: 3A G [0, 1] such that p\B = If). 

CLAIM 1. g is an extreme point of T. Let g = api + (1 — a)p2 t>e a 

convex combination of elements of T. Restricting to B, we ge t / = {ali + 
(1 - cc)l2)f Ai, A2 e [0, 1], and so 1 = ali + (1 - a)l2, whence Ai = 
l2 = I. Thus pi, p2 G E f. Since g is an extreme point for Ef, we conclude 
that pi = p2 = g. 

Now, let S g and Qg be defined relative to g as in Theorem 2.1. 
CLAIM 2. Sg E T. Let p G Sg. There exists a net {aa: a G S(} in Ball A+ 

such that p(y*x) = lima g(y*aax) for each (x, y)eAxA. Let {u{: iG/} 
be an approximate identity for B. Since B is hereditary, the set {wtaaw,: 
( a , 0 G 2( x /} is a net in Ball B+ relative to the product ordering on 2( x /. 
Now let Z>i, 62 G B. Then 

p(é?Z>i) = lim g(b$aabi) = lim g((b%ut)aa{uibìj) 
a a, i 

= lim/(6f(w,-ûfat/,)èi). 
a, t 

Thus p|B G Sf, and so by Theorem 2.1 (b), p\B = A/for some X G [0, 1]. 
To finish the proof, it suffices by Theorem 2.1 (c) to show that g is an 

extreme point of Qg. Hence, suppose 

(2.2) g = aaipi -f (1 - a)a2p2, 

where pt^Sg, 0 <; a, ^ ||p,H-1, i = 1, 2, 0 < a < 1. (We assume here 
that pi and p2 are both nonzero. If either one is zero, use the argu-
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ment to follow, appropriately modified.) (2.2) implies 1 = aoriHpiH + 

(1 - a)a2||ß2ll> w h e n c e <*i = \pA'\ * = 1» 2- W e h a v e PÌ\B = kf> 
A,e[0, 1], i = 1, 2 by Claim 2. Thus a^B = a ^ / = kWpiW'V, and 
so a,p, e T since A, ^ ||p;||, i = 1,2. By Claim 1, aipi = a2p2 = g, a n d 
we are done. 

In view of the previous results, the extreme points of Ef appear to be 
good candidates for factorial extensions of factor states. The next pro­
position gives a necessary and sufficient condition for an extreme point of 
Ef to be a factor state. It is formulated in terms of a condition depending 
only on the subalgebra, and gives an "algebraic" verification of and coun­
terpart to the "geometric" argument used in the proof of Corollary 2.2. 

PROPOSITION 2.3. Let A. be a C*-algebra, B a C*-subalgebra of A, / a 
factor state ofB. An extreme point g ofEf is a factor state of A if and only 
ifQPQ is in (7Cg(B)Q)" for each central projection P of Kg(A)", where Q is 
the projection ofHg onto the subspace [7Cg(B)xg]. 

PROOF. With no loss of generality, we suppose that A contains an 
identity e and e e B. The "only if" part is clear. Suppose P is a central 
projection in icg(A)". Let K = [icg(B)xg], If we consider Hg as the external 
direct sum K ® K±, we can from the invariance of K for izg(B) write 
TCgib) for b e B as a 2 x 2 operator matrix of the form 

\7cg(b)Q 0 I 

0 *,(*)( /- ß)J' 

V V 
F* W 

We have 

(2.3) P = 

where 

(2.4) 0 ^ U, W^I,U2 + VV* = U,UV+ VW= V, W2 + V*V= W. 

Now P commutes with icg(B), and so U = QPQ e (icg{B)Q)' (commutant 
taken with respect to B(K)). We conclude by hypothesis that U is in the 
center of (icg(B)Q)". Since (7cg\B)\K ~ icf a n d / i s a factor state of B, it 
follows that U = XIK for some nonnegative scalar h 

We evaluate A as follows: from (2.3), Pxg = Uxg ® V*xg = Xxg © 
V*xg9 and from (2.4), VV* = X(l - A)/*. Thus \\V*xgf = (VV*xg9xg) = 
A(l - X), whence \\Pxg\\

2 = Uxg\\
2 + \\V*xg\\* = I2 + X(l - X) = A. 

