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SINGULAR PERTURBATIONS OF TWO CAUCHY PROBLEMS 
IN A HILBERT SPACE 

PHILIP G. ENGSTROM 

1. Introduction. This paper discusses two perturbed Cauchy problems 
in abstract Hilbert space, one of second and the other of third order, and 
shows that the solution of each tends uniformly to the solution of the 
associated degenerate problem. The uniform convergence of the deriva­
tives of these solutions is also discussed. Both problems are first treated 
on the real line. Results are then extended to abstract Hilbert space. 
Standard notation is used throughout the paper. The well-known results 
of spectral theory found in Dunford and Schwartz [2] are employed fre­
quently. Other research to which this paper relates directly includes the 
work of J. Schmoller [4] and L. Bobisud and J. Calvert [1]. 

2. The second order problem on the real line. Let the functions g(t; X) 
and h(t; X) be given functions of the variable t and the real parameter h 
Both functions will be assumed to be defined on the domain [0, oo) x 
(—00, oo). With respect to t and for fixed X, both functions will be assumed 
to be differentiable. The function g(t; X) will be assumed to be positive and 
not equal to zero on any finite interval [0, T\. 

For e > 0 we will be concerned with the following perturbed Cauchy 
problem 

eu'&t; X) + g(t; X)u'£t; X) + h(t; X)u£t; X) = 0, 

"e(0; X) = x0, w*(0;A) = xv 

If we set e = 0 in the above problem and retain only the first initial 
condition, we obtain the unperturbed (or degenerate) Cauchy problem 

g(t; X)u'0(t; X) + Ht\ X)u0(t; X) = 0, 
"o(0; X) = Co­

smee both problems (1) and (2) are linear, their solutions ue and w0 may 
be put in the forms 

ue(t; X) = pe(t\ X)x0 + qe(t\ X)xl9 
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and 

"o('; X) = Po(t'> X)x0, 

respectively. Here pe{t\ X) and qe(t\ X) are the solutions of (1) with the 
initial data (x0, Xj) = (1, 0) and (x0, x{) = (0, 1), respectively, while 
p0(t; X) is the solution of (2) with the initial data x0 = 1. 

By known methods it is possible to find a representation of the solutions 
of each of the above problems and to determine bounds for these solu­
tions and for the functions pe, qe and pQ as well as for their first and 
second derivatives. Having done so, two theorems can be proven (cf. 
Smith [3] for analogous results). 

THEOREM 1. Let X be fixed and T > 0. Then e -> 0+ implies 
\.p£(t; X) -> Po(t; X),and 
2. q£(t; X) -+ 0, 

where convergence is uniform for t in [0, T]. 

THEOREM 2. On any interval [<5, T], ö > 0, p'e(t; X) -> p'0(t; X) and 
q'e(t\ X) -» 0 uniformly in t for fixed X as e -> 0+. 

3. The problem in Hilbert space. We turn next to the associated problem 
in a Hilbert space H. That is, we consider the abstract problem analogous 
to ( l ) 

(3) eU"e{t) + g(t; A)U's(t) + Kt; A)Ue(t) = °' 
Ue(0) = x0 and U'e(0) = xl9 x0 and Xi in H, 

and its associated degenerate problem 

g(t; A)U'0(t) + h(t; A)U0(t) = 0, 
(4) 

U0(0) = x0 

which is analogous to (2). 
In the above statement of the problem, A is a self-adjoint, possibly 

unbounded operator whose domain A{A) is dense in H. The functions 
g(t; X) and h(t; X) are defined as before with the additional requirement 
that with respect to I the functions be integrable Borei functions. 

Recall that the self-adjointness of A assures the existence of the unique 
spectral family E and permits the representation of A as well as Borei 
functions of A by means of integrals. That is, 

(5) A = \ ldEx and f(A) = f(X) dEx. 
J —oo J —oo 

For x in the domain of A we write 
/•oo 

(6) Ax = I X dExx. 
J —oo 
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Proceeding to the problem, we define the three operators 

P£(t) = p£(t; A) 

(7) 

Q9(t) = q9(t;A) 

and 

P0(t)=Po(t;A) 

We want to show that for elements x0 and xx of an appropriate dense 
domain determined by the operators of the two problems (3) and (4), 
the solutions of these two problems are given by 

(8) Ue(t) = P£(t)xQ + Qe{t)x1 

and 

U0(t) = P0(t)x0, 

respectively. From the development of Section 2 there can be found a 
function 0(X) determining a self-adjoint operator 

/•oo 

0(A) = I <HX)dEx. 
J —oo 

The domain of this operator we will denote with zJ(CP); that is, 
/•oo 

A(0) = {x e H: \ 02(X) d(Exx, x) < oo} 
(9) J -oo 

= {xeH: \\0(A)x\\ < oo}. 