Since xg e K, we conclude that 

(2.5) QPxg = | |P*,||2JC,. 

Suppose P is nontrivial. By (2.5), xg - | |P^| |-2Px^ 1 K, and so for 
each beB, 
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0 = (*, - ||P*J-V*„ ng(b*)xg) 
= (xg(b)xg, xg) - (7cg(b)yg9 yg), where yg = Pxgl\\Pxg\\, 

= Ab)-{*&)yvyg\ 
Thus if we define gx: a -• (7üg(a)yg, yg), as A, then gx e £/ . A similar cal­
culation shows that if we define g2

: « -» (7ug(a)zg, zg), where zg = (I — 
P)Xgl\\(I - P)x*||, then g2

 e £/• Arguing as in the proof of Theorem 2.1, 
it follows that g = ||PJCJ||2#I + ||(/ - P)xg\\

2g2, a nontrivial convex com­
bination of elements of Ef. This being impossible, we conclude that P 
is trivial and g is a factor state. 

REMARK. The author does not know of a C*-algebra A, a C*-subalgebra 
B of A, and a factor state of B which does not extend to a factor state of A. 

3. Degeneration of states. Let A be a C*-algebra, and denote respectively 
by P, F, and S and set of pure states, factor states, and states of A. We 
have P ü F E S. In this section, we will characterize when equality holds 
at both ends of this chain of inclusions. We begin by studying factor 
states of C*-algebras of compact operators. The next few results are more 
general than what will be needed in the sequel, but they perhaps have some 
independent interest. 

The next few lemmas make use of Mackey's concept of disjointness of 
representations [12]. Two representations m and %2 of a C*-algebra A are 
disjoint if they have no non-zero unitarily equivalent subrepresentations. 
We denote this by %x Ô TÜ2. We say that %x and %2 are quasi-equivalent, 
denoted %x ~ q 2̂» if there exists an isomorphism p of ^i(A)" onto it2(A)" 
such that p(7Ui(a)) = %2{a), for all a e A. By a factor representation of a 
C*-algebra, we of course mean a representation % for which %(&)" is a fac­
tor. 

LEMMA 3.1. Let %x and %2 be representations of a C*-algebra A. Then 
there exist central projections P( in n^À)", i = 1, 2 such that 7Z\\Pl ~ q7C2\p2 

and 7ti\i-Pl ó flfcli-iv 

PROOF. Given any representation % of A on H, 7r** is a <?(A**, A*)-
ultraweakly continuous extension of % to a representation of A**, with 
;r**(A**) E TT(A)". Thus there exists a central projection z in A** such 
that ker #** = zA**. We set S(TC) = 1 — z. 

Now, let P be the supremum of all central projections c in A** such 
that c ^ s(7üi), i = 1,2. Let F{ = s(7ct) — P, i = 1, 2. Since P, $(#,•), and 
Fh i = 1, 2 are all projections in an abelian W*-algebra (the center of 
A**), they can be considered as characteristic functions of measurable 
sets ([16], Proposition 1.18.1), and we hence deduce that Fl J_ F2. Let 
Pi = 7C**(P), i = 1,2. Then P{ is a central projection in ict{A)", i = 1,2, 
and we have s{%i\P^ = P, s(7üt-\i-Pt) = Fi9 i = 1, 2. Since Fx J_ F2, it fol-
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lows that TTili-î  ô KÀx-Pt by [18], Theorem 3.8.11. and since s(7Ci\P) = 
s(x2\p2), we have m\Pl ~q Ç\à\^\P ~q K2\P2 by [18], Theorem 3.8.2. 