With A(0) thus defined it is possible to show that x e â{0) is in the 
domain of each of the operators encountered in (3) and (4). Specifically, 
J(0) is contained in the domains of Pe(t), Q£{t) and P0(0-

To show that the expressions of (8) are indeed solutions of (3) and (4) 
it sufficies to show that 

^P£(t)x = r j^P£(t; X)dExx, k = 1, 2, 

(10) 
^prQlt)x = £ J ^ qe(t; X) dExx, k = 1, 2, 

and 

^p0(t)x = ^^Ps(t;X)dExx. 

To this end we prove the following lemma. 

/•oo 

= I Pe(t; X)dEh 
J —oo 

/•oo 

qlt; X)dEh 
J —oo 

-r. p£(t; X)dEx. 
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LEMMA 1. Let f be a function oft and X which is defined on R x R, has 
a continuous derivative with respect to t, and with respect to X is a Borei 
function such that 

it*'-» 
where F(X) is integrable on R with respect to d(E^x, x). Then 

4"Jl/('; x) dExX = J l Wm X) dExX-
PROOF. From (5) and by definition of/, 

^_j{ta)dExX = ^At-A)X 

so that 

(1/5) [fit + Ô; A)x - f(t; A)x] = J ^ / ( / + ô; ^ ~ / ( ' ; A) dExx. 

But by the mean value theorem there exists a number t\ depending on X, 
satisfying \t — t'\ ^ d, and such that 

f(t + ö;X)-f(t;X) _ 9 m>. ,x 
Ô ltAt 'À)m 

Using this we may write 

(i i) J ^ [%fW'> z) - lff(* ; x>] d(E*x> *) - o. 
as ô -• 0. (We have used the dominated convergence theorem of Lebesgue 
together with the fact that 4F(X) bounds the integrand.) But this implies 
the conclusion of the lemma, thus completing the proof. 

Bounds integrable with respect to d(Exx, x) for the functions 
(dk/dtk)p£(t; X), (dk/dtk)q£(t; XI k = 1, 2, and for (d/dt) p0(t; X) can be 
found, thus allowing us to conclude from Lemma 1 that 

ip^x=LipÂt;À)dExx-
Proof in the case of the second derivative of P£(t)x follows also from ap­
plication of Lemma 1. The remaining cases involving Q£(t) and Po(t) are 
disposed of similarly. 

Continuing, we have from (8) 

eU'Xt) + g(t; A)U'£(t) + h(t; A)U£(t) 

= eP'Xt)x0 + g(t; A)P'£(t)x0 + h(t; A)Pe(t)x0 

+ eQ'X*)*! + g(t; A)QXt)x1 + h(t; A)Q£(t)xv 
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The sum of the first three terms of the right member equals 

^{fpfä Ü + «to ïïpti' ïï + Ato ÏÏP& ïï]dE*xo 

which in turn, equals zero. Similarly, the remaining terms equal zero so 
that U£(t) is a solution of (3) on the interval [0, T\. 

In the same manner U0(t) is shown to be a solution of (4). Thus follows 
another lemma. 

LEMMA 2. U£(t) and U0(t) are solutions of the problems (3) and (4), 
respectively, on [0, T]. 

This lemma is complemented by the next one. 

LEMMA 3. The solutions of (3) and (4) are unique. 

PROOF. It suffices to show that P£(t)x0 and ße(0*i a r e unique solutions 
of (3) with Xi = 0 and x0 = 0, respectively, and that Po(0*o *s t n e 

unique solution of (4). 
Consider the case involving P£(t)x0. We want to show that if P£(t)xQ is 

a second solution of (3), Xi = 0, then Re(t) = P£(t)x0 — Pe(t)x0 = 0. 
If *! = x0 = 0, 

eR'Xt) + g(t; A)R'£(t) + h(t; A)R£(t) = 0. 