The following corollary is well known ([6], Corollary 5.3.6). 

COROLLARY 3.2. Two factor representations of a C*-algebra are either 
quasi-equivalent or disjoint. 

LEMMA 3.3. Let % = ®{na: a e 21} be a direct sum of nondegenerate 
representations of a C*-algebra A. The following are equivalent: 

(i) % is a factor representation, 
(ii) %a is a factor representation for each a e 21, and for each (cc\, a2) e 

ä x ä, if pi is a nonzero subrepresentation of %ai, i = 1,2, then pi and p2 

are not disjoint, and 
(iii) %a is a factor representation for each a e 2(, and for each (ai, a2) e 

2( x % 7Cai and %a2 are quasi-equivalent. 

PROOF. Let Ha denote the representation space of %a, Pa the projection 
of H = ®aHaontoHa. 

(i) => (ii). Let E be a projection in 7r(A)'. We claim that %\E is a factor 
representation. By the double commutant theorem, iz{À)E is dense in 
TC{A)"E with respect to the weak operator topology, and so (n(A)E)" = 
TC{A)"E (the former commutant taken in B(E(H))). Now the center of 
Eiz{A)'E = (center of 7Ü(A)')E ([17], Proposition 7), and so ETC{A)'E is a 
factor, since %{A)' is a factor. Thus (Eic(A)'Ey = ff(A)T([17], Corollary 
5) = {%{A)E)" is a factor. This verifies the claim. Thus, setting E = Pa 

for a e SI, we deduce that %a is a factor representation for each a e 2(. 
Let pi and 7Cai, i = 1, 2 be as in (ii). We have p{ = ica.\Ei, E{ 2L projection 

in iza.(A)', i = 1,2. Thus Ex ® E2 e ;r(A)', and so by the preceding claim, 
Pi © P2 = ^UI0JF2 *S a factor representation. By [6], Corollary 5.2.5. ^ 
and p2 are not disjoint. 

(ii) => (iii). This is an immediate consequence of Corollary 3.2. 
(iii) => (i). Let P be a nonzero central projection in TT(A)". Then £ a = 

PPa is a central projection in 7ca(A)" for all a, and so 2sa = 0 or Pa, for all 
a, since ?ra(A)" is a factor. 

Suppose EaQ == 0 for some a0 e 2(. Fix a ^ a0 in 21, and let p = pafCCQ be 
the isomorphism of 7zrao(A)" onto na{A)" such that p(7Cao(a)) = flra(tf), for 
all a e A. 

By the double commutant theorem, choose a net {#r} in A such that 
{ft(ar)} approaches P ultraweakly on H. Then {7Ui(ar)} approaches E{ 

ultraweakly on H{, i = a, CCQ. Since p is ultraweakly continuous ([16], 
Corollary 4.1.23), it hence follows that 

0 = p(Ea0) = l i m pfer0(«r)) = l i m *«(«r) = Ea-
r r 

Since a ^ aQ is arbitrary, we conclude that P = ®aEa = 0, contrary to 
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assumption. Hence Ea = Pa, for all a, and therefore P = ®aEa = ®aPa 

= identity on H. 

COROLLARY 3.4. Let % = ®aiza be a direct sum of irreducible representa­
tions of a C*-algebra. % is a factor representation if and only if all representa­
tions %a are unitarily equivalent. 

PROOF. Any two irreducible representations of a C*-algebra are either 
unitarily equivalent or disjoint. The corollary now follows from Lemma 
3.3. 

PROPOSITION 3.5. Let Bbea C*-algebra of compact operators on a Hilbert 
space H. Let f be a state on B. The following are equivalent: 

(a) fis a factor state, and 
(b) there is a nonzero minimal projection e in B, a nonzero vector f in 

the range of e, an orthonormal sequence {xn} of vectors in [Bg], and a 
sequence {Xn} of nonnegative real numbers with 2WAW = 1 such thatf(b) = 
Znh(bx„ xn), beB. 

PROOF, (a) => (b). By [2], Theorem 1.4.4, there is a family {%a: a e 2(} 
of irreducible representations of B such that %f = ®aita. By Corollary 
3.4, all tfa's are unitarily equivalent. Thus, %f is unitarily equivalent to 
card 9t-7Tao, a0 a fixed element in 91. By [2], Theorem 1.4.4, there exists a 
nonzero minimal projection e in B and a nonzero vector £ in range of e 
such that 7üao ~ (id|ß)|[ße]. Thus nf ~ card 2{ • (id|ß)|[ßf]. Let U be the 
unitary transformation implementing this equivalence, x = Uxf e card 21-
[BÇ]. Then for all beB, with x = ®nyn, {yn} g [5Ç], 

fib) = {izf(b)xf, xf) 

= (card 9r-(id|ß)|cßf] (b)x, x) 

= ( ( 0 b)(x), x) 

= H(byn, yn). 
n 

Since {yn} g [BÇ], we conclude that/(Z>) = f(PbP), for all beB, where 
P is the projection of H onto [BÇ]. By [2], Proposition 1.4.3, BP = C([BÇ]), 
and the existence of an orthonormal sequence {xn} and nonnegative num­
bers {Aw} with the desired properties is thus guaranteed by [6], Corollary 
4.1.3. 

(b) => (a). If/is of the indicated form, it is easy to see that TC/ is unitarily 
equivalent to a = ©w(id|ß)|[^M] = Ko'Odlß)!^] restricted to the subspace 
E = [(bxi, bx2, . . . ) : b e B]. Since B\lB^ = c([BÇ]) and {xn} is an ortho-
normal set in [2*£], it follows that E = Ko't^fL a n d so %f ~ a. By [2], 
Proposition 1.4.3, (id \B)\^i is irreducible on B, whence by Corollary 3.4, a 
is a factor representation, and so therefore is itf. 
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The following result refines Corollary 4.1.4 of [6]. 

COROLLARY 3.6. Let B be a C*-subalgebra of compact operators on H. 
Let f be a state on B. The following are equivalent: 

(a)/'ispure, and 
(b) there is a nonzero minimal projection e of B, a nonzero vector £ in the 

range ofe, and a unit vector x e [BÇ] such thatf(b) = (bx, x), for all b e B. 

COROLLARY 3.7. Every state on C(H) is a factor state. 

PROOF. This is immediate from Proposition 3.5 and [6], Corollary 4.1. 

A C*-algebra A is elementary if it is isomorphic to C(H) for some Hilbert 
space H. Recalling our notations at the beginning of this section, it follows 
by Corollary 3.7 that F = S if A is elementary. If A is commutative, then 
it is easy to see that F = P. The main result of this section asserts that both 
of these implications have a converse. 

Before we prove this, some terminology needs explaining. The statement 
"A has only one irreducible representation" should be interpreted to 
mean A has only one unitary equivalence class of irreducible representa­
tions. Also, by an ideal of a C*-algebra we always mean a uniformly 
closed, two-sided ideal. 

THEOREM 3.8. Let Abe a C*-algebra. 
(a) Every factor state of A is pure if and only if A is commutative. 
(b) Every state of A is factorial if and only if A is elementary. 

PROOF, (a) Suppose A is not commutative. Then A is not 1-homogene­
ous, so there exists an irreducible representation p of A such that the di­
mension of the representation space Hp of p exceeds 1. Let £l9 £2

 G Hp be 
linearly independent vectors with H^H2 + ||f2||

2 = 1- Set a{{d) = (p(a)£i9 

£,-), a e A, i = 1,2. L e t / = o\ + <72. / i s a state on A. We have for each 
a e A, 

(Kf(à)Çf, £/) = Gx(a) + (T2(a) 

= W e i , f i) + W f o &) 
= (P e p(«)(Çi, èù (f b &))• 

By Kadison's transitivity theorem ([10], Theorem 1), (f 1? £2) is cyclic for 
p © p, and so %f ~ p © p. Therefore by Corollary 3.4, / is factorial. 
Thus to establish (a), it suffices to show that / is not pure. Suppose / is 
pure. S ince /= W^WaMiW2) + ll&IIVz/ll&ll2), we have 

(3.2) f = GMI\\2 = <J2im\2. 