Now let n be an integer and define the bounded operators 

gn(t; A) = J%(f ; X) dEx = (En - E__n)g{t\ A\ 

hn(t; A) EE ̂ _h(t; X) dEx = (En - E_n)h(f, A), 

and 

G£,n(t,s;A) =— P~*expT- — V gn(a + s; A) da\dz, 0 ^ s ^ t. 
£ Jo L £ Jo J 

Also let R£>n(t) be defined by 

R£tn(t) = (En - E_n)R£(t). 

Then 

eR'Ut) + g„(f; A)R'£in{t) + /*„('; >0*UO 
(12) = (En - E_n)[eR'&t) + g(t; A)Rf

£(t) + h(t; A)R£(t)] 

= 0. 

We have employed here the fact that the operators included in the above 
expressions are permutable and that (En — E_n) is idempotent. 
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From the definition of Rs>n(t) and from (12) it follows that Re,n{t) sat­
isfies the integral equation 

Knit) = - f' hn(s; A)GStn(t, s; A)R£tn{s)ds. 
Jo 

Taking the norms of both sides leads to the inequality 

||*Ê,w(OII S £ \\hn(s; A)\\ \\GU*> *l A)W H ^ » l l as. 

But the application of Gronwall's lemma shows that ||jRe>w(0ll = 0. Since 
Re(t) = lim^oo^ n(t), it follows that Re(t) = 0, which was to be shown. 
The uniqueness of the remaining solutions Q£(t)xi a nd A)(0*o *s shown 
analogously. 

We prove a final theorem. 

THEOREM 3. For x0 andxl in d(0) \\Ue(t) — U0(t)\\ -> 0 uniformly as 
S-+0+ on [0, T] and \\ U£(t) - U'0(t)\\ -> 0 uniformly as e -> 0+ on [ö, T], 
0 < Ö ^ T. 

PROOF. From the definition of U£(t) and U0(t) (cf. (8)) it is clear that 

\\U,(t) - U0(t)\\ ^ \\P£(t)x0 - P0(t)x0\\ + ||ß.(0*ill 

and 

n^(o - Ó̂(OII ^ II^'OK - pó(t)*o\\ + iie;(o*iii. 
Thus it suffices of show that each of the four quantities 

/•oo 

||i>£(0*o - Po(t)x0\\
2 = I \pXt; X) - Po(t; X)MExx0, x0), 

J —oo 
/•oo 

llß/')*ill2 = f \gs(t; X)\2d(EiXl, xt), 
J —oo 

\\P'£t)x0 - Pfàxop = I \p'e(t; X) - p'o(t; X)\2d(Exx0, x0) 
J —oo 

and 

l i ò f i l i 2 = f°° \qXt; X)\2d(Exxu Xl) 
J —oo 

tends to zero uniformly with e. 
From Section 1 it can be shown that \pe(t; X) — p0(t; X)\2 has a bound 

dependent on T and A. Also, from Theorem 1 \p£(t; X) — Po(t; X)\ -• 0 
uniformly with e. It follows from the Lebesgue dominated convergence 
theorem that \\Pe(t)x0 - Po(0*oll -* 0 uniformly with e. 

The uniform convergence of the remaining three quantities follows 
analogously, concluding the proof of the theorem. 
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4. The third order problem. Consider the third order Cauchy problem 

eu?{t\ X) + au£(t\ X) + h(t; X)ue(t; X) = 0, 

ue(0; X) = x09 u'e(0; X) = xl9 u"(0; X) = x2 

where h(t; X) is a function of the real variable t and the real parameter X. 
The function h will be assumed defined on [0, oo) x ( — 00, 00) and, for 
fixed A, differentiable with respect to t. The coefficient a is a positive real 
constant and e a small parameter > 0. 

The degenerate problem has the form 

au'0(t; X) + h(t\ X)u0(t; X) = 0, 
(14) 

w0(0; X) = x0. 

Employing methods analogous to those shown above, the following 
results are available. 

LEMMA 4. Ue(t) and UQ(t) are solutions of (13) and (14), respectively. 
These solutions are unique. 

THEOREM 5. The solution Ue(t) of the perturbed Cauchy problem (13) 
tends uniformly as e -> 0+ to the solution U0(t) of the degenerate problem 
(14). 
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