By the Kadison transitivity theorem, we can find an a e A such that 
p(a)£i = ?i, p(a)Ç2 = 0, whence a^a) = ||£il|2 # 0 and a2(à) = 0, con­
tradicting (3.2). Thus/ is not pure. 
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(b) Suppose every state of A is factorial. We first prove a simple lemma. 

LEMMA 3.9. Let Abe a C*-algebra with only one irreducible representa­
tion. Then A is simple. 

PROOF. Let / be a nonzero ideal in A, and suppose / ^ A, so that A/1 ^ 
(0). Let pi and p2 be nonzero irreducible representations of / and A/1, 
respectively. Let %x be the unique extension of pi to an irreducible repre­
sentation of A. If % : A -» A/1 is the quotient map, then %2 = n ° P2 *s a n 

irreducible representation of A. Thus %x ~ %2. ^ u t ^ = ker ?r2, J £ ker %x, 
and so ker %x ^ ker #2, a contradiction. 

Let m and #2 be nonzero cyclic representations of A. We claim that %i 
and %2 a r e n o t disjoint. Suppose not. They by Lemma 3 of [9], (%i © K2) 
(A)" = #i(A)" © 7zr2(A)". We assert that %i © %2 is a cyclic representa­
tion of A. Let £f- be a cyclic vector for #,-, i = 1,2. Then 

[On e ^(AXfi, &)] = [On e ^2>(Ar(f !, &>] 
= [*i(A)"£J © fe(A)"?2] 

= fei(A)f J © [TT2(A)Ç2] 

= # I © # 2 , 

where H{ is the representation space of %h i = 1,2, proving the assertion. 
Thus there is a state Ö" on A such that %i © %2 ~ iza. We conclude that 
%\ © ^2 is a factor representation. On the other hand (%i © 7T2)(A)" 
contains the nontrivial central projection IHl © 0. This contradiction 
verifies the claim. It follows from Corollary 3.2 that m ~ q %2. 

Let % be an arbitrary, nondegenerate representation of A, and let p be a 
fixed irreducible representation of A. We can write % as a direct sum of 
cyclic representations \%a\ ae8(} , and we deduce from the previous 
paragraph that %a ~qp, for all a e St. If <pa is the isomorphism of %a(A)" 
onto p(A)" = B(Hp) such that (pa(iza(a)) = p(a), for all a e A, it follows 
from the automatic ultraweak continuity of cpa that ®a(pa extends to an 
isomorphism of *r(A)" = ((©a7Ta)(A))" onto card 3t-5(7fp). We conclude 
that % is type /, and therefore by the arbitrariness of %, A is type /. By 
[15], Theorem 2, A is GCR. 

Let p1 and p2 be irreducible representations of A. Then pi ~ q p2, and 
since the isomorphism implementing this quasi-equivalence is a bijection 
of B(HP) onto B(HP^, it is unitarily implemented, and so pi ~ p2. By 
Lemma 3.9, A is simple. Since every nonzero GCR algebra contains a 
nonzero CCR ideal ([6], Proposition 4.3.4), A is either zero or simple and 
CCR, hence elementary. 

REMARK. An old question of Naimark [13] (see also [16], Remark 1, 
p. 236) asks if a C*-algebra with only one irreducible representation must 
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necessarily be elementary. If the C*-algebra is separable, Rosenberg [14] 
has answered this question affirmatively. This is a special case of Glimm's 
"kernel" characterization of separable type / C*-algebras ([8], condition 
(a6) of Theorem 1). Can the factor state characterization of elementary 
C*-algebras in Theorem 3.8 be used to obtain affirmative answers to 
Naimark's question in nonseparable cases? 

4. A vector state characterization of irreducibility. Let if be a Hilbert 
space, and let A be a C*-subalgebra of B(H) which contains the identity 
operator I on H. A is locally irreducible if A acts irreducibly on [Ax] for 
each xeHv We will show below that, modulo a degeneracy, local irreduc­
ibility implies irreducibility. 

In the following, if x e Hl9 œx will denote the vector state T-> (Tx, x), 
TeB(H). 

THEOREM 4.1. Let Abe a C*-subalgebra ofB(H) which contains the iden­
tity operator Ion H. The following are equivalent: 

(a) every vector state is pure on A, 
(b) A is locally irreducible, and 
(c) either A is irreducible on H or A = {XI: X e C}. 

PROOF, (a) o (b). Let x e Hx. We have ( idl^l^^ ~ icœx and so by [6], 
Proposition 2.5.4, A acts irreducibly on [Ax] if and only if œx is pure on A. 

(c) => (a). If A = {U: X e C}, (a) is clear. If A is irreducible, id|A is an 
irreducible representation of A. If x e Hh then id|A = ( i d ^ l ^ ] ~ icœx, 
and so nœx is an irreducible representation. Thus a>x is pure on A. 

(a) => (c). Let z e H^ and choose a maximal family {xa: a e 8(} of unit 
vectors which contains z and for which [Axa] J_ [Axß] if a ^ ß. Let Ea 

= [Axa]. By maximality, ®aEa = I. Thus id|A = ©«( id^ l^ . We claim 
that (idU)|ÄB ~ (idDI*, for a ± ß. Let x = (xa + xß)/V~2 Since Xa JL 
Eß and Ea, Eß e A', cox = coXa/^ + (oXß/^ on A. Thus œx dominates (oXa/v-j 
and cüXß/vj on A, and since œx is pure on A, we conclude by Proposition 
2.5.5 of [6] that there exists Xt e [0, 1] such that XÌÙ)X = o)Xi,^ on A, i = 
a, ß. Evaluating at I e A, we obtain Xa = Xß = 1/2, whence coXa = coXß on 
A, and it follows that ( i d ^ l ^ ~ 0^1^!^ . Thus if we fix an a0 e 2Ï 
and set H0 = EaQ, then A ~ card 2( • A \ H Q . Thus we may identify A with 
Card %-A\Ho acting on K = card W-HQ. 

Suppose A jk {XI: XeC}. Then dim H0 ^ 2. Suppose Card 9T ̂  2. 
Let {*!, x2} be linearly independent vectors in H0 with H^H2 + ||x2ll

2 = 1. 
Let y be a unit vector in K with coordinates xh x2 and all others zero. 
Since A and A\Ho are *-isomorphic under the map ®aa -+ a, ae A\ffo and 
côy is pure on A, the linear functional/defined by / : a -» (axl9 x^ + (ax2, 
x2), a e A\Ho is pure on A\HQ. Since / dominates o)xr i = 1, 2, we conclude 
as before that Û)XI/ÎÎX1\\ = œX2/M{ on A\ffo. By the equivalence of (a) and 
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(b), A\Ho is an irreducible C*-subalgebra of B(H0). Thus by Kadison's 
transitivity theorem ([10], Theorem 1), we can find an a e A\HQ such that 
axx = xx and ax2 = 0. It follows that 1 = œxi/iixi]i (a) = o)X2/mi (a) = 0, 
a contradiction. We conclude that % is a singleton, whence xao = z and 
[Az] = [Axao] = H. Since z e Hi is arbitrary, this shows that A acts ir-
reducibly on H. 
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